Chapter 19

Network Organization in
Space and Time

“Tout ce qui est vrai pour le Colibacille est vrai pour ’éléphant.” (That which
is true for E. coli is true for the elephant.) - Jacques Monod

Chapter Overview: In Which Statistical Mechanics Is Used to Study
Gene Regulation

Specific genes are used only when and where they are needed. For example,
we have made much of the classic example of the Lac operon which governs the
enzymes responsible for lactose digestion. Similar control is exercised over genes
in other bacteria, archaea and eukaryotes. The tools worked out throughout the
book leave us poised to consider important quantitative questions about gene
regulation such as: how much is a given gene expressed, where in the cell (or
the organism) is that gene expressed and at what time during the cell cycle (or
life history) of the organism? The key tools we will use to study these ques-
tions are statistical mechanics and rate equations. The statistical mechanics
approach will use the probability of promoter occupancy as the key quantity of
interest, whereas the rate equation approach will examine the concentrations of
protein products over time. These same techniques will also be used to examine
signaling with special emphasis on the “decisions” cells make about where to go.

19.1 Chemical and Informational Organization
in the Cell

Many Chemical Reactions in the Cell Are Linked in Complex Net-
works
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The reality of the chemical reactions that take place in the cell are a far cry
from the relatively sterile and simple kinetic processes described in chap. 15. In
the discussion given there, we showed how to write the time evolution of the
concentrations of a set of reactants and products. That theoretical machinery
provides an appealing and useful picture for characterizing many of the beau-
tiful in vitro experiments which have powered solution biochemistry. However,
biochemistry in living cells has reactants and products linked in a complex set
of lineages of biblical proportions where A begets B which begets C' which in
turn begets D and so on, with the added non-anthropomorphic complication
that Z might just beget A again. Indeed, the fact that Z can act back on A
reflects the presence of feedback which makes the dynamics even richer. Two
of the most important classes of reaction that are central to the functioning
of cells are those associated with gene regulation and signaling. Indeed, one
of the features that most completely distinguishes the chemistry of a cell from
that of solution biochemistry is the way in which the reactants are tuned by
up and down regulation. Similarly, the reactions of the cell are also stimulated
by external cues in the form of signaling cascades. In this chapter, we consider
regulation and signaling by using a variety of tools developed throughout the
book.

Genetic Networks Describe the Linkages Between Different Genes
and Their Products

One of the most intriguing ways in which the chemistry of the cell cannot be
viewed as a bag of reactants and products is the fact that this chemistry is under
the strict control of the genetic machinery of the cell. In particular, if left to
its own devices, some particular chemical pathway in the cell might just travel
a path to eventual equilibrium. On the other hand, because of both external
and internal cues, the machinery of the cell can receive orders via signaling
pathways which lead, in turn, to the expression of some gene which results in a
new reactant in the original chemical pathway which sends it off in some new
direction.

The description of the informational pathways that dictate the cellular con-
centration profiles in both space and time of the various chemical reactants of
interest is founded upon a higher-level of abstraction. In particular, there are
networks of genes that are linked together in sometimes horrifyingly complex
arrays such as that shown in fig. 19.1. This network is an example of a partic-
ularly well characterized genetic network which participates in the embryonic
development of sea urchins. One important take home message concerning this
network is that it is a typical network and should leave the reader with a sense of
the implied chemical complexity of these systems. In general, genetic networks
like that shown in fig. 19.1 make no reference either to the passage of time, nor
to the quantitative distributions of the molecules that mediate these networks.
Rather, these networks are an abstraction which shows how genes (and their
products) are linked to each other in both space and time. On the other hand,
it is important to bear in mind that beneath the surface of these wiring dia-
grams are actual concentrations of the molecular players of these informational
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pathways.
Developmental Decisions Are Made by Regulating Genes

Often, genetic networks serve as the basis of the developmental decisions
which send a cell or collections of cells down some path. One of the intriguing
features of multicellular organisms is that despite the overwhelming cellular
diversity, generally, each cell carries the same genetic baggage. However, in
general, cells only express a certain fraction of all the available genes. This
differentiation is the basis of the development of embryos and the basis of the
different structures found in multicellular organisms. The key point is that not
all genes are being expressed all the time.

One of the most famous examples of a “developmental decision” is the A-
switch described in chap. 4 and shown in fig. 4.10 (pg. 196). After infecting an
E. coli bacterium, lambda phage follows one of two developmental pathways.
One pathway (the lytic pathway) results in the assembly of new phage and
the lysis of the host cell. The second pathway, the lysogenic pathway, involves
incorporation of the lambda genome into that of the host cell. Lysogeny can be
reverted by damaging the cell with UV light, which triggers lytic replication.

Another compelling example of the role of developmental decisions is that
of embryonic development in fruit flies. One of the most celebrated examples
is that of the body plan along the long axis of the fly embryo which is dictated
by the distribution of certain proteins along the embryo. Figure 19.2 gives
an example of the gradients in four key regulatory proteins which determine
the anterior-posterior organization. These proteins determine the pattern of
gene expression along the embryo from which the Eve 2 stripe is the most
well understood example. These ideas were already introduced in section 2.3.3
(pg. 106).

Part of the hard won wisdom of molecular biology is the recognition that
there are many stages in the pathway between DNA and functional protein that
can serve as regulatory points. Some of these different regulatory mechanisms
are shown in fig. 6.7 (pg. 313). For the purposes of the present discussion, we
will focus on one of the most common regulatory mechanisms, namely, tran-
scriptional control where the key decision that is made is whether or not to
produce mRNA.

Gene Expression Is Measured Quantitatively in Terms of How Much,
When and Where

One of our main arguments is that gene expression is a subject that has be-
come increasingly quantitative. In particular, it is now common to measure how
much a given gene is expressed, when it is expressed and where it is expressed.
To carry out such measurements, there are a number of useful tools.

e Experiments Behind the Facts. Quantitative measurement of gene
expression can be made at many stages between the decision to start
transcription and the emergence of a functional protein product. As noted
earlier, such measurements have provided a quantitative window on how
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Figure 19.1: Genetic network associated with control of the developmental path-
way of the sea urchin embryo. (A) Schematic of stages in the embryonic de-
velopment of the sea urchin. (B) Genetic network associated with sea urchin
development. (Adapted from S. Ben-Tabou de-Leon and E. H. Davidson, Annu.
Rev. Biophys. Biomol. Struct., 36:191, 2007.)
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Figure 19.2: Regulatory proteins in the Drosophila embryo. The anterior-
posterior patterning of the fruit fly is dictated by genes that are controlled
by spatially varying concentrations of transcription factors. (A) Schematic of
the main transcription factors involved in the regulation of the even-skipped
stripe 2 gene. (B) Measurement of these morphogen gradients using immuno-
precipitation. (C) Regulatory region of the even-skipped stripe 2 gene where
the binding sites for each transcription factor have been identified. (B, adapted
from Myasnikova et al., Bioinformatics, 17:1, 2001; C, Adapted from Small et
al., EMBO J., 11:4047, 1992.)
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much a given gene is expressed, where it is expressed spatially and when.

One important way to characterize the activity of a gene is by virtue of its
protein products. In particular, if the gene product has enzyme activity,
that activity can be assayed as a reporter of the extent to which the gene
has been expressed as shown in fig. 19.3(A). Recall that beta-galactosidase
is the enzymatic product of the lac operon, as shown in fig. 4.13 (pg. 200),
and that the action of this enzyme is to clip lactose molecules. One of
the impressive legacies of years of work on this system is a battery of
substrates which respond differently to the enzymatic cleavage. One such
substrate (ONPG) turns yellow upon cleavage and measuring the rate at
which a solution becomes yellow optically can provide a window on gene
expression since it is proportional to the amount of enzyme (over some
region of concentrations). By measuring the absorbance at the appropriate
wavelengths one has a picture of the amount of active enzyme. To carry
out this kind of assay usually requires routine cloning in which sequences
encoding the enzyme are inserted into the genome under the control of
the transcription factors of interest.

From a molecular biology perspective, this same strategy of inserting a
reporter into the gene of interest can be followed, but with the difference
that the “reporter” molecule is a fluorescent molecule such as the green
fluorescent protein (GFP) rather than an enzyme. This case is shown in
fig. 19.3(B). Relative fluorescence levels of reporters such as GFP are easy
to characterize.

A second scheme for characterizing the extent to which a given gene is
expressed is by measuring how much messenger RNA from the gene of
interest is present in the cell. One of the tools of choice for such measure-
ments is the DNA microarray. DNA microarrays are built by labeling a
surface with an array of different DNA molecules, each patch of which has
small DNAs with the same sequence as shown in fig. 19.4. These sequences
are chosen to be complementary to an entire battery of sequences corre-
sponding to the genes of interest in the experiment. Cells are then broken
up and their RNA (or DNA copies made from the RNA) are then allowed
to flow across the array and hybridize with the molecules on the surface.
The various molecules have been fluorescently labeled, so by looking at
the fluorescence intensity at each point on the array, it is possible to read
off how much RNA was present.

Another scheme for characterizing the amount of RNA is to use quantita-
tive PCR. Once again, the cell is lysed and the mRNA molecules are turned
into DNA using a reverse transcription reaction. Then these molecules are
used as templates in a PCR reaction, and it is seen how many cycles of
PCR are needed before the quantity of DNA in the reaction exceeds some
threshold. This threshold value is a direct reflection of the amount of
starting molecules since starting with lots of template DNA will result in
many more molecules at low cycle numbers than will very little starting
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Figure 19.3: Measurement of gene expression. (A) Measurement of gene ex-
pression as a result of enzymatic activity. The promoter of interest drives the
expression of an enzyme that can cleave a molecule which in the cleaved state
is colored. (B) The promoter of interest drives the expression of a fluorescent
protein such as the green fluorescent protein (GFP). The amount of fluorescence
reports the extent of expression of the gene of interest.

material. With quantitative PCR, one can detect mRNA copy numbers as
low as 10.

As will be described in the remainder of this chapter, a useful surrogate
for the actual question of the extent to which a given gene is expressed is
to ask whether or not the promoter for the gene of interest is occupied.
There are many in vitro and in vivo methods for finding out whether or
not the promoter is hidden by polymerase binding or not. Chromatin
inmunoprecipitation and DNA footprinting are two methods which are
sensitive to promoter occupancy. The idea in these assays is that the part
of DNA where the transcriptional apparatus is bound will react differently
when the system is exposed to agents such as restriction enzymes. The
most common procedure is to try to digest the DNA using a restriction
enzyme. They will not be able to access the DNA over which RNAP is
situated, leaving a “footprint” of a longer piece of DNA which can be
easily detected.
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Figure 19.4: Measurement of the mRNA concentration. (A) A DNA microarray
uses a collection of different molecules on the surface of a slide, each of which
has a sequence complementary to the mRNA (or reverse trasnscribed ssDNA)
associated with the gene of interest. By measuring how much hybridization
there is between the sample and the molecules on the surface, one can count up
the mRNA. (B) Quantitative PCR reactions use a template molecule which is
produced from the mRNA using reverse transcription. The amount of template
determines how many cycles of PCR it will take to reach a critical threshold.

19.2 Genetic Networks: Doing the Right Thing
at the Right Time

In “thermodynamic” models of gene expression, attention is focused on the
probability that the promoter is occupied by RNA polymerase. In section 6.1.2
(pg. 312), we showed how the “bare” problem of polymerase molecules interact-
ing with DNA could be solved using these simple ideas from statistical mechan-
ics. However, the shortcoming of that approach is that it ignores the existence
of molecular gatekeepers which exercise strict control over the occupancy of
promoters. We begin our dissection of gene expression with a consideration of
these gatekeepers, which are known as transcription factors.

Promoter Occupancy Is Dictated by the Presence of Regulatory Pro-
teins Called Transcription Factors

In figure 6.8 (pg. 313) we showed a cartoon of some gene of interest and
the promoter and DNA upstream from it. As a first cut at the problem of
promoter occupancy, we examined the probability of RNA polymerase binding
as a competition between this promoter and nonspecific sites, both of which
can be occupied by polymerase molecules. We now expand that discussion to
account for the presence of a host of important accessory proteins whose presence
on the scene can either enhance (activate) or reduce (repress) the probability of
promoter occupancy.
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As before, we focus primarily on bacteria. What this means concretely is
that we will treat RNA polymerase as a single molecule and ask the precise
mathematical (but biologically oversimplified) question of whether or not the
promoter is occupied by such an RNA polymerase molecule. In the eukaryotic
case, this question is less easily posed since the basal transcription apparatus
consists of many parts, all of which need to be present simultaneously in order
to start transcription.

19.2.1 The Molecular Implementation of Regulation: Pro-
moters, Activators and Repressors

Repressor Molecules Are the Proteins That Implement Negative Con-
trol

One of the key control mechanisms of genetic networks is negative regulation
of transcription. What this means is that the decision to express the gene of
interest is made very early on in the set of processes leading from DNA to
protein, namely, at the point where RNA is synthesized. If there is little or no
mRNA which codes for a given protein, then clearly the ribosomes are in no
position to produce the corresponding protein. The molecular implementation
of negative control is through protein molecules known as repressors such as the
Lac repressor introduced in figs. 4.13 (on pg. 200) and 8.19 (on pg. 423). In
the case of bacteria, repressors can often be viewed as carrying out a blocking
action in the sense that through DNA-protein interactions, they occupy the
DNA in a region (called the operator) which overlaps the region where RNA
polymerase binds (the promoter). The action of such repressor molecules is
illustrated schematically in fig. 19.5. Note that the activity of repressors can, in
turn, be regulated by small molecules, or inducers, that can bind and generate
a conformational (or allosteric) change which alters the binding probability of
the transcription factor for the DNA. Later in this chapter, we give a statistical
mechanical interpretation of such cartoons.

It is important to recall that the point of cartoons like that in fig. 19.5
is to convey a conceptual picture and not a detailed molecular rendering of
the explicit action of the various molecular participants. On the other hand,
the fact that such cartoons can be constructed in the first place is often the
result of having digested the significance of hard won structural determinations
from x-ray crystallography. Indeed, sometimes, not only the structures of the
bare repressors are known, but even the structures of these repressors when
complexed with DNA. In fact, there are a variety of structural implementations
of repression, some famed examples of which are shown in fig. 19.6.
Activators Are the Proteins That Implement Positive Control

A second key mechanism for altering the extent to which a given gene is
expressed is known as positive regulation of transcription, or more provoca-
tively, regulated recruitment. Here too, the idea is that the overall process of
protein synthesis of a given gene product is regulated very early on where an
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Figure 19.5: The process of repression. Cartoon representation showing the
action of repressor molecules in forbidding RNA polymerase from binding to its
promoter, or alternatively, if bound, from initiating transcription.

accessory molecule enhances the probability of promoter occupancy by RNA
polymerase. This mechanism is built around the idea of proteins other than
RNA polymerase that bind to DNA and increase the probability that the RNA
polymerase itself will bind the promoter. Just as repressors interfere with the
ability of RNA polymerase to bind to its promoter, activators bind in the vicin-
ity of the promoter and have adhesive interactions with RNA polymerase itself
which enhance the likelihood of RNA polymerase binding. The key point is that
the RNA polymerase molecule interacts not only with the DNA to which it is
bound, but also through “glue-like” interactions with the activator molecule. A
cartoon representation of the process of regulated recruitment (i.e. activation)
is shown in fig. 19.7.

As with the study of repressors, structural biology has permitted a range of
atomic-level insights into the mechanisms of transcriptional activation. Fig. 19.8
provides a gallery of some key activators and reveals their sizes relative to the
DNA molecule and illustrates the way in which they distort and occlude the
DNA when bound.

Genes Can Be Regulated During Processes Other Than Transcription

Our discussion will focus primarily on transcriptional regulation. On the
other hand, as shown in fig. 6.7 (pg. 313), there are many points along the route
connecting DNA to its protein products where gene expression can be controlled.
Two of the most obvious and important ways in which the concentration of
active protein are controlled is through post-translational modifications such as
phosphorylation and protein degradation. For the moment, we focus on the
way in which ppound (the probability that the promoter is occupied by RNA
polymerase) can be altered through the action of transcription factors such as
repressors and activators.
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Figure 19.6: Examples of repressor molecules interacting with DNA. From top
to bottom the relevant repressors are FadR (pdb 1HW2) | IdeR (pdb 1U8R),
TetR (pdb 1QPI) and PurR (pdb 1PNR). The point of the figure is to give an
impression of the relative sizes of repressors and their target regions on DNA
and to illustrate how these transcription factors deform the DNA double helix
in the vicinity of their binding site. These drawings are renditions of actual
structures from x-ray crystallography. (Courtesy of David Goodsell.)
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Figure 19.7: The process of activation. Schematic of the way in which activator
molecules can recruit the transcription apparatus. Though both the activator
and RNA polymerase have their own private interaction energies with the DNA|
the enhancement in their occupancies is mediated by the adhesive interaction
between them.

19.2.2 The Mathematics of Recruitment and Rejection

Recruitment of Proteins Reflects Cooperativity Between Different
DNA Binding Proteins

One of the key general ideas that pervades the description of transcriptional
control (and beyond) is the idea of molecular recruitment. In the anthropo-
morphic terms suggested by the word “recruitment”, the basic idea is that a
given molecule which is bound on DNA summons some second molecule to the
DNA where it can then perform its task. For example, we think of RNA poly-
merase being summoned (and vice versa) by some activator molecule such as a
transcription factor and exemplified by the CAP protein in the case of the lac
operon. Though this colorful language is suggestive and conjures up a useful
physical picture, from the perspective of the rules of statistical mechanics, this
is nothing more than the well-worn idea of cooperativity cloaked in different
verbal clothing.

Activators are proteins which regulate transcription by binding to a specific
site on the DNA so as to recruit an RNA polymerase onto a nearby promoter site.
It has been suggested that weak, non-specific binding of the activator protein
and the RNA polymerase can greatly enhance the probability of the polymerase
binding to DNA, even for very low concentrations of activator proteins typical
of the cellular environment. To assess the feasibility of this strategy we compute
the probability of the polymerase being bound in the presence of an activator
protein using a simple model which is depicted in cartoon form in fig. 19.9. The
basic point of this cartoon is to show the different allowed states of polymerase
and activator molecules and to use this enumeration of states to compute the
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Figure 19.8: Structures of activator molecules. From top to bottom the acti-
vators are: CAP (pdb 1CGP), p53 (pdb 1TUP) tumor suppressor, zinc finger
DNA binding domain (pdb 2GLI) and leucine zipper DNA binding domain (pdb
1AN2). (Courtesy of David Goodsell.)
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probability that the promoter will be occupied. Indeed, this is the same “states
and weights” mentality used throughout the book.

The first step in our analysis of this problem is to write the total partition
function. Note that the partition function is obtained by summing over all of
the eventualities associated with the activators and polymerase molecules being
distributed on the DNA (both nonspecific sites and the promoter). As shown
in fig. 19.9, there are four classes of outcomes, namely, both the activator site
and promoter unoccupied, just the promoter occupied by polymerase, just the
activator binding site occupied by activator and finally, both of the specific sites
occupied. This is represented mathematically as

Ziot(P,A;Nns) = Z(P,A;Nng) + Z(P — 1, A; Nyg)e v
empty promoter RNAP
+ Z(P,A—1;Nyg)e Peau
activator
+ Z(P—1,A—1;Nyg)e PEaatepatepa) (19.1)

RNAP 4 activator

Note that notationally the meaning of Z(P, A; Nyg) is that it is the partition
function for P polymerase molecules and A activator molecules to be bound on
the Nyg nonspecific sites and is given by

) _ Npg! _BPeNS _3AeNS
Z(P,A; Nns) = PIANys — P — A)1 e pd e ad (19.2)

weight of each state

number of arrangements
We have also introduced the notation €,, to account for the “glue” interaction
between the polymerase and activator. Like in sec. 6.1.2 (pg. 312) for the case of
RNA polymerase, we introduce Easd and 5(%5 to characterize the binding energy
of activator with its specific and nonspecific DNA targets, respectively. Our
expression involves a number of terms of the general form

NN5'!
PIAI(Nyg — A— P)!

As we did earlier, we invoke a simplifying strategy which depends upon the fact
that Nyg > A + P and hence, there will be almost zero chance of RNA poly-
merase and the activator finding each other on the same non-specific site on the
DNA. This permits the approximation % = (Nng)AT" introduced in
section 6.1.2 (see pg. 312).

To compute the probability of promoter occupancy, we construct the ratio of
all of those outcomes that are favorable (i.e. polymerase bound to the promoter)

to the total set of outcomes (Ziot(P, A; Nng)), namely,

e PPepd = BALT (19.3)

Z(P—1,4; Nyg)e P + Z(P — 1, A — 1; Nyg)e PEaaterateps)

Poound (P A; Nns) = Zoor (P, A Nug)

(19.4)
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Figure 19.9: Schematic representation of the simple statistical mechanical model
of recruitment. The states and weights diagram shows the different binding sce-
narios in the vicinity of the promoter of interest and the corresponding renor-
malized statistical weights obtained using statistical mechanics. We make the
simplifying assumption that the nonspecific binding energy is constant. The
large circular DNA is a cartoon representation of the bacterial genome.
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Figure 19.10: Illustration of the recruitment concept. This plot shows the prob-
ability of binding when the number of polymerase molecules is P = 500 and
the binding parameters are Aepq = —5.3 kT and Aeyq = —13.12 kgT. The
three curves correspond to different choices of the adhesive interaction energy
between polymerase and the activator.

We now propose to simplify this result by dividing top and bottom by the
numerator resulting in

1

oun Pa A7 N = 5 19.5
Do d( NS) 1+ %eﬁAapd ( )
where we introduce the regulation factor, Fy.4(A) which is given by
1 _|_ ie_ﬂAEade_ﬂfap
Freg(A) - Nys (196)

_A L —BAc.q
1+ Fag €

and where we have defined Aepq = 5511 76111\;3 and Aegg = sfdfsfxf . The details
of the derivation are left to the problems at the end of the chapter. Note that in
the limit that the adhesive interaction between polymerase and activator goes
to zero, the regulation factor itself goes to unity. Further, note that for negative
values of this adhesive interaction (i.e. activator and polymerase like to be near
each other) the regulation factor is greater than one which is translated into an
effective increase in the number of polymerase molecules. The probability of
RNA polymerase binding as a function of the number of activators is plotted in
fig. 19.10.

The Regulation Factor Dictates How the Bare RNA polymerase Bind-
ing Probability Is Altered by Transcription Factors

One of the intriguing claims that we will make is that a simple change in
the effective number of RNA polymerase molecules (P — P.y¢) will suffice to
capture the action of regulatory chaperones such as activators and repressors.
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Figure 19.11: Regulation factor and the effective number of polymerase
molecules. The presence of activators is equivalent to a problem with just poly-
merase but a larger number of them. (A) The “bare” problem with activators
and polymerase present. (B) The “effective” problem in which the presence of
activators is treated as a change in the number of polymerase molecules.

This interpretation of the meaning of the regulation factor is shown in fig. 19.11.
As a result of the presence of activators, it is as though the number of RNA
polymerase molecules has been changed from P to F,.qFP. For the case of
activators, the regulation factor is greater than one and leads to an effective
increase in the number of polymerase molecules. By way of contrast, below we
will show that when repressors are present, they result in a regulation factor
that is less than one and a concomitant decrease in the effective number of
polymerase molecules.

In order for our calculations to really carry weight, we need to examine
what they have to say about experiments. One of the primary measurables in
in vivo experiments on regulation is the relative expression for cases in which
the transcription factor of interest is present or not. This qualitative notion is
made quantitative by introducing the idea of the fold change in activity defined
in the activation setting as

N A
Poound(A #0) 1+ #;&A)eﬁ epa
pbound(A = 0) 14 %eBAEM

fold-change = (19.7)

What this expression reveals is how much more expression there is in the pres-
ence of activators relative to the “basal” state in which there is no activation.
As before, an inherent assumption in this analysis is the idea that the relative
change in what is measured (e.g. protein product, mRNA concentration or
promoter occupancy) is equal to the relative change in ppoynd. Figure 19.12
illustrates the fold-change in gene expression for the problem of simple activation
with a choice of parameters dictated by in vitro experiments for a value of Aeyq
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Errata: this expression is inverted. According to the definition of fold-change as the ratio p_bound(A) / p_bound(A=0), it follows from Eq. 19.5 that the numerator and denominator should be flipped. Note that this is consistent with the concepts explained in this chapter: in the presence of activator molecules, there is more expression, i.e. both Freg(A) and the fold-change are increasing functions of A.
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Figure 19.12: Fold-change due to activators. Fold-change in gene expression as
a function of the number of activators for different activator-RNA polymerase
interaction energies using P = 500, Aepq = —5.3 kT and Aeyq = —13.12 kT
based on in vitro measurements.

in conjunction with an educated guess for &4, which results in typical fold-
changes in activity reported in vivo of about 50. Note that a weak promoter
satisfies the condition &S ef2rd > 1, which implies that the fold-change in
activity can be rewritten as

fold-change ~ (Freg(A))f1 . (19.8)

Here we are also assumed that %BBAEW > 1, which means that the promoter
isn’t too strong even in the regulated case. The conclusion is that in the case of
a weak promoter the actual details of the promoter such as its binding energy,
factor out of the problem.

Activator Bypass Experiments Show That Activators Work by Re-
cruitment

The simple picture of regulated recruitment introduced here is based in part
upon a series of classic experiments known as activator bypass experiments. The
key idea of such experiments is shown in fig. 19.13. These experiments involve
a mix and match approach where the DNA binding domain from one protein is
fused with the activator domain of a second protein. A second version of this
experiment is based upon direct tethering of the activator and the polymerase.
After making the activator bypass constructs, it was found that the gene of
interest was still activated. Our ambition here is to consider these experiments
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(B)

Figure 19.13: Schematic of activator bypass experiments. (A) Activator bypass
type 1 in which activation is mediated by proteins with designer DNA binding
regions, (B) activator bypass type 2 in which the activator is tethered directly
to polymerase.

more quantitatively and to note that if viewed from a mathematical perspective,
these two classes of experiments lead to different quantitative outcomes which
can be used to further test the full range of validity of the notion of regulated
recruitment.

We have already worked out the regulation factor that is associated with
activator bypass type 1 experiments. The only change relative to eqn. 19.6 is
the fact that by using different proteins, quantities such as Aeqq and €y, will
have different numerical values which means that the actual level of activation
can be different in this experiment relative to its “wild type” value. On the
other hand, the entire functional form for the regulation factor is different in
the case of activator bypass type 2. In this case, there are only two states we
really need consider - polymerase with tethered activator bound at the promoter
or not with weights (P/Nyg)e #(AepatAcaa) and 1, respectively. This implies
that the probability that polymerase will be bound is

1
1+ %eﬁAﬁadeﬁAim ’

pbound(P; NNS) = (199)

This implies, in turn, that the regulation factor takes the particularly simple
form

Frog = e PASea, (19.10)

which amounts to the statement that the effective binding energy of polymerase
is shifted and nothing more.

Repressor Molecules Reduce the Probability Polymerase Will Bind
to the Promoter
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The same logic that was introduced above to consider the case of pure acti-
vation (i.e. recruitment) can be brought to bear on the problem of repression.
Once again, we are faced with considering all of the ways of distributing the
repressor and RNA polymerase molecules and it is convenient to introduce the
partition function associated with the binding of these molecules to nonspecific
sites as

N ! NS NS

Z(P,R: Nyg) = P!R!(NNSNf o R)!efﬁpspd e PR (19.11)
which is formally identical to eqn. 19.2, but where we have introduced the
notation ;% to describe the nonspecific binding of repressor to DNA (3, will
be reserved for the specific binding energy of repressor to its operator). In order
to write the total partition function for all the allowed states we now need to
sum over the states in which the promoter is occupied either by a repressor
molecule or by an RNA polymerase molecule. The set of allowed states in this
simple model as well as their associated weights is shown in fig. 19.14. Note that
in considering this particular model, we do not enter into structural fine points
such as whether or not the RNA polymerase can be on its promoter at the same
time as the repressor is bound to its operator - the model is intended to be
the simplest treatment of the statistical mechanics of the competition between
repressors and RNA polymerase.

The total partition function is given by

Zit(P,R;Nys) = Z(P,R;Nys) +Z(P —1,R; Nyg)e P+ Z(P,R — 1; Nyg)e Pra |

empty promoter RNAP on promoter repressor on promoter
(19.12)
This result now provides us with the tools in order to evaluate the probability
that the promoter will be occupied by RNA polymerase. This probability is
given by the ratio of the favorable outcomes to all of the outcomes. In mathe-
matical terms, that is

Z(P —1,R; Nyg)e Peva

Z(P,R;Nns) + Z(P — 1,R; Nygs)e P%va + Z(P,R — 1; Nyg)e P
(19.13)

As argued above, this result can be rewritten in compact form using the reg-

ulation factor by dividing top and bottom by Z(P — 1, R; NNS)e_ﬁsgd and by

invoking the approximation

pbaund(Pu R; NNS') -

Npg! _N Fo NEg

PR(Nys—P—R)!~ P! R!
which amounts to the physical statement that there are so few polymerase and
repressor molecules in comparison with the number of available sites, Nyg,

that each of these molecules can more or less fully explore those Nyg sites. The
resulting probability is

(19.14)

1
1+ %eﬂ(ﬁﬁdfsgf)(l + Nil\rse_ﬁ(sfd_syds )

pbound(P; R; NNS) = (19.15)
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Figure 19.14: States and weights for the case of simple repression. The states
of promoter occupancy are empty promoter, RNA polymerase on the promoter
and repressor on the promoter.
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This result can be couched in regulation factor language with the observation
that the regulation factor itself is given by

R —1
Freg(R) = (1 + NNSBMM> : (19.16)

with Ae,q = &3, — V. Note that the regulation factor in the case of repression

satisfies the inequality F,.; < 1, which can be interpreted as a reduction in the
effective number of RNA polymerase molecules. We explore this in more detail
in section 19.2.5 when discussing the particular case of the lac operon.

19.2.3 Transcriptional Regulation By the Numbers: Bind-
ing Energies and Equilibrium Constants

We have heard it said that “physics isn’t worth a damn unless you put in some
numbers!” The abstract expressions obtained so far are much more interesting
when viewed through the prism of particular measurements. Binding ener-
gies quantify the affinity of RNA polymerase or transcription factors for their
DNA targets. In particular, RNA polymerase and transcription factors perform
molecular recognition as a result of a rank ordering of their preferences for dif-
ferent sequences of nucleotides. Indeed, the sequence associated with a given
promoter distinguishes it from some random sequence to which RN A polymerase
would bind with a non-specific binding energy sZJXiS . Specific binding energies
can also be tuned. For example, even though there might be one very strong
consensus promoter, that binding strength can be reduced by introducing mis-
matches in the sequence. A strong promoter, with a ppoung close to one will
have a strong level of expression. On the other hand, by weakening a given pro-
moter, cells can broaden their dynamic range by introducing a co-dependency
on a battery of transcription factors which effectively tune the range of binding
affinities and permit the regulation of promoter occupancy.

Equilibrium Constants Can Be Used To Determine Regulation Fac-
tors

In order to compute the regulation factors for the various regulatory sce-
narios under consideration in this chapter, we need to make estimates for the
energy associated with binding protein X to the DNA both specifically and non-
specifically; protein X can be a repressor or an activator. Binding energies are
determined indirectly in experiments which measure the equilibrium constant
for binding X to DNA (D). In particular, we consider the reaction

X+D = XD (19.17)

with an equilibrium binding constant

K = (19.18)
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Here [- - -] denotes concentrations of the various species taking part in the reac-
tion.

When a single X binds to DNA there is an overall change of the free energy
A fxp. The more negative this quantity is, the more likely X will be bound to
DNA. Similarly, a larger K&bind) implies that the bound state is more likely.
More precisely, the probability that a particular binding site on the DNA is oc-
cupied is equal to the ratio of the number of occupied sites to the total number
of sites as was first introduced in section 6.4.1 (pg. 345). In terms of concentra-
tions, this can be written

XD KMV [X]
Pbound = = - 5 (1919)
D]+ [XD] 14 gPX]

where the final expression follows from eqn. 19.18. On the other hand, given
that there are [X]Vien copies of protein X in the cell (V oy is the volume of the
cell), the probability of a DNA binding site to be occupied is

[X]Vceue’ﬁAfXD
1+ X]Veene PAfxo -

Pbound = (1920)

Comparison of the two expressions for ppouna allows us to relate the microscopic
and macroscopic views of binding through the relation

(bind)
Kxi — ¢ BAfxD (19.21)
Veen
Using this relation we can compute the binding free energies for RNA polymerase
and the various transcription factors in F. coli as the reader is invited to explore
in the problems at the end of the chapter. Presently, we use these ideas to tackle
the lac operon which features both positive and negative regulation.

19.2.4 A Simple Statistical Mechanics Model of Positive
and Negative Regulation

Real regulatory architectures in cells often involve both repression and activation
simultaneously. In this case, we consider the five distinct outcomes shown in
fig. 19.15 and captured through the total partition function

Ziot(P,A,R; Nng) = Z(P,A,R;NN5)+Z(P—1,A,R;NNS)e*ﬂ5§d

empty promoter RNAP
+ Z(P,A—1,R;Nys)e 4+ Z(P—1,A— 1, R; Nyg)e P(Edateratera)

activator RNAP + activator
+ Z(P,A,R—1;Nyg)e P + Z(P,A—1,R — 1; Nyg)e PEaateiig.22)

repressor activator + repressor
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Note that the cartoon shows a schematic representation of the different ways
that the region in the vicinity of the promoter can be occupied and what the
statistical weights are of each such state of occupancy. We can compute the
probability of RNA polymerase binding by considering the ratio of favorable
outcomes to the total partition function, resulting in

Z(P —1,A,R: Nys)e Peoa + Z(P —1,A — 1, R; Nyg e P(aatepatesa)

pbound(PaAzR; NNS) = Zt t(P A RNNS)

(19.23)
As before, perhaps the simplest way to interpret this result is with reference to
the regulation factor, resulting in

1

pbound(Pa Aa R; NNS) = o) (1924)

+ PFTJZ;v(i\,R) eﬁ(eid_spd
where the regulation factor itself is now a function of both the number of acti-
vators A and the number of repressors R. In particular, the regulation factor is
given by

14+ 7]\;2]5 e~ B(Acaa+eap)

Freg(A,R) =

1+ NLNSe—BAEad + NLJ;Se—ﬁAEM + ﬁ Nfs e—B(Acaa+Aepa)

(19.25)
The fold-change change in gene expression due to this regulatory architecture
in the weak promoter approximation is shown in fig. 19.16. The objective of
this figure is to illustrate the combinatorial control that can be reached when
different transcription factors act in unison. Perhaps nowhere is this interplay
of negative and positive regulation more well known than in our old friend, the
lac operon.

19.2.5 The lac Operon

Both repression and activation are a key part of the equipment of bacteria.
Perhaps the most famous example of these effects is provided by the lac operon
and shown in fig. 4.15 (pg. 204). Indeed, the lac operon has served as one of the
central workhorses of the entire book and the present section is the denouement
of that discussion. In this case, the activator is the catabolite activator protein
(CAP), also known as cyclic AMP receptor protein (CRP). In order to be able
to recruit RNA polymerase, CRP has to be bound to cAMP, a molecule whose
concentration goes up when the amount of glucose decreases. The repressor,
known as Lac repressor, decreases the level of transcription unless it is bound
to allolactose, which is a byproduct of lactose metabolism.

The lac Operon Has Features of Both Negative and Positive Regula-
tion

Recall that the lac operon oversees the management of the enzymes that are
responsible for lactose uptake and digestion. In particular, when E. coli cells
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Figure 19.15: Schematic representation of the simple statistical mechanical

model of recruitment and repression.
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Figure 19.16: Combined regulation by repressor and activator. The fold-change
in gene expression as a function of the number of transcription factors shows

their combinatorial action. The parameters used are Aeyq = —10 kT, €qp =
-3.9 kBT and Aé‘rd =—-16.9 kBT.
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Figure 19.17: Census of the relevant molecular actors in the lac operon. The
figure shows a rough estimate of the number of polymerase molecules, activators
and repressors associated with the lac operon.

find themselves simultaneously deprived of glucose and supplied with lactose,
the genes of the lac operon are turned on so as to take metabolic advantage
of the lactose. We have already described the way in which the Lac repressor
forbids transcription of the genes associated with lactose digestion by binding
on its operator. However, our earlier discussion was a bit too blithe since we
said nothing of what happens in the case where glucose and lactose are simul-
taneously available. If we are to adopt the picture of negative control described
above, then our expectation would be that in this case there should be substan-
tive transcription of the genes of the lac operon. However, there is a second
element of positive control which completes the story. In particular, in the ab-
sence of glucose, the activator, CAP (catabolite activator protein) binds to a
site near the promoter (the RNA polymerase binding site) as shown in fig. 4.15
(pg. 204) and “recruits” RNA polymerase to the promoter. The census shown
in fig. 19.17 gives a rough impression of the number of copies of some of the key
molecules associated with the lac operon and illustrates the striking fact that
some of the transcription factors exist with as few as ten copies.

The geometry of the regulatory landscape for the lac operon is shown in
fig. 19.18. Our discussion of fig. 4.15 was oversimplified in the sense that we
ignored the presence of auxiliary binding sites for the Lac repressor which are
revealed in fig. 19.18. In particular, there are two other binding sites for the
Lac repressor. Specifically, there is a binding site known as O2 located 401 bp
downstream from O1 and a second such site known as O3 situated 92 bp up-
stream. Part of our discussion will center on the subtle ways in which repression
takes place in this system. Recall that the repressor itself is a tetramer with
two “reading heads” that can each bind to a different operator, looping out the
intervening DNA.

One of the most important roles for models like those described here is in
providing a conceptual framework for thinking about both in vivo and in vitro
data and in suggesting new experiments. A particularly compelling class of in
vivo experiments using the lac operon measured the repression as a function of
the strength and placement of the operator sites which are the targets of Lac
repressor. In particular, F. coli cells were created which had only one operator
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Figure 19.18: Position of the three lac operators and CAP binding site relative
to the promoter. O1 is the main operator while O2 and O3 are auxiliary binding
sites for Lac repressor and are associated with DNA looping.
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Figure 19.19: Repression in the lac operon. The DNA constructs used in
these experiments deleted the auxiliary binding sites for repressor and tuned
the strength of the main repressor binding site. Repression was measured in
each construct for two different concentrations of Lac repressor. (Adapted from
S. Oehler et al.,, EMBO J., 13:3348, 1994.)

for Lac repressor as well as mutants with different spacings between operators
(a topic we return to below). The first set of experiments we consider are those
in which only one operator was present for Lac repressor binding as shown in
fig. 19.19. In these experiments, the repression was measured for cases in which
the promoter was repressed by each of the operators O1, O3 and O3 individually.
From the standpoint of the models considered here, all that is different from one
experiment to the next is the binding energy of repressor for the DNA.

Recall that for a single repressor, the regulation factor is given by eqn. 19.16.
What is measured in the experiment is the ratio of the level of gene expression
in the absence of repressor to that in the presence of repressor. For the pur-
poses of our model, we replace this definition which is based upon a measure
of protein content (i.e. the product of the gene) with a definition based upon
examining the probability that the promoter is occupied by RNA polymerase.
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The implicit assumption here is that the protein content is linearly related to
the probability of promoter occupancy. More precisely, we define repression as
the ratio between the probability of binding of RNA polymerase to the relevant
promoter in the absence of repressor to the probability of such binding in the
presence of repressor, namely

pbound(R = 0)
pbound(R 7é 0) '
Concretely, this result depends on the number of repressors (R) and their energy

of binding to DNA. If we substitute for ppoyng using eqn. 19.15 we find the
repression can be written as

Repression = (19.26)

1+ NiefﬁAEpd + Le*ﬁﬁefrd
Repression(R) = NS Nys . 19.27
p ( ) 1 + Nise_lBAepd ( )

For the case of a weak promoter this implies, in turn, that the repression level
can be written as

Repression(R) = [fold-change(R)] ™' ~ [Fl..,(R)] ™' =1+ Nie*ﬁAE"’p

(19.28)
One of the interesting opportunities afforded by this expression is the possibility
of a direct confrontation with experimental data such as is shown in fig. 19.19.
In particular, the data of fig. 19.19 permits us to determine the only un-
known in our expression for the repression, namely, the energy parameter Ae,.q.
Since the data reflects three different choices of binding strength, we find three
different binding energies (Ae,q =-16.9, -14.4 and -11.2 kgT for O, O and
Og, respectively). With these energies in hand, we can predict the outcome of
repression measurements in which the number of repressors is tuned to other
values as shown in fig. 19.20. Note that once the binding energy difference has
been estimated using one data point, it leads to a prediction for the behavior
of the system for different numbers of repressor in the cell and will serve as the
basis for our analysis of the two-operator case as well.
The Free Energy of DNA Looping Affects the Repression of the lac
Operon

Our discussion of the lac operon from the statistical mechanics perspective
has thus far ignored one of the more intriguing features of this system, namely,
the presence of DNA looping. The behavior of the lac operon has been examined
in great detail both in witro and in vivo. One beautiful set of experiments
that are particularly enlightening with reference to the class of models we have
described thus far in the chapter examine the repression of the Lac operon as a
function of the spacing between the DNA binding sites (the operators) for Lac
repressor.

The data on repression as a function of interoperator spacing was introduced
in fig. 1.11 (pg. 42) as an example of the sophisticated quantitative data that
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Figure 19.20: Repression model for the lac operon. Each curve shows how
repression varies as a function of the number of repressor molecules in the cell.
Different curves correspond to different main binding sites (operators) for the
Lac repressor. (Data from S. Oehler et al., EMBO J., 13:3348, 1994.)
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Figure 19.21: Construct used to measure repression in the presence of looping.
The binding site for the activator CRP (shown as CAP in the diagram) was
deleted as was the theird repressor binding site. (Adapted from J. Miiller et al.,
J. Mol. Biol., 257:21, 1996.)

exists on biological systems in general, and gene expression in particular. These
beautiful experiments and others like them show a systematic trend in the pro-
moter activity of the genes in question as a function of the distance between
the binding sites for the repressor under consideration. One particular telling
feature of such data is the periodicity which results from the twist degrees of
freedom and which reflect the need for particular faces of the DNA to be aligned
in order to form a loop.

Figure 19.21 shows the DNA construct that was used to examine the in
vivo consequences of DNA looping. In this construct, both the binding site for
CRP and the operator O2 were deleted, while the promoter was replaced with
a stronger promoter. The deletion of the CRP site is intended to remove the
question of activation from the problem. Note also that this construct permits
the insertion of DNA sequences of arbitrary length between O1 and Oid, where
Oid has replaced O3. Oid is a much stronger operator than O3, of approximately
the same strength as Ol. Finally, the deletion of O2 insures that looping will
only occur between the two remaining operators.
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In order to confront data like that shown in fig. 1.11 (pg. 42), we need to
expand our discussion of activators and repressors to include the effect of looping
itself. In fig. 19.22, we show a minimal model of the states available to the system
when RNA polymerase and Lac repressor are competing for the same region in
the vicinity of the promoter. Note that this model permits different repressor
molecules to occupy the two operators simultaneously, or a single molecule to
occupy both sites and to loop the intervening DNA. We ignore the possibility
of activator binding since the activator binding site was eliminated as shown
in fig. 19.21. Note that this doesn’t unequivocally rule out the possibility of
nonspecific CAP binding which might tamper with the results as well.

In order to proceed in quantitative terms, as usual, we need to write down
the partition function that corresponds to assigning statistical weights to all of
the allowed states depicted in fig. 19.22. Using exactly the same logic as in
previous sections, the partition function can be written as

Ziot (P, R; Nns) = Z(P,R; Nys) +Z(P —1,R; Nyg)e
—
0 0 0 0
PO, Oin)ain and Ogn)lx P, Oin)ain and O(alix

+ Z(P—1,R—1;Nyg)e Prie P

1) (0 (1)
P, Omain and Ogz{ix

+ Z(P,R—1;Nyg)e Pam 4+ Z(P,R — 1; Nyg)e Pvaa

1 0 0 1
p©), Oin)ain and Ogu)lx PO, Oin)ain and Ogu)lx

+ Z(P,R—2;Nyg)e Perame=Pe7ua

P© 0" . and O{x

malin
+ Z(P,R—1;Nyg)e Pam P aae=BFroon (19.29)

repressor /loop

Our notation has clearly become more cumbersome and deserves explanation.
First, we introduce P(9), Oi?l)ain and Oéol)lx to indicate that the occupancies of
the promoter and main and auxiliary operators are zero, respectively. Next, the

notation O . indicates that the main operator is occupied. The term with

p© oW i, and Og&x indicates the states for which there are distinct repressor
molecules bound to the two operators and the final term accounts for the looped
state.
One of the terms in the expression includes the looping free energy in the
form
Z(P,R — 1; Nyg)e Peram ¢ =Beraa g =B Froon (19.30)
and the factor e AFloor deserves further comment. Recall that Z(P, R—1; Nyg)
is itself already a sum over all of the possible ways of distributing the P RNA
polymerase molecules and the R—1 repressor molecules over the [Ny g nonspecific



19.2. GENETIC NETWORKS: DOING THE RIGHT THING AT THE RIGHT TIME1035

STATE
promoter
[ —
[ [
auxiliary main
operator operator

[4

&

3

g
1 1 1 D

W

RENORMALIZED WEIGHT

P B Aepg

PR B (Agpa+ Atraa)
Nns Nns

L e’ﬁ Aérgm

R e Agrga/kgT
Nns

R R=1 o (Aeram + Aerga) /KT
Nns Nns

R e (A&rdm + Agrda + AFloop)/kBT
Nns
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Figure 19.23: Summing over DNA loops. The sum Zloops instructs us to sum
over all conformations of the DNA loop as indicated schematically here.

binding sites on the DNA, with one of the repressors bound to both operators
and looping the intervening DNA. However, for each and every one of these
configurations, we have to sum over all of the possible geometries of the loop
itself. That is, this contribution to the partition function is really of the form

Ziooped(P.R—1; Nys) = Y Z(P,R—1; Nys)e Porame Fae=Fooon (19.31)

loops

where €;50p is the energy of a given loop configuration and Zloops instructs us
to sum over all of the possible loop configurations as schematized in fig. 19.23.
Since most of the factors are independent of the looping geometry, we can rewrite
this as

Ziooped(P, R—1; Nys) = Z(P, R—1; Nyg)e rame P eua S e=Petoon | (19.32)

loops

where we have pulled all terms out of the sum that do not depend upon the
particular choice of looped state. One way to proceed at this point is to appeal
to ideas about elasticity to determine €540, and use the random walk as the basis
for effecting the sum. On the other hand, the simpler scheme is to replace the
sum by e~ AFeor and to treat Fio0p as a phenomenological parameter as we have
already done with the various binding energies.

With the partition function in hand, we can compute the probability of RNA
polymerase binding by considering the ratio of favorable outcomes to the total
partition function, resulting in

P R
Poound(P, R; Nyg) = ——e Pawa (1 + e—BA%) (19.33)
Nns Nns
P R

1+ e*ﬂAEpd <1+ eﬁAETd{l) +
[ Nns Nns

R
NNS (e_ﬁAsrdnL + e_ﬂAsrda> +
R(R - i) BB am+Aeran) |

(Nns)

R —1
e—ﬁ(Asmim+A87~da+AFloop):|
Nns
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where we have defined AFjoop = Floop + 57%5 . From this expression we can
obtain the regulation factor

R
Freg(R) = <1+NNSeﬁAsm) (19.34)

|:NR (e_/@Asrdm + e_BAsrda) +
NS

R(R — i)e—ﬁ(
(Nws)

R -t
e—ﬁ(AETdm+A€rda+AFloop)] .
Nns

Aerdm+Aerda) +

To make contact with the results of Miiller et al., we now need to write an
expression for the repression as a function of the interoperator spacing. Recall
that the repression is given by eqn. 19.26 and takes the form

repression(Nyy) = (Freg) (19.35)
R

_ —BAEram —BAErda

= e +e +
Vs | )
R(R — ? o~ (A am+Acraa) |
(Nys)
B e—ﬁ(Ae,,.dm+Ae,,.da+AFloop)}
Nns

R —1
1 + e[jAsrda> .
( Nns

where we have written repression(NVy,) as a function of the number of base
pairs in the loop (Ny,) to signal that the looping free energy (and hence the
repression) will depend upon the distance between the two operators. We have
invoked the approximation that the promoter is weak (i.e. PNIf“\:g ePherd > 1),
In order to examine the significance of our results on looping, we consider the
extent to which the model can be used to interpret existing data and to suggest
new experiments. Notice that we already know all the parameters in the weights
from the previous experiment with the exception of AFj,,,. We argue that for
a given loop size AFj,,p, is a parameter that should be indifferent to which
combination of operators is used in these two-operator experiments, and as a
result, once AFj,qp is determined the model is predictive. The results of a simple
fit to the looping free energy are shown in fig. 19.24. To obtain these curves,
any single data point is used to obtain the looping free energy itself and then
the resulting curves are entirely predictive.
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Figure 19.24: Repression and looping. A single fit to AFj,.p, giving 8.5 kT
permits the investigation of multiple configurations of the different operators.
(Data from S. Oehler et al., EMBO J., 13:3348, 1994.)

19.3 Regulatory Dynamics

19.3.1 The Dynamics of RNA Polymerase and the Pro-
moter

So far, our treatment of gene regulation has centered on the time-independent
output of different regulatory motifs. On the other hand, as is clear from watch-
ing the development of any embryo, many of the most beautiful and important
questions in regulation center on the orchestration of regulatory decisions over
time. Another example that puts questions of the time dependence of gene
expression front and center is the study of cells during the cell cycle. As was al-
ready shown in chap. 3, entire batteries of genes are expressed at different times
during the cell cycle (see fig. 3.17 on pg. 152 for a concrete example in the cell
cycle of Caulobacter crescentus). Two of the key dynamical motifs that recur
in organisms ranging from bacteria to humans are switches and oscillators. In
the case of switches, depending upon some environmental cue, for example, a
cell can change the regulatory state associated with particular genes from “off”
to “on”. Even richer behavior is exhibited by regulatory circuits that give rise
to oscillations. So that we can see how switches and oscillators are constructed,
we now take up the question of time-dependent gene expression.

The Concentrations of Both RNA and Protein Can Be Described Us-
ing Rate Equations

Our conceptual starting point for examining the dynamics of gene expression
is the rate equation paradigm introduced in chap. 15. In particular, we will
proceed by writing rate equations for the time evolution of the concentrations
of various molecular participants in the regulatory problem of interest. The
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simplest scenario is to consider a dynamical description which refers only to
the time development of the concentrations of the relevant proteins. On the
other hand, sometimes it is convenient to characterize the time evolution of the
mRNA transcripts as well. In either case, our strategy will be to consider some
particular regulatory architecture in which different elements are linked and to
write down a dynamical description of their concentrations.

Before embarking on an analysis of the dynamics of particular regulatory
architectures, we return to one of the most elementary (but important) questions
that can be asked about regulatory dynamics. In particular, our use of statistical
mechanics in the previous sections was predicated on the idea that the binding of
RNA polymerase to the promoter of interest can be thought of as an equilibrium
process. In section 15.2.6 (pg. 776) we showed in general terms the conditions
under which a dynamical process can be treated as an equilibrium problem. Our
interest here is to use that general formalism as a basis for deciding when the
equilibrium picture of polymerase binding is appropriate and when it is not.

e Estimate: Time Scales for Promoter Occupancy and Escape. So
far we have used equilibrium statistical mechanics to compute the prob-
ability of finding RNA polymerase bound to the promoter and how this
probability is modulated by a variety of transcription factors. However,
the validity of this calculation rests on the assumption that the binding
of RNA polymerase to DNA is in equilibrium.

The simplest model of promoter binding by RNA polymerase leading to
transcript elongation is as follows

k1 k2 kclear
P+ D = PDc = PDg =" Elongation. (19.36)
k)71 }C72

Here, P is free RNA polymerase and D is unbound promoter. PD¢ is the
closed complex, which corresponds to the species generated upon RNA
polymerase binding to the promoter. This leads to the formation of the
open complex PDg, where the DNA strands are opened. Finally, RNA
polymerase leaves the promoter and begins transcription, which can lead
to a full transcript elongation or to abortive initiation.

If we want to describe the binding and unbinding of polymerase to form a

closed complex using equilibrium statistical mechanics the most stringent

condition ki1 > k4o should be satisfied. If RNA polymerase has time to

bind and unbind from the promoter multiple times before open complex

formation then we can think of the first step as effectively an equilibrium
e . k_1

step and define an equilibrium constant Kg = oo

19.3.2 Genetic Switches: Natural and Synthetic

Switches are an important part of the genetic repertoire of all organisms. To
explore the behavior of these switches more carefully, recently a synthetic version
of such a switch was constructed in F. coli which had the convenient property
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Figure 19.25: Data illustrating the flipping of the genetic switch in E. coli
cells. (A) Average fluorescence of a population of E. coli cells harboring the
genetic switch as a function of the concentration of an inducer molecule which
flips the switch. (B) Flow cytometry data showing the single cell fluorescence
distribution for different inducer concentrations. The labels correspond to points
in the curve shown in part (A). Bistability is revealed through the fact that there
are two populations of cells at the same inducer concentration. (Adapted from
T. S. Gardner et al., Nature, 403:339, 2000.)

that the gene product of the switch is a fluorescent reporter protein such that
flipping of the switch can be read out by observing the fluorescent state of the
cells. Data from this synthetic switch is shown in fig. 19.25.

The switch described above was constructed by using two repressor proteins
whose transcription is mutually regulated as shown in fig. 19.26. The protein
that is an output from the first gene serves as a repressor for the second gene.
Conversely, the protein that is the output from the second gene serves as a
repressor of the first gene. We denote the concentrations of the two protein
species by c¢; and ¢y. We are interested in writing equations for de;/dt and
dco/dt. We consider two classes of processes that can alter the concentrations
of these proteins. First, the proteins can be degraded over time. The change
in concentration resulting from degradation can be written as dec;/dt = —Key.
Second, protein 2 can bind onto the promoter for protein 1 and repress its
production and vice versa. To capture this effect, we introduce a term of the
form v(1 — ppound) where « is the basal rate of production and ppoynd is the
probability that the repressor of interest will be bound - when ppounqg = 1, there
is no protein production and when ppoung = 0, the rate of protein production
takes its basal rate. Recall from chap. 6 that for binding described by a Hill
function, we have

Kbc’f

= — 19.37
pbound(cl) 1+ Kbc?7 ( )

where K is the binding constant for the repressor. This implies in turn that
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Figure 19.26: Regulatory architecture for a genetic switch. There are two pro-
moters which are under the transcriptional control of the gene product of the
partner promoter.

the protein production rate for protein 2 is

1 — Pround) = ————. 19.38
'7( y2 d) 1+ Kyc} ( )

The choice to model ppoung using a Hill function rather than our statistical
mechanical treatment is so that our treatment is consonant with the original
literature. The reader will have the chance to explore the behavior of this circuit
using pround as it has been considered throughout the book in the problems at
the end of the chapter. Notice that our treatment of the binding constant
here is slightly different than that favored in sec. 6.4.3, also for the purposes of
consistency with the original literature.

Using the conceptual framework introduced above, the chemical rate equa-
tions for the genetic switch are

dey y

- K .

dt Sy cope

deo y

— = -K _— . 19.39
dt I Ky (19:39)

The first term on the right side of both equations corresponds to protein degra-
dation, and for simplicity we assume that the degradation rate (characterized
by the parameter K') of both proteins is the same. For proteins that are stable
over time scales longer than the cell cycle (as is the case in the repressors used
in this circuit) the dilution rate is determined by the cell doubling time and the
subsequent dilution of the protein between the two daughter cells. Therefore,
under these conditions the effective protein degradation rate is the same and is
set by the cell division time. The second terms on both sides characterize the
rate of protein production. As introduced above, the basal rate of production is
captured in the parameter v. However, this rate is reduced when the repressor
is bound to the promoter of interest as shown above. For simplicity, we assume
that the basal production rates and the binding constants that characterize the
affinity of the repressors for their binding site are the same for both genes. For a
realistic circuit these assumptions are not necessarily true, but will suffice here
to describe the basic operation of the circuit. Another conceptual simplification
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implicit in these rate equations is the idea that the binding of the repressors is
characterized by a Hill function with Hill coefficient n.

From a mathematical perspective, we wonder whether equations like those
given in eqn. 19.39 yield switch-like solutions. Our assertion is that there are
two regions in the space of parameters, one with a single stable solution corre-
sponding to equal concentrations of the two species (decidedly not a switch),
and another, more interesting regime, where we find two stable solutions distin-
guished by having one of the protein concentrations much larger than the other.
For values of the parameters where the stable solutions are of this variety, the
genetic network exhibits switch-like behavior.

In order to simplify the mathematical analysis of the circuit we resort to a
dimensionless form for eqn. 19.39. This is achieved by measuring ¢; and cs in

units of K, /™ and time in units K~1. This reduces the circuit equations to

o a
dt 140
dv «
= - _ 19.4
o U+1—|—u”’ (19.40)

where the parameters a = 'yK;/ "/K and the Hill coefficient n are the only
remaining dimensionless parameters. We have introduced the notation u for
the dimensionless concentration of ¢; and v for the dimensionless concentration
of ¢5. At this point, our goal is to find the steady state solutions of eqn. 19.40
and analyze their stability for different values of o and the Hill coefficient.

To find the steady state solutions to the rate equations we set the time
derivatives to zero. Since the equations are symmetric with respect to u and v
we immediately conclude that

- «
- 1+'U*n

u* =¥

(19.41)

is always a solution. Clearly, this result does not exhibit the properties of
a switch since the concentrations of both proteins in this case are the same.
Are there other solutions that exhibit switching behavior? The equations that
determine the steady state u* and v* are of the form z = f(f(z)), where
f(z) = a/(1+a™). To see this, solve the first equation for v and substitute that
result into the second equation. Since the function f is monotonically decreasing
(that is, larger values of z imply f(z) is smaller) the composition f o f will be
a monotonically increasing function, like the function x itself. Therefore there
is the possibility that the two curves z and f(f(z)) intersect at more than one
point, leading to multiple steady states.

To make these considerations explicit we consider the case when the Hill
coefficient is n = 2, which lends itself to analytic treatment. The steady state
equation for the repressor concentration u* is

v — (19.42)
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Figure 19.27: Steady-state solutions for protein concentrations in the genetic
switch. (A) The function y = u® + u — « plotted for various values of a. The
solution u* corresponds to the point at which the curve crosses the u-axis. (B)
The function y = u? — au + 1 plotted for various values of a. Depending upon
the choice of «, there can be 0, 1 or 2 crossings of the u-axis.

and the same equation holds for v*. A little bit of algebra transforms the above
equation to a much simpler form given by a product of two polynomials

(u*? —au* + 1) (v +u* —a)=0. (19.43)

The steady state solutions to the rate equations for the genetic switch, eqn. 19.40
are therefore zeroes of the two polynomials appearing in the above equations.

The cubic polynomial has one real zero, which can be seen from fig. 19.27(A)
where we plot the polynomial for different values of a. A mathematically rig-
orous way to show this is to note that the first derivative of this polynomial,
3u*? +1, is always positive, which implies that the function is strictly increasing
and can therefore intercept the u*-axis at most once. The equilibrium state that
corresponds to the zero of the cubic polynomial has equal concentrations of the
two repressor species since the equation u*3 + u* — & = 0 can be rewritten as
u* = a/(1 + u*?), and the right hand side of this equation is v*.

The quadratic polynomial in eqn. 19.43 can have one, two, or no zeroes
depending on the value of «, as observed in fig. 19.27(B). For a < 2 there are
no zeroes, for a > 2 the polynomial has two zeroes, while for a. = 2, the critical
value of «, it has one zero at u* = 1. For the two solution case the two steady
state values of ©u* and v* correspond to the two different ways of assigning the
two roots to each of the dimensionless repressor concentrations. Namely, for a
given u* the corresponding value of v* can be calculated using v* = /(1 +u*?).
For these values of u* and v* the equality u* 4+ v* = « is satisfied assuming u*
is one of the zeroes of the quadratic polynomial in eqn. 19.43.

In light of the general analysis done above, we see that for o < 2 the genetic
switch exhibits only one stable equilibrium state with u* = v*, while for a > 2
it has two stable and one unstable state. In the latter case the unstable state is
the one in which the concentrations of the two repressors are equal, while stable
equilibrium states have either repressor u or repressor v in excess.

The dynamical behavior of a system of rate equations like those given in
eqn. 19.40 can be examined in a different way graphically using the idea of a
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Figure 19.28: Graphical representation of the dynamics of the genetic switch.
(A) The phase portrait of the genetic switch for &« = 1 and (B) o« = 3. Stable

equilibria are represented by filled circles while the unfilled circle corresponds
to an unstable state.

phase portrait (the mathematics is explained in the “Tricks Behind the Math”
box at the end of the section). The idea is that we can think of du/dt and dv/dt
as the two components of a velocity vector and we can plot the velocity field at
every point (u,v). The steady state solutions will correspond to those points in
the phase portrait where the vectors are zero. The solutions represented by those
points are stable if for any small excursion away from that point, all the velocity
vectors point towards the solution point. An example of this idea for several
choices of « is shown in fig. 19.28. The phase portrait provides a convenient
graphical representation of the dynamics of the genetic switch. Namely, for a
given initial condition wug, vy in order to see how the concentrations will evolve
with time all one has to do is follow the flow depicted by the arrows in the
phase portrait. We therefore conclude that the stable steady states of the rate
equations are associated with positions in the (u,v) plane where the phase flow
converges from all directions, while diminishing in size, while unsteady states
have at least one direction along which the flow is diverging.

e The Tricks Behind the Math: Phase Portraits and Vector Fields.
As we have seen repeatedly in the book, there are many circumstances

in which the dynamics of some system of interest involves coupled rate
equations of the form

dx

pr = fl(x,y)

dy

- 9(z,y) . (19.44)

(19.45)

where, in general, f(x,y) and g(z,y) are nonlinear functions. The idea
of the phase portrait is to graphically depict the “flows” implied by the
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rate equations. In particular, we imagine a velocity vector field v(z,y) =
(dz/dt, dy/dt), which depicts which way the system will “move” in the next
time step. For a given initial condition (zg,yo), we can find the subsequent
dynamics of the system by following the arrows. From the standpoint of
stability analysis, the most interesting points in a phase portrait are the
fixed points. These are the points at which the vector field satisfies the
condition v(z*,y*) = 0. In other words, if we choose (z*,y*) as an initial
condition, the system will stay put. Stability is determined by the direc-
tions of the arrows in the neighborhood of the fixed point. If the arrows
all point back towards that fixed point, the point is said to be a stable
fixed point. Otherwise, it is unstable. This type of graphical analysis is a
powerful qualitative tool for examining the dynamics of nonlinear, coupled
equations.

19.3.3 Genetic Networks That Oscillate: The Repressila-
tor

A second key class of regulatory motif leads to oscillations in the concentration
of protein products. Perhaps the most notable biological example of such oscil-
lators are those driving the cell cycle. However, as with the analysis of genetic
switches, the analysis of oscillatory genetic networks was serviced particularly
by the creation of a synthetic oscillator known as the repressilator. The idea is
to use various genetic regulatory elements, again in conjunction with a reporter
gene that expresses green fluorescent protein, to construct a set of coupled genes
whose outputs interact with one another in such a way as to lead to a time vary-
ing concentration of GFP. From the perspective of coupled rate equations, the
existence of oscillatory solutions is nothing new. However, the intriguing fea-
ture of the experiment to be described here is the construction of a concrete
implementation of such coupled rate equations in the form of a genetic network
in such a way that these oscillations are realized in vivo in bacterial cells.

As shown in fig. 19.29, the synthetic network constructed to exhibit oscil-
latory behavior used three interacting promoters in which the gene product of
the first promoter resulted in a repressor on the second. Similarly, the gene
product of the second promoter repressed the third. Finally, the gene product
of the third promoter acted back on the first promoter by repressing it. This
circuit was constructed on a plasmid. A second plasmid contained a reporter
gene that expressed GFP and was under the control of one of the repressors
from the oscillatory network.

The experimental consequences of the construction described above are shown
in fig. 19.30. In particular, fig. 19.30(A) shows a series of snapshots of E. coli
cells at various stages in the experiment. Note that the time scale of the ex-
periment is set by the oscillation period associated with expression of the green
fluorescent protein and is of order an hour. Fig. 19.30(B) is a more quantitative
rendering of the experimental outcome in the form of a plot of the time evolution
of the average fluorescence intensity of a single cell. The oscillatory character
of the experiment is clearly revealed as is a background increase in the overall
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Figure 19.29: Schematic illustration of the genes and gene products used to
construct the repressilator. (A) the plasmid containing the relevant regulatory
elements and (B) the plasmid containing the reporter gene. (Adapted from
M. B. Elowitz and S. Leibler, Nature, 403:335, 2000.)

intensity which is tied to the protein accumulation in the cells.

As constructed, this oscillatory network consists of three repressor proteins
which inhibit the expression of each other: protein 1 represses the expression
of gene 2, whose product, protein 2, represses gene 3, while protein 3 represses
gene 1. The rate equations that characterize the time evolution of mRNA and
protein are

dm; n y .

dmi g 1

dt 1+ Kppp, °

dp;

CZ = —K,pi+Tm; (19.46)

where, m; and p; (i = 1,2,3) are concentrations of mRNA and protein, re-
spectively (note that in the equation for my, py = p3). For simplicity, we have
chosen the rate constants for protein and mRNA degradation (K, and K,,), as
well as the rate constants associated with mRNA transcription (7°), repressor
binding (v and K3), and the leakiness of the repressor (7yp), to be the same
for all three species. The final parameter in the model is n which is the Hill
coefficient expressing the degree of cooperativity of repressor binding.

As we did with the genetic switch, we simplify the math by writing p; in
units of Kljl/n, m; in units of Kp/(TK;/n)7 and time in units of K,'. In these
units eqn. 19.46 becomes

dm; n « n
= —-m+-—ta«
dt T+pr, 0
dp;

= PpitfBma, (19.47)
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Figure 19.30: Cells at various phases in the represillation cycle. (A) Snapshots
of bacteria dividing as a function of time. The top row shows fluorescence
images and the bottom row shows bright field images of the cells. (B) Measured
GFP fluorescence intensity of the single cell marked by an arrow as a function
of time. (Adapted from M. B. Elowitz and S. Leibler, Nature, 403:335, 2000.)
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with new parameters

K, T
K, K,
o EK,"T
K, K,

K

B = K—p (19.48)

&y =

In order to map out the phase diagram described by the repressilator equa-
tions we employ the tactic of first finding the steady state solutions. To find the
steady state solutions we set all the time derivatives appearing on the left hand
sides of the rate equations to zero. This immediately implies p; = m; for each
protein and mRNA species. We can then rewrite the equations for the mRNA
concentration as:

m; = f(f(f(m:))) (19.49)

where the function

f(z)

Since the function f is monotonically decreasing the function fo fo f is also a
monotonically decreasing function implying that there will be a single solution
to eqns. 19.49 given by

a
= — . 19.50
14z a0 ( )

@
m= 1 +ap . (19.51)
Next we investigate the stability of the steady state solution.

One of the standard tools for analyzing the qualitative features of a set
of dynamical equations like those given above is to perform a linear stability
analysis about the fixed points. That is, we seek the steady state (for which
the left side of the dynamical equations is zero) and then ask how the system
responds to small perturbations about these steady states. To check for the
stability of the steady state solution we consider the effect of a small deviation
in the protein and mRNA concentrations from the steady state value given by
eqn. 19.51. If we label the small deviations by dm; and dp;, the chemical kinetics
equations, eqn. 19.47, to lowest order in the deviations take on a linear form,

démi
o = —dm; + Xop;_1
dfifi = —B(6p; — omy) |, (19.52)

where the parameter X is the derivative of f(x) evaluated for the steady state
value z = m. This set of six first order differential equations can be written in

matrix form as

dv .
— =A 19.53
at ~ Y (19.53)
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where

oo
o < o

(19.54)
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5m1
(5m2
5m3
dp1
dp2
dp3

(19.55)

The solution to the linearized rate equations is
v(t) = At v(0) (19.56)

and for the steady state solution to be stable v(¢) must go to zero in the long-
time limit for arbitrary v(0). This will be the case if all the eigenvalues of the
matrix A are negative; for complex eigenvalues we demand that the real part be
negative. If this condition is not fulfilled the deviations from the steady state
solution will grow and new behavior, such as oscillations of the protein and
mRNA concentrations will be obtained.

The eigenvalues A of the matrix A satisfy the equations

A(%‘E):A(‘Z‘E) (19.57)

where dm = (§my, dms, dm3)T and similarly for 0p; the symbol T is for ”trans-
pose”, reminding us that we are in fact dealing with a column-vector. The eigen-
values A are readily computed. In particular, from eqn. 19.54 and eqn. 19.57 it
follows that

—dm+ Xép \ _ ém
( 36m — Bop )-)\( op ) , (19.58)
where
R 0 0 X
X=X 0 0 |. (19.59)
0 X O
These equations can be solved in terms of dp as
A+
m = ——§
3 P
- 1
Xop = AFHDO+H) - (19.60)

g
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We conclude that the eigenvalues A of the matrix A can be computed from the
eigenvalues 7 of the matrix X by solving the quadratic equation

(/\Jrl)ﬁ(/\Jr/B) — 7, (19.61)

which relates the two. Since the matrix X is proportional to a cyclic permutation
of three indices, its eigenvalues are multiples of the cubic roots of unity, 71,23 =
X, Xexp(i2n/3), X exp(i4n3). For each 7 there are two eigenvalues of the
matrix A, namely,

1
A= (41 +68) £V (1 —B)2+ 4/6’7) ; (19.62)
corresponding to the solutions of eqn. 19.61. In order for the steady state
solution of the rate equations to be stable the real parts of all six eigenvalues A
have to be negative.
First we consider the pair of eigenvalues

Mo = % (~+5) £ VA 5P+ 6X) | (19.63)

obtained from 7. These eigenvalues are both real and for them to be both
negative we must insist on X < 1. Since, as defined, X is negative, this condition
is automatically fulfilled.

Next we turn to the two complex eigenvalues 7 3. As we will see shortly
they both lead to the same condition on X and 3. Substituting, say, = =
X exp(i27/3) into eqn. 19.62 we end up with the condition

Re (—(1 +6) + \/(1 —B)2— 268X + 2\/§ﬁXi> <0. (19.64)
Writing the complex number under the square-root in polar form, (1 — 3)? —
28X + 2v/38Xi = Aexp(i¢), the above inequality reduces to

Acos% <1+p (19.65)

where

Acosp = (1—-p3)? —28X

Asing = 2V3pX (19.66)
and in eqn. 19.64 we have chosen the positive sign; the inequality with the
negative sign will be automatically fulfilled. Using the trigonometric identity,

cos?(¢/2) = (1 + cos¢)/2, and substituting the values for A and cos¢ from
eqn. 19.66, we obtain the condition

(4+2X)(1+8)>-38X >0. (19.67)
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Note that the result does not depend on the sign of A sin ¢ which is the only dif-
ference between the eigenvalues obtained from 75 and 73. Therefore, eqn. 19.67 is
the sole condition for solutions to the linearized repressilator equations, eqn. 19.56,
to be decaying for arbitrary choice of initial conditions. Here initial conditions
correspond to the initial deviations of the protein and mRNA concentrations
from their steady state value. Further note that the first eigenvalues of the
linearized equations to go unstable come in complex conjugate pairs indicating
that the instability is towards oscillating solutions. This can be confirmed by
solving the full non-linear repressilator equations numerically.

The key point of this analysis is the demonstration that genetic circuits like
the repressilator can exhibit stable oscillations. Further, this linear stability
analysis is a reminder of the unexpected way that “springs” can arise in the
mathematical analysis of all sorts of problems. This idea was introduced in
fig. 1.12 (pg. 45). The two examples (i.e. genetic switch and repressilator) given
here illustrate how to put time into our analysis of genetic networks. This step
in the direction of a full treatment of the dynamics of regulatory networks must
be supplemented by a treatment of how gene expression varies in space as well.

19.3.4 Putting Space in the Model: Reaction-Diffusion
Models

So far, our use of rate equations has assumed that the concentration is the
same at all points in space. On the other hand, there are many instances in
which the concentrations of transcription factors or gene products vary in space.
One of the most familiar and conceptually important examples concerns the
establishment of the anterior-posterior patterning of the fly body plan already
introduced in section 2.3.3 (pg. 106). An interesting question raised by the
developmental processes in the early embryo of the fruit fly, is how are the spatial
patterns of morphogens generated. For example, the formation of the second
stripe of Eve is regulated by the minimal stripe element which converts the
existing concentration profile of the Bicoid, Hunchback, Giant and Kriipel (see
fig. 19.2) into the expression of the eve gene. The patterns that serve as input
to eve expression are themselves outputs of previous steps in the developmental
program of the fruit fly. We are thus lead to the question, what is the initial
condition, and how is it set up?

The first morphogen whose concentration shows patterning is Bicoid. The
Bicoid protein is produced by the maternal bicoid mRNA which is found at the
anterior end of the embryo. Once Bicoid is produced at the anterior end it
diffuses throughout the embryo. This protein is also degraded in time and, as
we show below, this sets up an exponentially decaying profile of Bicoid concen-
tration from anterior to posterior end.

In order to simultaneously account for the space and time dependence of
transcription factors such as Bicoid, one useful approach is so-called “reaction-
diffusion equations”. These equations merge the thinking on diffusion developed
in chap. 13 with the ideas on rate equations introduced in chap. 15. The idea
is that the various reactants and products can diffuse around and change their
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identity. Conceptually, the starting point of this analysis is that the concen-
trations of the various species of interest must be promoted to full functions
of space and time. For example, in the case of the Bicoid, we introduce the
field [Bed](r,t). For simplicity, we imagine that the concentration profile is
one-dimensional (i.e. consider a one-dimensional fly embryo) so that the con-
centration can be written as [Bed|(z,t). Further, the only “reaction” to which
the Bicoid is subjected is that it can decay over time.

The rate equation for the concentration of Bicoid along the anterior-posterior
axis is

O[Bcd] D32[Bcd] 1
ot ox? T

Here D is the diffusion constant of the protein, while 7 is the mean lifetime.
The second term on the right hand side of the equation is a “source” term and
accounts for the fact that even in the absence of diffusion, the concentration
of Bicoid can change simply by virtue of decay processes characterized by the
mean lifetime 7. Since the anterior region (x = 0) of the embryo acts as a source
of Bicoid we expect a steady state to develop, characterized by a concentration
profile which does not change in time. In this case the Bicoid concentration
satisfies the equation

[Bed] . (19.68)

d*[Bed] 1
— Z[Bed] = 19.
e T[ cd] =0, (19.69)
which has the solution
[Bed] = [Bed]ge™ > (19.70)

where [Bed]o is the concentration at the anterior end, while A = v/ D7 is the
characteristic length over which the concentration decays by a factor of e.

The predicted exponential profile has been measured in the fruit fly embryo
with A\ = 100 gm. An interesting observation is that for embryos of different
fly species that differ in length by as much as a factor of ten, the characteristic
length is roughly proportional to the embryo length. This is necessary for proper
scaling of the morphogens stripes and other patterns with embryo size (this in
turn leads to the development of a proportional fly). Given the simple diffusion-
degradation model we have introduced it is not clear at all how this comes about
since it would seem that the diffusion constant and the degradation rate should
both be independent of embryo size. This highly simplified example is intended
to whet the reader’s appetite for the necessity of a full space-time description
of the regulatory networks described thus far in the chapter.

19.4 Cellular Fast Response: Signaling

Gene regulatory networks are clearly of central importance to the functioning
of organisms of all types. Of course, there are many aspects of biology where
dynamics of regulation is critical that do not involve gene transcription as an
ultimate outcome. This is particularly obvious for biological behaviors that sim-
ply occur too quickly for transcription of new genes to have any useful impact.
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Rather, these signaling networks involve batteries of proteins and their part-
ner ligands connected together such that their interactions affect the activity of
some enzyme. For example, a membrane-spanning receptor might bind a ligand
in the extracellular space. As a result of this binding event, there will be a
concomitant structural change on the intracellular domain of this same protein,
activating a protein kinase enyzme activity, which results in the phosphoryla-
tion of some other protein rendering it active. The goal of the remainder of this
chapter is to examine some examples of this kind of signaling and to construct
simple models of their behavior.

19.4.1 Bacterial Chemotaxis

One fascinating and fairly well understood case that we have mentioned briefly
already is the case of bacterial chemotaxis. Bacteria import small nutrients
such as sugars and amino acids to use as building blocks as we calculated in
chap. 3. A bacterial cell must take up a huge number (in excess of 10°) of
glucose molecules to go through a cycle of cell division. Obviously, this can be
done more rapidly in areas of higher ambient glucose concentration. It therefore
behooves the bacterium to actively seek out regions of its watery environment
that contain the highest accessible concentration of glucose. An elegant and
extraordinarily efficient system has evolved for this purpose.

As we mentioned in section 4.4.4 (pg. 205), the motor used for swimming by
the class of bacteria including E. coli and Salmonella is a rotary propellor that
spins a long flagellum (each bacterial cell has a several flagella that all work in
synchrony). The only control point the bacterium has for the rotor is to alter its
direction of spin to be either clockwise or counterclockwise. Counterclockwise
rotation of the flagella drives the bacterium forward in a nearly straight “run”,
while clockwise rotation causes the flagellar bundle to become disorganized and
the bacterium “tumbles”, randomly changing its direction. The chemotactic
signal transduction machinery regulates this directional switching. If desirable
nutrients are present at high concentrations, the bacterium tends to keep moving
in a straight line. If nutrient concentrations are low, the bacterium tends to
tumble. E. coli is able to use the patterns of directional switching generated by
this signal transduction network to swim up gradients of desirable nutrients.

How can a binary switch be used to detect the direction of a gradient?
We can imagine at least two possibilities. First, the bacteria might be able
to compare the signal coming from receptors located at the opposite poles of
the cell, and switch in such a way as to swim toward the end with the higher
signal, i.e., sensing the gradient in space. Alternatively, the bacteria might be
able to compare the signal being received at a given moment in time with the
strength of the signal it received in the recent past, i.e., sensing the gradient
in time. As we will discuss below, the bacteria appear to use the time-based
mechanism. The reader will have a chance to explore and compare these two
possible schemes in the problems at the end of the chapter.

The cellular decision-making that attends chemotaxis is mediated by a sig-
nal transduction network that has been extremely well-characterized. Our com-
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ments will center on the particular features of the E. coli chemotaxis network.
The key elements in this system are: i) membrane-spanning receptors that in-
teract with the molecules in the environment (sugars, amino acids, etc.); ii)
CheW and CheA, proteins that bind to the intracellular domain of the receptor
and change their activity depending on whether or not the receptor has a ligand
bound (CheA is a protein kinase that can catalyze the attachment of phosphate
groups to other target proteins, and CheW modulates CheA activity); iii) a
messenger molecule known as CheY that, when phosphorylated by CheA, can
interact with the flagellar rotary motor to induce it to switch to clockwise (tum-
bling) rotation, iv) CheZ, a phosphatase that can remove the phosphate from
CheY, and v) a pair of enzymes known as CheR and CheB that can respec-
tively methylate and demethylate the receptors themselves, effectively tuning
their affinity for their binding partners.

Even for this relatively simple network, it is hard to avoid getting lost in
the alphabet soup of names, so we try to examine how the network works con-
ceptually without focusing on the names of the molecules. In addition, we will
take a hierarchical view, first explaining the overall functioning of the network
and then taking up the fancy bells and whistles that make it work over such a
wide range of concentrations, a phenomenon known as adaptation. In simplest
terms, the question of whether or not the cell will make a tumble (and hence a
change of direction) comes down to the state of phosphorylation of the messen-
ger molecule CheY. In order to be responsive to changes in the environment,
the phosphorylation of CheY must be sensitive to whether or not there is a
ligand bound to the receptor. In the presence of desirable attractant molecules
such as glucose or aspartate, the cell should repress tumbling, so we expect
that the ligand-bound receptor will tend to be in the “off” form, where CheY
is not phosphorylated, and the unbound receptor will tend to be in the “on”
form, where CheY is phosphorylated. (Although E. coli is actually able to use
the same chemotactic network to swim away from noxious chemicals, here we
will only consider the happier problem of swimming toward delicious ones.) An
idealization of these elements is shown in fig. 19.31(A), where we have combined
the transmembrane receptor, CheW and CheA into a single unit, and for the
moment are ignoring the the other components of the pathway.

We can treat this complex process approximately by appealing to our usual
statistical mechanics formulation in which we imagine a rapid preequilibrium of
the state of activity of the receptor. In particular, the quantity p,, measures the
ability of the receptor to produce phosphorylated Che-Y, resulting in a change
in the motors direction of rotation. As we have done throughout the book, the
statistical mechanics of this system can be examined by appealing to a states
and weights diagram like that shown in fig. 19.32. The probability that the
receptor will be active is gotten by constructing the ratio

i _ﬁL so _B on QL_l _ﬁ L-1 s0. _ﬂ on _B ar
TT€ Esol g™ PE —l-(L_l)!e (L=Desor g=Beon o —hey
O e=BLesotg=B0rs 4 (%L:l;!e—ﬁ(L—l)esole—ﬁfoff e=Psl 4 L e—BLesore=Peon + (2?11)16—5@—1)550!6‘
(19.71)
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Figure 19.31: Probability that receptor will be “on”. (A) The receptor and its
states of occupancy and activity. The receptor can either have a bound ligand
or not. Similarly, the receptor can either be “on” or “off”, where this state of
activity determines whether or not it is able to phosphorylate the messenger
CheY. (B) The probability that the receptor will be on is constructed as a ratio
of the “on” states, appropriately weighted by their Boltzmann factors to the
sum over the statistical weights of all states.
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This result can be simplified by multiplying through the top and bottom of the
equation by L!/QF, resulting in

e—ﬁson(l 4 ée_BAE"")
e_ﬁeon (1 + ée_ﬁAgon) —+ e_ﬁfoff (1 —+ ée_BAfoff) '

Pon = (1972)

Here we have defined Ae,, as the difference in energy between a single ligand
bound to the “on” state of the receptor and the same ligand in solution, and
Ae, 5 equivalently for ligand binding to receptor in the “off” state. Throughout
the book, we have repeatedly translated back and forth between the statistical
mechanics language used above and the thermodynamics language using equi-
librium constants. By exploiting the relationship between energy differences
and biochemical dissociation constants derived in section 6.4.1 (pg. 345), our
expression for the probability that the receptor will be “on” can be rewritten
using the dissociation constants as

1
Pon = " K[ff]f) . (1973)
q

1+ IL%L

1+ e Beofs—con) (

This formula suggests that the probability of the “on” state depends on a few
biologically important variables; the energy difference between the “on” and
“off” states of the receptor in the absence of ligand, the affinity of the ligand for
the “on” state and the “off” state of the receptor respectively, and the amount
of ligand itself. For attractive substances, binding of the ligand will tend to
favor the “off” state (where CheY is not phosphorylated), that is, st F< KJm™.

Let us consider the implications of this result. In the absence of ligand (if
[L] = 0), the equation simplifies to the familiar result for a two-state system such
as an ion channel. If e,5; is lower than &,,, then the “off” state predominates
in the absence of ligand (i.e pon is low), and addition of ligand will simply
drive p,, to be even lower. The system will be sensitive to concentrations of
ligand that are comparable to or greater than K;f I However, if €,¢¢ is higher
than €,,, the “on” state predominates in the absence of ligand, and addition of
ligand will drive p,, down. In this regime, the system will only be sensitive to
concentrations of ligand that are comparable to or greater than KJ".

In order to modulate its response over a wide range of ligand concentrations
and conditions, E. coli is actually able to change the relative values of ¢,, and
€off, and also the relevant Kgs, by performing regulated covalent modifications
of the receptor protein itself. This is the job of the methylase CheR and the
demethylase CheB, which add and remove methyl groups on a series of glu-
tamate residues present in the intracellular domain of the membrane-spanning
receptor protein. The more highly methylated the receptor protein, the more
likely it is to be in the “on” state. These modifications permit two impres-
sive consequences. First, as mentioned above, F. coli can detect gradients of
chemoattractants by comparing the strength of the signal it currently senses to
the strength of the signal it detected in the recent past. Second, the bacterium
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Figure 19.32: States and weights for a simple model of bacterial chemotaxis.
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is able to detect gradients in concentration over many orders of magnitude of
absolute concentrations, a phenomenon known as adaptation. This corresponds
to our own ability to be able to whisper to someone else even in a crowded
and noisy room, or our ability to see our surroundings either inside a darkened
room or after stepping out into the bright sunshine. For the bacteria, both
adaptation and time-sensing depend on the fact that the demethylase, CheB, is
itself regulated by phosphorylation by CheA, and therefore depends on ligand
binding to the receptor. If CheB is phosphorylated (i.e. if the receptor is “on”),
CheB will be more active as a demethylase, and will tend to convert the receptor
into an “off” state, damping the response. Conversely, if CheB is dephosphory-
lated (i.e. the receptor is “off”), more methyl groups will accumulate, tending
to switch the receptor “on”. This sequence of events takes some time, a few
seconds. At the same time, ligand binding influences the activity state of the
receptor. Therefore, receptor occupancy by ligand reflects current conditions,
and the methylation state of the receptor reflects the past conditions of a few
seconds ago. The cell is able to swim up concentration gradients essentially by
comparing these two signals.

Our calculations so far illustrate the key ideas, but they will not suffice to
capture the full complexity of chemotactic behavior as revealed in fig. 19.33(A).
In addition to the precise adaptation already discussed, the system exhibits a
high degree of cooperativity. To account for cooperativity, our previous results
can be amended to the form

1
Pon = T (19.74)
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The inclusion of cooperativity sharpens the response of the system. Previously,
we have considered cases of cooperativity such as oxygen binding to hemoglobin
where a single protein has multiple ligand binding sites. In chemotaxis, the E.
coli cell clusters essentially all its membrane-spanning receptors together in a
single patch at one pole in a tight cluster, such that binding of one ligand to
one receptor can influence the conformational state of many other receptors,
including distinct receptors that are able to detect different substances. A fully
detailed mathematical model that incorporates adaptation and cooperativity
in mixed receptor clusters along with the basic two-state model derived above
is able to reproduce many of the complex features of chemotactic receptor re-
sponse, as illustrated in fig. 19.33(B).

19.4.2 Biochemistry on a Leash

One of the most fundamental features of living organisms is movement. As
noted in our discussion of chemotaxis, cells make “decisions” about where to go
and these decisions in eukaryotes are implemented in the form of polymerization
of actin filaments. Examples of actin polymerization organized in both space
and time were shown in figs. 15.2 (pg. 755) and 15.3 (pg. 756). What chains



19.4. CELLULAR FAST RESPONSE: SIGNALING 1059

(A) experiment (B) theory

0.75
>
5 =
:'.EJ 0.5 E
0.25 g\'
N§
0 ! 32 °
104 103 102107 10° 10" 102 104 103 102107 10° 10" 102

added MeAsp (mM) added MeAsp (mM)

Figure 19.33: Probability of receptor being “on”. (A) Graph of concentration-
dependence of the on probability based on in vivo FRET measurements. The
different curves correspond to different bacterial strains. The wild-type response
is shown as dark circles. The white symbols are for mutants that correspond to
different states of receptor methylation, increasing from left to right. (B) The re-
sults of a calculation of the probability of the receptor being active as a function
of the concentration of chemoattractant. The model reproduces many aspects
of the living cell responses, including the complex behaviors of the methylation
mutants. (Adapted from J. .E. Keymer et al., Proc. Nat. Acad. Sci., 103:1786,
2006.)



1060 CHAPTER 19. NETWORK ORGANIZATION IN SPACE AND TIME

(B ©

effective O
concentration =

Figure 19.34: Tethering and effective concentration. (A) As a result of tethering,
the ligand can only explore a limited region of space. (B) The concentration
of the tethered ligand can be estimated by considering a sphere with a radius
given by the radius of gyration of the tether. (C) To compute the effective
concentration due to tethering, consider one ligand per volume given by a sphere
with a radius equal to that of the radius of gyration.

of events link the detection of some external cue and the formation of new
actin filaments in a motile cell? The advent of video microscopy in conjunction
with a host of different classes of fluorescent markers has made the study of
cell motility one of the most exciting areas of current research. As a particular
case study that will allow us to flex several sets of muscles we have developed
throughout the book, we consider molecules that have the interesting feature
that they include a tethered ligand and receptor pair that compete with free
ligands. These tethering motifs are a common feature of signaling molecules.
Tethering Increases the Local Concentration of a Ligand

One simple way to see the significance of tethering is illustrated in fig. 19.34.
The idea is that the tethered ligand is confined to a volume dictated by the
length of the tether. In particular, if the tether has a length L, then the effective
concentration of the tethered ligand can be estimated as

effective concentration = (19.75)

413"
371'L

To develop an intuitive sense of the significance of this tethering, this estimate
can be used to roughly determine the concentration at which the free ligands
compete with the tethered ligand. In particular, for the case in which a tethered
ligand competes with free ligands for the attention of a tethered receptor, clearly
at high enough concentrations, the free ligands will dominate the binding.
Signaling Networks Help Cells Decide When and Where to Grow
Their Actin Filaments For Motility
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Figure 19.35: Schematic of signaling process leading to actin polymerization.
(A) Activation of Arp2/3 by ligands Cdc42 and PIP,, (B) synthetic switch con-
structed to activate Arp2/3 as a result of the presence of alternative ligand, (C)
activity of the synthetic switch as a function of the signaling ligand. (Adapted
from J. E. Dueber et al., Science, 301:1904, 2003.)

The case of bacterial chemotaxis described above is but one of many ex-
amples where the motility of cells is dictated by the presence of environmental
cues. In many cases, these environmental cues have the effect of inducing actin
polymerization which leads to changes in cell shape which are then coupled to
motility. From the standpoint of cell signaling, small signaling molecule can
relay information to N-WASP, a protein that can interface with a complex of
proteins called the Arp2/3 complex to create new actin filaments. The way in
which this works is shown in fig. 19.35(A). In particular, the presence of two
ligands, Cdc42 and PIP; activate N-WASP by binding to this protein in a way
that then permits it to activate Arp2/3. The presence of Cdc42 and PIP; leads
to the unbinding of GDB and B domains from the C-domain and Arp2/3, and
N-WASP begins to stimulate actin polymerization by recruiting (and perhaps
appropriately orienting) actin monomers to the proximity of the Arp2/3. With
the help of activated N-WASP, Arp2/3 promotes actin polymerization by pro-
viding heterogeneous nucleation sites. Here, our aim is to study this process
quantitatively.

Synthetic Signaling Networks Permit a Dissection of Signaling Path-
ways

As with the analysis of genetic networks, one exciting way in which signaling
pathways have been dissected is by rewiring such pathways to form various syn-
thetic signaling networks. Fig. 19.35(B) shows a synthetic activator of Arp2/3
in which a domain known as a PDZ domain is attached to the output domain
that activates Arp2/3. On the other end of the construct is a peptide sequence
that binds to PDZ. This synthetic protein mimics N-WASP and can be activated
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Figure 19.36: States and weights for the synthetic signaling problem.

by soluble ligands that bind to the PDZ domain.

To analyze the function of this signaling process, we invoke statistical me-
chanics in the same spirit as we have earlier for considering gene regulation.
The goal of our statistical mechanical model of the synthetic switch is to work
out the probability that the molecule is in the active state. In particular, the
active state corresponds to the case in which the tethered receptor is not bound
to the tethered ligand. That is, the tethered ligand and receptor are separately
flopping around freely. As usual, we resort to a states and weights diagram to
work out the probability of the active state. As shown in fig. 19.36, there are
three classes of states, each with their own corresponding statistical weights: 1)
the switch is in the autoinhibitory state and the tethered ligand and receptor
are bound to each other, ii) the tethered ligand and receptor are both flopping
around freely and the receptor has no bound free ligands, iii) the tethered lig-
and and receptor are both flopping around freely, and the receptor has bound
one of the free ligands. Our aim is to make falsifiable predictions for the signal
dependence on e.g. the linker length and ligand concentration.

To develop an intuitive sense of how this situation plays out, the proba-
bility of finding the switch in the active state is represented schematically in
fig. 19.37. The essence of the situation is that as the concentration of free lig-
and is increased, the probability that the receptor will be bound by one of the
free ligands will increase until this outcome dominates the probability. From the
standpoint of testing our understanding of such systems, one of the other design
parameters that can be varied is the length of the flexible tethers. As will be
shown explicitly when we demonstrate the contributions of the autoinhibitory
state to the overall partition function, the length of the tether is a significant
part of the overall free energy budget.

To make this calculation concrete, we resort here to simple one-dimensional
ideas on the random walk introduced in chap. 8 and show how the calculation
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Figure 19.37: Probability of activation of Arp2/3.

generalizes to three-dimensions, but leave the details for the reader as a problem
at the end of the chapter. Our strategy will be to break the total partition
function for this system down into three parts as reflected in fig. 19.36, where
the sum can be written as

Ztot(LaNRaNL): Zl(L7NR7NL) +ZQ(L3NR3NL)+ Z3(L7NR7NL)'

autoinhibitory state free tethers tether with ligand
(19.76)
The parameter L is the number of ligands in the system, Ng is the number of
Kuhn segments in the polymer tether that has the tethered receptor and Ny,
is the number of Kuhn segments in the polymer tether that has the tethered
ligand. Given these decompositions, we can then write the probability that the
switch will be in the active state as

Ly + Zs

active — . 19.77
Pact 7y + Zy + Zs3 (19.77)

The separate contributions to the total partition function can be worked out
in much the way we have done similar problems throughout the book. The key
point is that each class of state has a number of microscopically equivalent con-
figurations and to find their contribution to the overall partition function, we
need to multiply the Boltzmann weight for each class of state by its correspond-
ing microscopic degeneracy (obtained by adding up all of the different ways of
arranging the system). For example, the contribution from the states in which
the tethers are flopping around freely and there is no free ligand bound is given
by

! 12
Zy = 21@%iijﬁj x  2NroNe o o= Plesorg=le (19.78)
— tether configs. Boltzmann weight
solution ligands

The treatment of the tether degrees of freedom is based on the simplest one-
dimensional random walk in which we imagine that every segment in the tether
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can point either to the left or right and we don’t worry about self-avoidance.
It is straightforward to use a more robust model of the tethers, but we use this
one for simplicity. What this means precisely is that each tether can be in one
of 2V different configurations, where N is the number of Kuhn segments in the
tether of interest. We have also introduced the energy e, for the energy of the
ligands when they are free in solution and the parameter 6?0% for the energy of
the tethered ligand when it is in solution. The most interesting class of states
are those associated with the autoinhibition of the switch and which involve the
tethering ligand and receptor being linked up. In this case, the contribution to
the partition function is

N! % (NR + NL)' efﬁLEsoLe*BEB
L!(N—L)! ((7NR+NL)!)2
—_——— 2

7y = (19.79)

Boltzmann weight
solution ligands tether closure

where we have used the result from section 8.2.4. The contribution from tether
closure is the number of ways of making a closed loop out of a polymer of length
Ng + Ny, Kuhn segments. The last contribution to the total partition function
arises from those microstates in which one of the free ligands attaches to the
tethered receptor. This means that the solution contribution to the partition
function will only involve L — 1 ligands. This term can be written as

NI

= . NroNL _B(L_l)esol —ﬁEB
LEToDN @)y~ EEo *¢ e Per - (19.80)

tether configs. Boltzmann weight
solution ligands

The actual formula for p,ctive can now be obtained by substituting the values
for Z1, Z3 and Z3 obtained above into eqn. 19.77. The resulting expression is
considerably simpler if we use an alternative form of this equation, namely,

Zs
Pactive = L:;—ling (1981)
Z2 U Z,
This leads to an expression for pgesive Of the form
1+ ée*BAal
Pactive = (1982)

1 +ploopeiﬁA€2 + ieiﬁAsl

where we have introduced ¢ = L/(Nv), ¢o = 1/v and pjoep which is the prob-
ability of forming a loop. For the one-dimensional model considered above, we

have
(NRJrNL)!
(TB5—E)n?2

Ploop = ONR+NL (1983)

which amounts to the ratio of the number of closed configurations for the poly-
mer of length Ny + Ny to the total number of configurations. However, the
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Figure 19.38: Prediction of dependence of activation on effective tail length.
(A) pactive as a function of ligand concentration for different tether lengths.
Experimental data shown as small circles. (B) The effective concentration of
tethered ligand as seen by the tethered PDZ domain as a function of tether
length. (Data from J. E. Dueber et al., Science, 301:1904, 2003.)

one-dimensional model has outlived its usefulness and we can just as well use
the result of a full three-dimensional analysis of pjo.p using the Gaussian model
of a polymer, for example. This calculation is left as an exercise for the reader.

The outcome of this kind of analysis is shown in fig. 19.38. There are several
subtleties that were not accounted for in the calculation described above. First,
as shown in the figure, the tethers do not emanate from the same point. This
results in a fundamental difference in the behavior of p;,,, as a function of
tether length as shown in fig. 19.38(B). Second, we used a three-dimensional
Gaussian model for the tethers rather than the one-dimensional example worked
out above. Both of these features are left as an exercise for the reader in the
problems at the end of the chapter.

19.5 Summary and Conclusions

Regulation and signaling are two of the most important manners in which cells
orchestrate their behavior in space and time. The goal of this chapter has been to
take stock of some of the key architectures of regulatory and signaling networks
and to show how simple models using statistical mechanics and rate equations
can be put forth to develop intuition and to make predictions about how these
networks work. The so-called “thermodynamic models” of gene expression are
predicated on the idea of using equilibrium statistical mechanics to examine the
probability of promoter occupancy. A dynamical interpretation of these same
questions uses rate equations to compute the concentration of both mRNA and
their associated proteins.



1066 CHAPTER 19. NETWORK ORGANIZATION IN SPACE AND TIME

19.6 Appendix: Stability Analysis for the Ge-
netic Switch
We search for additional steady state solutions of the genetic switch by analyzing

the case of a large and « small. First, assume o > 1. We also assume that the
solutions to the steady state equations, namely,

* (6%
u =
1+
(67
= — 19.84
v 1+ u*n ) ( )

are such that u* < 1. Then 1+ «*" &~ 1 and the steady state values for the two
concentrations that follow from eqn. 19.84, to lowest order in 1/a, are

ut = alfn

vt o= a, (19.85)

consistent with the assumptions we have made. Similarly, by assuming that the
solution to eqn. 19.84 has the property v* < 1, from which 14 v*"™ & 1 follows,
we find a new solution

vt o= ol (19.86)

for which the roles of u and v are exchanged. Assuming that both v* and v*
are large leads to u* = v* = o'/1*" while the assumption that both are small
is inconsistent with eqn. 19.84. We conclude that in addition to the v* = v*
case, there are two other steady state protein concentrations. Interestingly, the
additional solutions are characterized by very different values for u* and v*
providing the necessary ingredients for a genetic switch.

Next we analyze the case a < 1. Following the same analysis as above we do
not find any additional solutions. Namely, assuming v* < 1 we compute from
eqn. 19.84 v* = a and u* = «, since now 1 4+ a™ ~ 1. The same conclusions
are reached assuming v < 1 while the assumptions u* > 1 or v* > 1 are not
consistent with eqn. 19.84. We conclude that there is a critical value of the
parameter «, which will be of order one and dependent on the value of the Hill
coefficient n, such that for values of a below the critical value the steady state
solution is unique, while for larger a’s there will be three steady states. Now
we examine the stability of these solutions, paying particular attention to the
case when very different values for v and v are obtained in the steady state.

One of the most important requirements in carrying out an analysis like that
given above is to assess the stability of the solutions to a given problem. What
this means is that if we perturb the system slightly from the steady state (i.e.
u = u* 4+ du and v = v* 4 dv), we ask do the perturbations grow or shrink
in time. If the perturbations grow in time, the system is said to be unstable.
If the perturbations shrink in time, the system is said to be stable. A favorite
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example for depicting this idea is to consider a particle on some potential energy
landscape. If the particle is at the bottom of a well (i.e. the potential energy is
locally of the form %k‘xQ) a small disturbance of the particle from its equilibrium
position will result in jiggling around the equilibrium point. Alternatively, if the
particle is balanced at the z = 0 on a potential energy landscape of the form
—%kx{ any slight disturbance to the particle will cause it to wander away from
the equilibrium. The idea of our stability analysis in this case is the same - we
ask, does a slight disturbance away from the steady state concentration lead to
solutions that grow or decay in time.

To asses the stability of the steady state we analyze the linear equations
for the small deviations (du, dv) of the repressor concentrations away from their
steady state values. In particular, in eqn. 19.40, we substitute u = u* + Ju(t)
and v = v* 4+ dv(t) and then exploit the fact that du(t) and dv(t) are small and
Taylor expand the nonlinear Hill functions in powers of du and Jv. The result

of this analysis is
d [ éu ~ [ du

As noted above, the matrix

A= < f'ij*) ! /Evl*) > (19.88)

results from linearizing the rate equations, eqn. 19.40, around the steady state
solution (u*,v*), and

noaz” !

(14 an)2 "
At this point, the stability of this linear set of equations is queried by assuming
solutions of the form du(t) = dupe* and dv(t) = Svge*. The essence of the
analysis (which is left as a problem at the end of the chapter) is to examine the
sign of the parameter . If A < 0, the perturbations decay in time and if A > 0
the perturbations grow in time. The behavior of A is revealed by examining the

eigenvalues of the matrix A. The eigenvalues of A are both real and are given
by

fla)=— (19.89)

Ao = —1+/Flur)f(0%). (19.90)

For the steady state solution to be stable both A; and A need to be negative.
This will be the case if

fw)f(v") <1. (19.91)

Given this condition for the stability of the solutions, we can now revisit the
different solutions found above and explicitly examine their stability. First we
consider the single steady state, u* = v* = «, that we found for a < 1. In
this case, using eqn. 19.89, we find f/(u*)f’(v*) = n?a®" < 1, and the stability
condition, eqn. 19.91, is satisfied. Next, we consider the three steady state
solutions found for a > 1. For the solution u* = v* = a2/ we find that

RP: but greater than zero,
right
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f'(u*)f'(v*) = n?. Since the Hill coefficient satisfies the condition n > 1, we
conclude that this solution is unstable. A small perturbation will drive it to
one of the other two solutions, which are stable. Namely, for u* = a'~" and
v* = a, we see that f/(u*)f'(v*) = na~"("=Y <« 1, and we conclude that the
solution is stable. Since the third solution is obtained by v* and v* switching
roles, it too will be stable.

The analysis above leads to the phase diagram shown in fig. 19.28 in terms
of the parameter «. For « less than some critical value (which is of order one)
the rate equations at long times lead to a unique steady state in which the
concentrations of the two repressor proteins are equal. On the other hand, for «
larger than the critical value, at long times the system will settle into one of two
stable states, with the concentration of one repressor dominating over the other.
Which of the two steady states is reached will depend on the initial conditions.
In this regime the rate equations, eqn. 19.39, describe a genetic switch.

19.7 Problems

. Strong and weak promoters.

In the chapter we introduced repression as a quantitative measure of the reduc-
tion in the level of gene expression due to the action of a repressor molecule. For
the simple model of repression introduced on pg. 1025 make a plot comparing
repression in the case of a weak and a strong promoter. Show that, unlike the
weak promoter case, in the case of the strong promoter, the repression depends
upon the number of polymerase molecules in the cell.

2. Lac Repressor and the lac Operon

A beautiful set of quantitative experiments on the lac operon were done by
the Muller-Hill group in the 90’s, where repression of expression of the lacZ gene
was measured in a population of different mutant E. coli cells. Different mutant
cells differed in the number, sequence, and position of the operator sites that
bind the Lac repressor. In this problem we explore how, using thermodynamic
models of gene expression, this data can be used to obtain a number of quantities
characterizing the Lac repressor-DNA interaction as well as DNA looping.

(a) Using the data from Oehler et al. shown in fig. 19.19 determine the in
vivo binding energy of Lac repressor to each one of its operators and reproduce
fig. 19.20.

(b) Using your results from (a), and the repression measured by Oehler et al.
in cells with two operators present, which leads to DNA looping, in order to
determine the looping energy and to reproduce fig. 19.24.

(c) As mentioned many times throughout the book, Miiller et al. performed a
beautiful experiment where the repression level was measured as a function of
the distance between operators. The experiment and its results are shown in
fig. 1.11. Based on their repression data and the thermodynamic models from
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the chapter make a plot of the looping energy as a function of the interopera-
tor distance. Show analytically that a maximum in repression corresponds to a
minimum in looping energy. At what interoperator distance is the inferred loop-
ing free energy at a minimum? Is this consistent with the measured persistence
length of DNA in vitro, which is 50 nm.

(d) Fit the looping energy obtained in (c) to the functional form AFj,,, =
a/Npp+bIn(Nyy,) + c¢Np, + €. Use this looping energy to make predictions about
the outcome of a hypothetical experiment similar to the one performed by Miiller
et al., but now using cells bearing 10, 200 and 900 Lac repressor molecules per
cell.

Relevant data for this problem is provided on the book website.

3. Activation and Squelching

In the chapter we computed the regulation factor for a simple activator and
found that it describes an effective increase of the number of RNA polymerases
in the cell. Furthermore we found that beyond a certain point increasing the
number of activators no longer has an effect on gene expression, since the reg-
ulation factor asymptotes to a constant; see fig. 19.12. This last conclusion is
not quite true and in fact an exceedingly large number of activators can begin
to repress gene expression. This effect is known as squelching. Here we study a
simple model of squelching.

As discussed in the chapter, assume that all the RNA polymerases and all
the activators are bound to DNA nonspecifically. RNA polymerase and the
activator can be on their own, or in a AP complex with binding energy eqp.
Compute the average number of AP complexes, and the average number of free
RNA polymerases. Show that in the limit of a very large number of activators
the number of free RNA polymerases goes to zero. Explain why this leads to
squelching.

4. Sensitivity of the regulation factor.

An important concept in gene regulation is the sensitivity, that is, how steep is
the change in gene expression in response to a change in the number of tran-
scription factors. It is defined as the slope of the gene expression with respect
to the number of transcription factor on a log-log plot. Using thermodynamics
models of gene regulation determine how the sensitivity depends on the relevant
parameters for the following regulation motifs in the case of a weak promoter:
(a) Simple repression.

(b) Repression in the presence of DNA looping.

(c) Two repressors that can recruit each other to their respective operator sites
and repress RNAP independently. What happens when the interaction is turned
off?

(d) Two repressors competing for the same operator site which overlaps the
promoter.

(e) Simple activation.

5. The transcriptional machinery in eukaryotes.
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In the thermodynamic models of gene regulation discussed in the chapter the
RNA polymerase is treated as a single molecular species. This is a reasonable as-
sumption for transcription in prokaryotes, while in eukaryotes some 60 different
molecules need to come together in order to form the transcriptional machinery.
The objective of this problem is to develop intuition about the requirements
for our simple model to apply in such a complex case by assuming that the
transcriptional machinery is made out of two different subunits, A and B, that
come together at the promoter.

(a) Calculate the probability of finding the complex A+B bound to the promoter
in the case where unit A binds to DNA and unit B binds to A. Can you reduce
this to an effective one-molecule problem such as in the bacterial case?

(b) Investigate the same question for the case when B binds to a site on the DNA
which is near the A binding site, and there is an interaction energy between A
and B.

6. Induction of transcription factors.

Even though experiments where the concentration of a transcription factor is
varied are easier to interpret in terms of models, the experiments that are the
easiest to perform are those where the affinity of the transcription factor to its
specific binding sites on the DNA is regulated by an inducer molecule. In the
case of Lac repressor, for example, allolactose or any of its analogues (IPTG,
for example) can be used to reduce its specific binding energy down to values
similar to its non-specific binding to DNA.

Assume a simple model of induction where one inducer molecule binds to
the repressor which then looses its ability to bind specifically to its operator
site. Calculate repression in this case and plot it as a function of the number of
inducer molecules in the cell.

7. Separation of time scales and transcriptional regulation

For transcription to start the RNA polymerase bound to the promoter needs to
undergo a conformational change to the so called open complex. The rate of
open complex formation is typically much smaller that the rates for the poly-
merase binding and falling off the promoter. Here we investigate within a simple
model how this state of affairs might justify the equilibrium assumption under-
lying thermodynamic models of gene regulation, namely that the equilibrium
probability that the promoter is occupied by the RNA polymerase determines
the level of gene expression.

a) Write down the chemical kinetics equation for this situation. Consider three
states: RNA polymerase bound non-specifically on the DNA (N), RNA poly-
merase bound to the promoter in the closed complex (C), and RNA polymerase
bound to the promoter in the open complex (O). To simplify matters take both
the rate for N—C and the rate for C—N to be k. Assume that the transition
C—O0 is irreversible, with rate I'.

b) For T' = 0 show that in the steady state there is an equal number of RNA
polymerases in the N and C state. What is the steady state in the case I' # 0.
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c¢) For the case T' # 0 show that for times 1/k < ¢ < 1/T" the number of RNA
polymerases in the N and C state is equal, as would be expected in equilibrium.

8. Genetic switch.

In the chapter we introduced the synthetic genetic switch, consisting of two
promoters which repress each other via the transcription factors whose produc-
tion they control. In this problem we investigate further investigate the rate
equations introduced in the chapter to describe this synthetic gene circuit.

a) Show that the critical value of the dimensionless control parameter « is given
by

o (19.92)

Qerit =

)
with n being the Hill coefficient. Make a phase portrait of the genetic switch
for the case n = 4.

b) Consider the simple model of repression where a single repressor protein
binds to an operator site that overlaps with the promoter site. For this case
write down the rate equations for the genetic switch introduced in the chapter.
c¢) Show that the rate equations have a single steady state solution that corre-
sponds to an equal number of repressor; and repressors proteins, and therefore
will not exhibit bistability necessary for switching.

9. Statistical mechanics and the repressilator.

In our treatment of the repressilator, the Hill function was used to characterize
binding of transcription factors to DNA. Replace that treatment by one in which
DPround 1S calculated as we did throughout the book and numerically integrate
the equations.

10. Chemotaxis of E. coli.

In chemotaxis experiments a source of nutrient molecules is typically introduced
into the medium containing bacteria via a micropipette. The outward diffusion
of the nutrient molecules creates a position dependent concentration gradient
and the chemotactic response of the bacteria can be observed under a micro-
scope.

a) Estimate the nutrient gradient in steady state as a function of the distance
from the micropipette r by assuming that it keeps the concentration fixed at cg
for distances r < ryg. Make a plot of the concentration gradient as a function of
r for typical values cg = 100 uM and r9 = 1 pm.

b) Assuming that the bacterium makes two measurements of the concentration
using one receptor protein at one of its ends and another receptor at the other,
estimate the maximum distance from the nutrient source for which the bac-
terium is still able to detect a gradient. Assume that the receptor counts the
number of molecules present in a spherical volume of radius ¢ = 2 nm. To solve
this problem you should recall that the counting error for counting N molecules
is roughly v/N, and in order to detect the difference in concentration between
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the two ends of the bacterium, the measurement error should be less than the
difference itself.

¢) Now assume a different strategy, where one receptor is employed but the
bacterium compares the concentration at two different positions along a run,
separated by a distance of 10 pum. Compute the maximum distance from the
nutrient source at which the bacterium will be able to detect the gradient in
this case.

11. N-wasp and biochemistry on a leash.

In the last section of the chapter we considered the action of N-wasp using a
simple one-dimensional random walk model to treat the statistical mechanics of
looping. Redo that analysis by using the Gaussian model of a polymer chain.
First, assume that the loop has to close on itself and then account for the finite
size of the protein domain. Compare your results to those obtained in the
chapter.

19.8 Further Reading

L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J. Kondev, T. Kuhlman
and R. Phillips, “Transcriptional regulation by the numbers: applications”,
Curr. Opin. Genet. Dev. 15, 125 (2005). Application of thermodynamic
models to several different regulatory architectures.

N. E. Buchler, U. Gerland and T. Hwa, “On schemes of combinatorial tran-
scription logic”, Proc. Natl. Acad. Sci. 100, 5136 (2003). Excellent general
discussion of thermodynamic models of gene regulation.

C. T. Walsh, Posttranslational Modification of Proteins - Expanding
Nature’s Inventory, Roberts and Company Publishers, Englewood: Col-
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that there is more to regulation than transcriptional control.

J. L. Cherry and F. R. Adler, “How to make a Biological Switch”, J. theor.
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arise in designing biological switches.

M. Ptashne, A Genetic Switch, Cold Spring Harbor Laboratory Press, Cold
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opposed to facts and paints a picture of how gene regulation works.

M. Ptashne and A. Gann, Genes and Signals, Cold Spring Harbor Labora-
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Ptashne and Gann have created an outstanding description of their ideas also,
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