
Chapter 16

Dynamics of Molecular
Motors

“Like a flash of lightning and in an instant the truth was revealed. I drew with
a stick on the sand the diagrams of my motor.” - Nikola Tesla

Chapter Overview: In Which the Dynamics of Molecular Motors Are
Studied Using Rate Equations

The question of cellular dynamics has arisen throughout the book in a num-
ber of different contexts. One of the conclusions we have drawn in our anal-
ysis is that active transport plays an important role in mediating cellular life.
Molecular motors are key tools used by the cell to perform active transport and
to maintain its nonequilibrium character. In particular, we interest ourselves
in molecular machines that can perform work, usually by the consumption of
ATP. This chemomechanical coupling will be the centerpiece of the present
chapter. We begin by considering several different classes of molecular motors
and the cellular processes they mediate. A vast array of different classes of
experiments ranging from structure determination to single-molecule biophysics
have resulted in a range of quantitative data on motors that we examine sys-
tematically. We then use rate equations to characterize the dynamics of motors.

16.1 The Dynamics of Molecular Motors: Life
in the Noisy Lane

Directed and purposeful movement is one of the properties we most closely asso-
ciate with living organisms. Even organisms that appear immotile to the naked
eye such as green plants are very busy on the cellular level, exhibiting rapid
directed movements of organelles such as chloroplasts and segregation of chro-
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822 CHAPTER 16. DYNAMICS OF MOLECULAR MOTORS

mosomes during cell division. The past several chapters have largely focused on
diffusion and random walks as modes of motion, but these are clearly insufficient
to explain directed movements such as chromosome segregation or muscle con-
traction. Nonrandom movements cost energy! They demand mechanisms that
convert chemical energy into mechanical energy (work). In chap. 5, we have
described the forms of chemical energy storage in cells including high-energy
covalent bonds such as the phosphoanhydride bonds in ATP and ion gradients
across membranes (or more generally, concentration gradients). The focus of
this chapter will be on molecular motors that are able to use one of these forms
of chemical energy to generate a mechanical force acting over a defined distance
in a defined direction. In our exploration of these molecular motors, we will
blend many of the physical and biological principles encountered in previous
chapters ranging from beam theory through rate equations.

One fascinating feature of the motors found in cells is their structural and
functional diversity. Nevertheless, many different kinds of motors share similar
fundamental physical mechanisms, so analysis of one motor can frequently shed
light on the functioning of other motors that are evolutionarily unrelated and
are used for distinct biological purposes. For convenience, we will separate our
analysis of motors into four broad classes:

i) Translational motors. These are motors that move in a one-dimensional
fashion, by stepping along a linear “track” as a substrate. Motors in this class
include myosin, which causes muscle contraction by walking along actin fila-
ments, and helicases, which move along DNA and use energy to unwind the
double helix.

ii) Rotary motors. These remarkable motors are usually embedded in the
cell membrane and generate torque by rotation of mechanical elements. The
best-understood rotary motor in biology is the bacterial flagellar motor, shown
in fig. 3.18 (pg. 153).

iii) Polymerization motors. As we began to explore in the preceding chap-
ter, energy can be released during the process of subunit polymerization and
depolymerization. Both actin assembly and microtubule assembly are harnessed
by cells to generate force directly, as well as to provide linear tracks for other
force-generating translational motors.

iv) Translocation motors. These motors involve threading a structure such
as DNA or an unfolded protein through a hole and then pushing it or pulling
it through the hole, frequently (though not always) across a membrane. The
importing of proteins into specific cellular organelles, such as the mitochondrion,
frequently requires the action of translocation motors.

This scheme for dividing motors into four classes will simplify our modeling
efforts later in the chapter, but this list is neither comprehensive nor mutually
exclusive. Some important motors combine features of more than one class. For
example, RNA polymerase moves along its DNA substrate like a translational
motor, but uses energy derived from polymerization of nucleotide subunits. The
motor that packages bacteriophage DNA into the capsid is thought to combine
features of both rotary and translocation motors. Also, there are several kinds
of force-generating systems known to operate in specialized cells that do not fit
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easily within this framework. A famous example is the sperm of the horseshoe
crab, which carries a coiled prestressed spring that can uncoil rapidly when
triggered to pierce the jelly coat of the horseshoe crab egg during fertilization.
We will not attempt to explore the mechanisms of such exotic motors here,
although they must obey the same physical principles as the more familiar
motors that we will use as our examples.

Our plan in this chapter is to examine the structure and function of these
different classes of motor and then to show how simple rate equations can be
used to understand many aspects of their operation. The study of biological
motors has been a fertile area for the fusion of biology and physics in research,
because understanding their function demands an integration of biochemistry
with mechanics. Characterization of the properties of a molecular motor such
as kinesin, a translational motor that moves along microtubules, requires mea-
suring the biochemical rate constants associated with its hydrolysis of ATP, but
also physical properties such as the speed with which it moves and the amount
of force that it can generate. Because of the small size of most biological motor
proteins (typically a few nanometers) and the fact that they operate under con-
ditions where thermal motions are significant, measurements of physical motor
properties such as speed and force has been technically challenging. As we will
see, numerous clever and elegant measurement techniques that exploit a wide
range of physics concepts have been developed for this purpose, largely by teams
of biologists and physicists working together.

Within a unified physical framework where molecular motors are treated as
tiny machines that convert chemical energy into mechanical work, the charac-
teristics of different motors can be compared and the mechanisms of their inner
gearboxes deduced. As an example, fig. 16.1 shows the behavior of three differ-
ent motors, kinesin, RNA polymerase, and the phage packaging motor, when
they are subjected to increasing loads. Just like human-manufactured motors,
molecular motors tend to slow down when they are forced to do more work,
but the three different motors slow down in distinct ways. The biological func-
tion of motors depends on the way that they convert the energy released from
a chemical reaction to the conformational change that causes movement and
generates force. Conversely, external forces applied to moving motors can affect
their biochemical reaction rates. Therefore, the motor’s speed depends on the
applied force in a way that must reflect its mechanochemical energy conversion
mechanism. As shown in the graph, RNA polymerase tends to move at top
speed as its load increases until it reaches a threshold where its speed slows
suddenly and stalls. In contrast, the phage packaging motor slows down very
gradually with increasing force, and kinesin exhibits a complex force-velocity
relationship somewhere in between. Later in the chapter, we will see how dif-
ferent physical models for the coupling between mechanics and biochemistry
inside a molecular motor can predict different shapes for these characteristic
force-velocity curves. Before proceeding to the modeling, we will begin with
a brief tour of the biological roles and characteristics of the four major motor
classes.
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Figure 16.1: Effects of load force on motor velocity for kinesin, RNA polymerase,
and the bacteriophage packaging motor. For all three motors, the speed has been
normalized to the maximum speed (v/Vmax) and the force has been normalized
to the force where the speed is decreased to half its maximum (F (v = Vmax/2)).
The different shapes of the force-velocity curves imply distinct mechanisms.
(Adapted from C. Bustamante et al., Ann. Rev. Biochem., 73:705, 2004.)

16.1.1 Translational Motors: Beating the Diffusive Speed
Limit

One of the most important and familiar classes of molecular motors are those
associated with the cytoskeleton, specifically with microtubules and actin fil-
aments. As we have already seen throughout the book, these motors are re-
sponsible for motile processes as diverse as the directed transport of vesicles in
individual cells to the running, swimming and flying of animals on the basis of
muscle contractions. These translational cytoskeletal motors can be classified
into three protein families, myosin, kinesin, and dynein, one member of each
being shown in fig. 16.2. Because both microtubules and actin filaments are
constructed from asymmetric subunits that self-assemble by binding to each
other in a head-to-tail orientation, the tracks have a distinct structural polar-
ity, and each type of motor is able to move in one direction. Members of the
dynein protein family, for example, move along microtubules toward the minus
end, while most members of the kinesin family move in the opposite direction,
toward the plus end (although there are a few special types of kinesin that are
minus-end directed). Myosin family members all move along actin filaments,
mostly toward the barbed end (equivalent to the microtubule plus end), but
with a few exceptions that move toward the pointed end.

Each of these motors moves along its substrate track by taking a series of
discrete steps of fixed size. Each mechanical step is tightly coupled to a single
biochemical cycle of ATP binding, hydrolysis, and product release. The net
speed of a translation motor, then, is the product of its step size and the number
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of steps it can take per unit time. Another important feature of translation
motors is their processivity, that is, the number of steps that a single motor can
take along a single filament before it falls off. Some translation motors, such as
RNA polymerase, are extremely processive, so that an entire messenger RNA
molecule that may include thousands of nucleotide bases can be synthesized by
one polymerase in a single run. Other motors are much less processive. As
we will see below, the myosin motor involved in muscle contraction typically
takes only one or two steps along its actin filament before it falls off; this low
processivity is important for its normal biological function. The amount of force
that can be exerted by a single motor taking a single step is ultimately limited
by the amount of chemical energy liberated by hydrolysis of a single molecule
of ATP.

• Estimate: Force exerted by a single motor step. The kinesin motor
moves 8 nm per ATP hydrolysis event. As a result, we can estimate the
force exerted by the motor as

Fmax =
free energy of ATP hydrolysis

step size
≈ 20 kBT

8 nm
≈ 10 pN,

where we have used our usual rule of thumb that the thermal energy scale
is kBT ≈ 4 pN nm. Of course, this is an overestimate because we have
assumed that the entirety of the free energy offered up by ATP hydrolysis
can be converted into mechanical work; real motors may work with lower
efficiency.

Each of the three major cytoskeletal motor families contains numerous dis-
tinct members that are specialized for different functions in the cell, for example
different kinesin family members bind to different cargoes and move along mi-
crotubules at different speeds. Overall, the three classes of motor share similar
domain organization, as illustrated in fig. 16.2. One unifying structural theme is
the existence of an ATP-binding domain, called the motor head domain, in the
parts of the motors that are able to bind to their target filaments. This domain
catalyzes the hydrolysis of ATP and undergoes a conformational change that
is guided and amplified into a large scale conformational change of the whole
molecule, allowing it to make a step along its linear track. In order for move-
ment to be productive, the cycle of ATP hydrolysis must be coupled to a second
cycle of binding and unbinding to the track. The three sample motors shown
here all have two heads, but some motors have just one, or even three. At the
opposite end of the molecule, the tail domain is able to bind to cargo. Within
each protein family, the motor head domains are evolutionarily more conserved
than the cargo-binding tail domains. This makes sense, because all the motors
of a given class walk along the same type of track, but may carry different kinds
of cargo.

A schematic of the diversity of trafficking action associated with these motors
is shown in fig. 16.3. A concrete example of this kind of trafficking is seen in
neurons, where microtubule-based motors carry vesicles, proteins and mRNA
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Figure 16.2: Key classes of translational motor. Top: a myosin V molecule is
one of about twenty different types of myosins that move on actin filaments.
Middle: kinesin 1 is also a member of a large family of related molecular mo-
tor proteins, but these move on microtubules rather than on actin. Although
myosins and kinesins have different substrates, the detailed structure of their
motor heads is quite similar and they are thought to be derived from a single
common molecular ancestor. Bottom: cytoplasmic dynein represents a different
class of microtubule-based motors that appears to be unrelated to kinesin or
myosin. (Adapted from R. D. Vale, Cell, 112:467, 2003.)
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Figure 16.3: Directional transport of membrane-bound organelles. This
schematic shows a few of the different types of microtubule-based organelle
transport that must coexist in a typical eukaryotic cell. Different members of
the kinesin and dynein motor protein families bind to distinct organelles or
transport vesicles and mediate their movement through the cell. (Adapted from
N. Hirokawa, Science, 279:519, 1998.)

from their sites of synthesis in the cell body to the sites of synapse formation at
the far end of the axon. In a giraffe, this distance for the longest neurons in the
body can be several meters, and the microtubule-based motors carry material
at the rate of about 20-40 cm/day.

Yet another intriguing example of the role of translational motors in cells
is in the process of cell division. Throughout the book, we have made much
of the story of genome management, both in terms of the physical demands
associated with having the genetic material in the right place at the right time
as well as with the informational demands tied to making sure that genes are
expressed when they need to be. A compelling part of that story is chromosome
segregation into two daughter cells after DNA replication during the cell cycle.
In this setting, translational microtubule-based motors are partially responsible
for the separation of the chromosomes by the mitotic spindle during cell division,
where over a dozen distinct kinesin family members collude with one another
and with a cytoplasmic form of dynein to generate relative translation of the
microtubules within the spindle and to position and move the chromosomes.
This phenomenon was already shown in fig. 15.19 (pg. 788) and we remind the
reader of it here as a shining example of the orchestrated activities of motors
and their cytoskeletal partners.
The Motion of Eukaryotic Cilia and Flagella Are Driven by Transla-
tional Motors

Another example of the action of translational motors is provided by ac-
tive filamentous structures in cells, which embody a subtle coupling between
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Figure 16.4: Structure of the axoneme. (A) Thin-section electron micrograph
of a cross-section of the flagellum of the microscopic algae Chlamydomonas. (B)
Diagram of the flagellar parts. The inner dynein arms and outer dynein arms
are motor proteins that make the flagellum beat by sliding the microtubules
relative to one another. (C) A side view of the flagellum. (A, courtesy of Lewis
Tilney.)

beam-bending dynamics and translational, force-generating motors. In partic-
ular, a wide range of processes important to eukaryotic organisms are mediated
by flagella and cilia, which are cell-surface projections containing bundles of mi-
crotubules crosslinked by special forms of dynein motor proteins, surrounded by
the cell plasma membrane. The motion of cilia pervades the living world with
examples ranging from the surfaces of embryos to the linings of various mam-
malian tissues to the swimming of unicellular organisms such as Paramecium.
One familiar example is provided by the mucociliary escalator in the lungs. As a
result of waves of ciliary motion, harmful materials are transported up and out
of the lungs where they can be spat out or harmlessly swallowed. Paralysis of
the cilia due to superviscous mucous in cystic fibrosis patients almost universally
causes early death due to the inability to clear bacterial infections. Likewise,
dynein paralysis due to dynein mutations in Kartagener’s syndrome tends to
cause early death from lung infections. The flagella in swimming cells such
as sperm cells are structurally closely related to beating cilia; both are based
upon beautiful structures known as axonemes. (It is important to remember
that eukaryotic flagella, such as those on sperm cells, and bacterial flagella are
completely different kinds of structures. The fact that they share the same
name is an unfortunate historical accident.) A schematic of the microtubule
and motor-based architecture of the axoneme is shown in fig. 16.4.

The way in which translational motors are harnessed to drive oscillations of
structures like cilia and eukaryotic flagella is shown in fig. 16.5. The concept
is that adjacent filaments in the axoneme are connected to each other both by
translational motors and by linking devices that prevent much relative motion
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Figure 16.5: Bending of flagella and cilia due to translational motors. (A)
When adjacent filaments are not tethered together, stepping of the motors will
result in sliding of the adjacent filaments. (B) When the adjacent filaments
are tethered together, stepping of the motors will result in deformation of the
filaments. (Adapted from B. Alberts et al., Molecular Biology of the Cell, 4th
ed. New York: Garland Science, 2002.)

of these parallel filaments. As a result, when the motors make a stepping motion
they produce a compressive force that induces bending. In fig. 16.5(A) we see
that if two adjacent filaments are not linked, then the motion of the molecular
motors will induce sliding. On the other hand, if the filaments are tied together
these motors will generate bending, as is shown in fig. 16.5(B). The energetics
of filament bending can be modeled using beam theory, as discussed in chap. 10.
Spatial and temporal coordination of dynein motor stepping along the length of
the cilium or flagellum gives rise to regular beat patterns that propagate down
the structure. For example, a snapshot of the flagellum of a swimming sperm will
show the flagellum bent in an elegant, near-sinusoidal curve. A moment later,
the sine wave will appear to have shifted down the flagellum. The propagation
of this bending wave drives the sperm head forward through its low Reynolds
number environment, with an efficiency and speed that depend in part on the
viscosity of the medium, as we explored in chap. 12. The ability of human sperm
to swim to find an egg to fertilize, thus depends on the convergence of several
important principles in physical biology.
Muscle Contraction Is Mediated by Myosin Motors

Though kinesin will usually serve as our canonical example of a transla-
tional motor, the action of translational cytoskeletal motors is probably most
renowned in the context of muscles. In this case, it is the translational motor
myosin which occupies centerstage as shown in fig. 16.6. The structure of mus-
cles is an intricate combination of filaments and motors as shown in fig. 16.7.
Collections of myosin molecules make thick filaments which induce relative slid-
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Figure 16.6: Structure of muscle myosin II. (A) Myosin II from skeletal mus-
cle is a hexamer consisting of two extremely large heavy chains and four much
smaller light chains. The heavy chains include a long coiled-coil domain at the C-
terminus and the actin-binding, force-generating motor head at the N-terminus.
(B) Platinum replica imaging of individual myosin molecules reveals the beau-
tiful regularity of their structure. (C) Several hundred individual myosin II
hexamers can self-assemble to form a thick filament. In this cylindrical bundle,
the myosin molecules in the left half are all pointing toward the left, and those
in the right half are all pointing toward the right. This antiparallel orientation is
critical for muscle contraction. (A,C, adapted from B. Alberts et al., Molecular
Biology of the Cell, 4th ed. New York: Garland Science, 2002; B, courtesy of
John Heuser.)

ing of bundles of actin. These relative motions are revealed macroscopically as
muscle contractions.

• Estimate: Myosin and Muscle Forces. Molecular motors are molecules
that consume some form of chemical energy in order to deliver mechanical
work. For the translational motors of interest in the present section, the
kind of information we seek in characterizing a given motor includes how
fast the motor goes, how much force it can apply and how processive it is
(i.e. how many steps does it take before falling off of its filament).

A fascinating feature of muscles is that they reflect the action of many
motors acting simultaneously. Given the properties of individual motors,
how much force might we estimate can be applied by an array of motors
such as are found in a muscle? We can develop an estimate of this force by
examining the structure and function of muscles. Fig. 16.7 shows a cartoon
of a muscle cell, made up of muscle fibers or myofibrils. The myofibrils
are themselves composed of contractile units called sarcomeres. Myosin
molecules are arranged in a cylindrically symmetric structure called the
thick filament, and exert forces on the outer actin filaments. We can
estimate the net force per myosin molecule by appealing to a simple picture
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Figure 16.7: The structure of muscle. (A) Thin section electron micrograph
shows the organization of a single sarcomere when a muscle is stretched. The
dark band in the middle represents the location of the aligned myosin thick
filaments and the light bands on the side show the position of actin. The
diagrams below show the change in sarcomere length during muscle contraction.
(B) The regular structure of the sarcomere depends upon proper alignment of
many structural proteins. (C) A quick-freeze deep etch electron micrograph
shows the extremely regular spacing of thick myosin filaments alternating with
thin actin filaments and the myosin heads bridging the gap between them. (A,
B, adapted from B. Alberts et al., Molecular Biology of the Cell, 4th ed. New
York: Garland Science, 2002; C, courtesy of John Heuser.)
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Figure 16.8: Idealization of muscle. Muscle is treated as an array of springs
in series and in parallel showing how the force is shared between the different
springs.

in which muscles are thought of as arrays of springs in series and parallel
as shown in fig. 16.8. The number of myosins in a cross-section of muscle
is roughly

Nmyosin ≈
cross sectional area of muscle

cross sectional area of thick filament
×Nmyosin/thickfilament ≈

π(3 cm)2

π(60 nm)2
×300 ≈ 1014.

If we assume that the force scale associated with a muscle like the biceps
in the upper arm is 100 N (corresponding to lifting a 10 kg mass), and
that this force is partitioned equally amongst the myosins, this results in
an estimate of the force generated by a single myosin head of

Fmyosin ≈
10 kg · 10 m s−2

1014
= 1 pN.

Despite the inexactness of several of the assumptions in this estimate, the
final number of 1 pN per myosin head is of the same order of magnitude
as the actual force revealed by measurements that have been made on
single myosin motor proteins in vitro.

Translational motors of the kind introduced here serve in a huge variety
of different capacities and reflect the divergence and specialization that is the
hallmark of evolution. Much of what we know about these motors is the result
of a variety of beautiful experiments, some of which we recount now.

• Experiments Behind the Facts. Our understanding of the structure,
function and relatedness of different motors comes from decades of effort
using a host of different techniques. Although both measurements in liv-
ing cells and measurements on isolated proteins in vitro have contributed
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Figure 16.9: Gliding motility assay with myosin. (A) Individual motors are
attached to the surface of a microscope slide and fluorescently labeled actin
filaments are observed as they glide across the surface after the addition of
ATP. (B) Frames from a video sequence spaced at 30 second intervals show the
progress of individual filaments in many different directions. (B, courtesy of
James A. Spudich.)

significantly to our understanding of motor protein action, here we will
explore only in vitro experiments.

One of the most dramatic assays is the so-called gliding motility assay in
which motors such as myosin are fixed to a microscope slide and fluores-
cently labeled actin filaments are then added to the system. As shown
in fig. 16.9, these filaments bind to the motors and, after the addition of
ATP, are then translated relative to the stationary motors. In this kind of
gliding filament assay, a large number of different motor heads may bind
simultaneously to the same filament and work cooperatively. This is a
good imitation of in vivo situations such as that found for myosin II in
the muscle sarcomere.

Another option for watching the movement of purified molecular motor
proteins is to attach them to a bead that can be imaged with a conven-
tional light microscope. As a result, the bead serves as a passive reporter
for the actual motion of the motor itself. This geometry more closely
imitates the in vivo situation where kinesin, for example, performs vesi-
cle transport. Movements of the large (micrometer-scale) bead can be
tracked with nanometer-scale precision, reflecting the behavior of the mo-
tor proteins. Fig. 16.10 shows an example of this kind of measurement,
where the beads and the microtubules can be directly observed using DIC
microscopy. Attaching a bead to a motor also offers another advantage.
The bead can be trapped using optical tweezers, as illustrated in fig. 4.12



834 CHAPTER 16. DYNAMICS OF MOLECULAR MOTORS

500 nm

0.0 sec

0.6 sec

2.0 sec

2.6 sec

Figure 16.10: Kinesin-driven movement. A glass bead coated with kinesin mo-
tors was brought in contact with a microtubule using an optical trap. Both the
microtubule and the bead can be seen using DIC microscopy and the optical
trap is visible as a slightly shiny spot slightly around the bead. When the trap
is shut off, the bead begins to move down the microtubule processively over
several seconds. (Adapted from S. M. Block et al., Nature, 348:348, 1990.)

(pg. 198), and used to apply force to the walking motor, in any direction
chosen by the investigator. This is one of the most powerful techniques
used to measure the response of motors to applied forces, generating data
such as that shown in fig. 16.1.

Both the filament gliding assay and the bead-based assay require that the
motor proteins be immobilized, on either the microscope cover slip or the
bead respectively. An alternative approach is to observe the movement of
individual molecules by labeling them with a small flourescent tag. For
example, as shown in fig. 16.11, fluorescent molecules were attached to
the heads of myosin V molecules. As a result of the actual walking of the
motor, the fluorophore is observed to undergo distinct steps of a precise
length. Note that from a quantitative perspective, one of the key outcomes
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Figure 16.11: Single-molecule dynamics of myosin V stepping. (A) Cartoons
showing the differences between hand-over-hand and inchworm models for mo-
tion. (B) Position as a function of time for myosin V molecules labeled with
a fluorophore on one of the arms of the molecule. Three different traces from
different molecules are shown. The average step size is slightly over 70 nm,
consistent with a hand-over-hand stepping mechanism but inconsistent with an
inchworm mechanism. (Adapted from A. Yildiz et al., Science 300:2061, 2003.)

of single molecule experiments like these is that they provide a window on
the stochastic nature of motor dynamics. For example, the time between
steps of the motor is different for each step. Later in the chapter, we
will calculate the expected distribution of these waiting times for simple
models of motor function.

One of the applications of these particular experiments is their ability to
distinguish different hypothesized mechanisms of walking such as inch-
worm or hand-over-hand motions. As shown in fig. 16.11 the motor has
been labelled by placing a single fluorophore on one of the motor heads. In
the case where the fluorophore is situated on the extremity of the motor,
individual steps will be revealed as motions of the fluorophore with a step
size of ∼ 70nm. This measurement is most consistent with a model where
the two heads of myosin V take turns taking steps.

The size of the characteristic steps depends on the structure of the motor
itself. An interesting demonstration of this is shown in fig. 16.12. In
this experiment, the motor head domain of myosin V was progressively
truncated to make it shorter and shorter. Because the conformational
change of myosin that enables it to take a step involves rotation of a long,
rigid “lever arm”, the shortened proteins take shorter steps.

16.1.2 Rotary Motors

Not only has evolution generated an exquisite variety of translational motors,
but also motors whose motions are rotational. Two of the most widely studied
examples of rotary motors are the bacterial flagellar motor and ATP synthase,
both of which were introduced as membrane proteins in chap. 11. Schematics
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Figure 16.12: Motor step size depends on motor structure. (A) Motor heads of
myosin V were purified, either in their normal state (top) or after the rotating
lever arm had been shortened by protein engineering (bottom). The characteris-
tic step size for the truncated protein is shorter than for the full-length protein.
(B) For myosin V, the lever arm is built from a series of rigid subdomains called
IQ repeats, so arms of different lengths can be easily constructed by including
different numbers of repeats. Over a range from 1 to 6, the step size increases
linearly with the number of repeats. The three different symbols show three
different types of protein constructs; all follow the linear rule. (Adapted from
T. J. Purcell et al., Proc. Nat. Acad. Sci., 99:14159, 2002.)
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of both of these motors are shown in fig. 16.13.
The bacterial flagellar motor is embedded in the cell membrane of bacterial

cells and is attached to the long filamentous flagellum. A bacterial cell may
have either only a single polar flagellum, like the cholera-causing pathogen Vib-
rio cholerae, or it may have several flagella distributed over the surface, like our
old friend E. coli. When the motor rotates, it induces a rotary motion in the
flagellum which propels the bacterium along in its highly viscous environs (as
measured by the low Reynolds number already described in chap. 12). Interest-
ingly, the bacterial flagellar motor uses an ion gradient (rather than ATP) as
the basis of its mechanical cycle as shown in fig. 16.13. In particular, the motor
is driven by a flow of hydrogen ions due to a concentration gradient between
the inside of the cell and the space between the two bacterial membranes (a few
exotic flagellar motors use sodium ions rather than hydrogen ions). The result-
ing motion has a rate in excess of 100 rotations per second. One particularly
astonishing feature of this motor is that it can reverse its direction of rotation
without reversing the direction of ion flow.

ATP synthase is one of the central powerhouses of living cells, found in the
inner membrane of bacterial cells and also in the mitochondria of eukaryotic
cells. It is an amazing molecular machine that is constructed of two differ-
ent rotary motors connected to a common drive shaft. The F0 motor of ATP
synthase is similar to the flagellar rotary motor, in that it uses the energy
stored in the transmembrane gradient of hydrogen ions to rotate. The F1 motor
uses ATP hydrolysis to rotate in the opposite direction. Under normal circum-
stances, when the transmembrane electrochemical gradient is strong, the F0

motor generates more torque than the F1 motor, and so the F0 motor forces
the F1 motor to rotate in reverse, and thereby synthesize ATP from ADP plus
inorganic phosphate. However, if the transmembrane electrochemical gradient
is weak, the balance can tilt in the other direction, and the F1 motor will gen-
erate more torque than F0. Under these circumstances, the coupled motor uses
ATP hydrolysis to pump hydrogen ions out of the cell.

• Experiments Behind the Facts. Insights into the behavior of rotary
motors have been garnered from a variety of different measurements in-
cluding bulk enzymatic assays, structural biology efforts and single molecule
techniques. The proof of the very existence of rotary motion in living or-
ganisms was hard won, because it is technically difficult to directly observe
the rotation of very small elements, or of thin filaments. One influential
class of experiments involved removing the flagella from bacterial cells
and then attaching the cells to glass coverslips by the flagellar root left
behind. In this configuration, rotation of the flagellar motor would cause
the cell itself to spin around its point of attachment to the slide, a larger-
scale movement that was more easily observed in the light microscope
than flagellar rotation itself. An alternative approach is to fluorescently
label the flagella so that they become visible in the light microscope. An
example of this kind of experiment is shown in fig. 16.14.

Insights into the behavior of rotary motors can also be gleaned from in
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Figure 16.13: Examples of rotary motors. (A) The bacterial flagellum is like
a tiny propellor driven by the gradient of hydrogen ions across the bacterial
inner membrane. Continuous operation of the motor requires that the gradient
be replenished by ATP-consuming proton pumps. The flagellum itself is an
extremely long (10 µm) helical filament attached at its base to the motor appa-
ratus. The motor is embedded in the bacterial inner membrane and anchored
to the cell wall with a shaft passing through the outer membrane. The motor
is capable of rotating in either direction at speeds up to 100 Hz. (B) ATP syn-
thase is a rotary motor that uses the transmembrane electrical potential of the
hydrogen ion gradient to drive a mechanical rotation which in turn drives the
chemical synthesis of ATP from ADP and inorganic phosphate. (Adapted from
B. Alberts et al., Molecular Biology of the Cell, 4th ed. New York: Garland
Science, 2002.)
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2 mm

Figure 16.14: Flagellar movement in bacteria. Live bacterial cells were labeled
on their surface using a fluorescent molecule revealing the helical shape of the
flagella. For the different individuals shown, helical pitch and amplitude vary
significantly. In a few cases, multiple helical forms can seen attached to the
same bacterium resulting in frayed bundles. (Adapted from L. Turner et al., J.
Bacteriol., 182:2793, 2000.)

vitro measurements on single motors (as opposed to in vivo measure-
ments). One of the most famed experiments of single-molecule biophysics
involves the direct observation of the rotary motion of individual F1 mo-
tors. This rotation has been measured by attaching a fluorescently labelled
actin filament to the drive shaft of the motor and watching the rotation of
the actin filament when the motor is provided with excess ATP (note that
this is the opposite direction from its normal function in cells, where F0

forces F1 to run in reverse and to synthesize ATP rather than to hydrolyze
it). A schematic diagram and typical data from this clever experiment are
shown in fig. 16.15. These measurements revealed that the F1 motor ro-
tates in distinct steps of 120 degrees, tightly coupled to its ATP hydrolysis
activity. The quantized nature of the steps and the tight coupling between
mechanical movement and ATP hydrolysis are strongly reminiscent of the
translation motors discussed in the preceding section.

16.1.3 Polymerization Motors: Pushing By Growing

The coupling of hydrolysis to force generation can take place in unexpected ways.
In addition to the translational and rotary motors described above, cells have
other mechanisms such as the use of polymerization of cytoskeletal filaments as a
means of force generation. We will refer to these cases as polymerization motors.
Several examples of polymerization motors have been shown in the previous
chapter. Fig. 15.3 (pg. 756) illustrates one of our favorite examples, namely,
the way in which some bacterial pathogens such as Listeria hijack the host
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Figure 16.15: Single molecule observation of a rotary motor using actin filaments
to reveal the motor rotation. (A) the F1 portion of ATP synthase is tethered to
a glass slide. The top of the rotating shaft is attached to a fluorescently labeled
actin filament. (B) As the F1 shaft turns, the actin filament swings around.
The time interval between images is 133 msec. (C) At low ATP concentrations,
it is clear that the rotation occurs in three evenly spaced angular substeps. The
graph shows the angular revolution for a single actin filament over a period of a
few seconds and the inset shows the positions of the filament end over a longer
movie. (A, B, adapted from H. Noji et al., Nature, 386:299, 1997; C, adapted
from R. Yasuda et al., Cell, 93:1117, 1998.)
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cytoskeleton to derive their motility. Fig. 15.21 (pg. 791) is a schematic of the
way that polymerization motors are thought to segregate antibiotic resistance
plasmids in dividing bacteria.

In the previous chapter, we described some of the features of these cytoskele-
tal filaments and how rate equations can be used to describe their dynamics.
However, one of the most intriguing features of these filaments that was not
elaborated there is their ability to apply forces and to do mechanical work. Re-
call that the culmination of our discussion of the cytoskeleton was the analysis
of the role of nucleotide hydrolysis in the polymerization process. For the pur-
poses of the present chapter, this hydrolysis will be seen to contribute to the
maintenance of a non-equlibrium state where soluble monomers are in excess;
this unstable energetic state is necessary for polymerization motors to generate
force. These examples illustrate the way in which filamentous polymerization
has the consequence of mediating directed motion in cells. Note that like with
translational and rotary motors, the ability of these machines to do work is
ultimately tied to the fact that they consume fuel such as ATP or GTP.

16.1.4 Translocation Motors: Pushing by Pulling

Cellular life is replete with examples where macromolecules need to travel from
one membrane-bound region to another. Indeed, nucleic acids, proteins, sugars
and even lipids have to go from one membrane-bound region of the cell to an-
other, or from the outside of a cell to the inside. We use the term “translocation
motor” to refer to the broad class of molecular machines whose job is to mediate
such transport. When viewed most broadly, this category includes the nuclear
pore complex, mitochondrial import and export proteins, the proteasome, DNA
packing motors in bacteriophage, ion channels, transporters, the Sec complexes
and even flippases that take lipid molecules from one side of a lipid bilayer to the
other and maintain highly asymmetric lipid distributions in the face of entropy.

An example of two of the speculated possible mechanisms of one of these
motors is shown in fig. 16.16. The mitochondrion has served as one of the cen-
terpiece examples throughout the book and offers us an opportunity to consider
translocation motors as well. TIM and TOM are two important complexes re-
sponsible for the import and export of proteins in mitochondria. One of the
mechanisms that has been proposed for membrane transport by TIM, for ex-
ample, is that the unfolded peptide will be recognized in a way that permits
free diffusion of the peptide into the mitochondria. As shown in fig. 16.16(A),
binding partners of the translocating peptide start binding to the peptide that
has already made it through the channel generating a ratchet effect. An alter-
native mechanism envisions a power stroke, where a molecule binds to the part
of the peptide that has already diffused in and pulls it in by an ATP-driven
conformational change (cross-bridge ratchet). This is depicted in fig. 16.16(B).

To drive home the significance of this kind of motor action we consider
several different examples. As shown in chap. 10, bacteriophage DNA is highly
pressurized in the capsid, contributing to the overall driving force behind the
infection process. However, this pressure effect is apparently insufficient by
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Figure 16.16: Thermal ratchet model and cross-bridge ratchet model of protein
import into the mitochondria. (A) Thermal ratchet model of protein translo-
cation. Thermal motion of the polymer in and out of the pore is biased by the
presence of binding proteins on only one side of the barrier. (B) Cross-bridge
ratchet model of translocation. Binding proteins on one side of the barrier may
also use energy-dependent conformational changes to further ensure that the
cargo polymer moves in only one direction. (Adapted from B. Alberts et al.,
Molecular Biology of the Cell, 4th ed. New York: Garland Science, 2002.)
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Figure 16.17: Translocation of phage DNA. (A) Illustration of the driving force
on phage DNA. The packed DNA produces a driving force. In addition, the
RNA polymerase can begin transcription and help to pull the DNA out. (B)
Close up view of the effect of polymerase transcription on DNA translocation.

itself to mediate full translocation of the viral genome. The mechanism of
translocation in the case of phage T7 is thought to be that RNA polymerase
binds to a promoter located near the end that is first delivered into the bacterium
and starts transcribing. The subsequent energy-dependent translocation of RNA
polymerase along the DNA template contributes to pulling the bacterial genome
into the host cell. This is shown schematically in fig. 16.17.

Yet another example of this same basic theme is the proteasome. The protea-
some serves as the cell’s protein garbage disposal, taking unwanted or misfolded
polypeptides and digesting them. The protease active sites of the proteasome
are sequestered on the inside of a large cylindrical complex, so that the protease
activity does not accidentally degrade nonspecific targets in the cell. Delivery
of polypeptide chains into the proteasome for degradation requires recognition
of a specific protein tag by a cap complex that sits on both ends of the cylin-
drical proteasome. This cap complex uses energy derived from ATP hydrolysis
to unfold the targeted polypeptide and thread it into the degrading maw of the
proteasome. Once in the core of the proteasome, the polypeptides are cleaved
into short peptides, and the amino acids can be recycled as building blocks for
new proteins. Although protein degradation itself is not an energy-requiring
process, the active unfolding of the polypeptide as it is fed into the proteasome
does require the consumption of ATP.

16.2 Rectified Brownian Motion and Molecular
Motors

The previous section gave a quick tour of some of the key classes of molecular
motors. Now our goal is to see what kind of theoretical framework can be built
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for the various observations that have been made on these motors. Though
there is much that one might ask about motors, we will limit the discussion to
a few key questions: What is the mean velocity of a motor and how does it
depend upon the applied load? How much force can a motor exert before it will
stall? How does the velocity depend upon the concentration of ATP or some
other fuel? How different is the trajectory of a given motor from one experiment
to the next?

One of the interesting challenges that will dictate the kinds of models we
consider is shown in fig. 16.18. When viewed at very high spatial and temporal
resolution, we will see that a molecular motor moves stochastically. There will
be pauses between steps and sometimes the motor will lurch backwards rather
than forwards. In constrast, if we look over longer time scales, the motor will
appear to move steadily forward with a characteristic mean velocity. Different
classes of models will capture different key features of the motor’s dynamics,
operating over different time and length scales.

16.2.1 The Random Walk Yet Again

Molecular Motors Can Be Thought of as Random Walkers

Throughout the book, we have seen the appeal of the broad class of random-
walk models for characterizing a host of biological processes. The present section
shows how driven random walk models arise naturally as a scheme for character-
izing motor dynamics. We will begin by using cytoskeletal translational motors
to develop these ideas, but emphasize that the conceptual treatment here is very
general and can apply to rotational, polymerization, and translocation motors
as well as translation motors. The basic idea is to consider the range of pos-
sible conformational states of a motor, the ways that the energy levels of the
conformational states are influenced by the biochemical mechanism of energy
utilization and external influences such as applied forces, and the ways that an
individual motor can change from one state to another. One of the ways we
will describe motor dynamics is shown in fig. 16.19. For a translational motor
moving along some periodic track such as an actin filament or a microtubule,
this class of models imagines n slots along the track which are each the same.
Within each of these slots, the motor can be in any one of P distinct states.
That is, motors are characterized by a state space in which the motor can oc-
cupy a set of geometric positions, and at each such position, it can occupy a
set of internal structural states. This perspective is particularly transparent
for a simple translational motor such as kinesin where the geometric positions
correspond to different positions of the motor molecule along the microtubule,
and the internal state refers to both conformational states of the motor as well
as its binding to other molecules such as ATP, ADP and inorganic phosphate
Pi.

The simplifying assumption that the motor position along the track can be
discretized into equal-sized boxes is a reflection of the observation that real
motors generally move in quantized steps of a characteristic size. We have
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(A)

(B)

Figure 16.18: Motion of motors at different time scales. If we watch the motor
with low temporal resolution, it will appear to move steadily at some mean
velocity. If we watch the motor at high temporal (and spatial) resolution, we
will see that its position fluctuates.
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Figure 16.19: Schematic of position-state models. (A) An individual molecular
motor, such as the myosin II head bound to an actin filament shown here,
can exist in a wide variety of distinct conformational states. For myosin, the
differences among the conformational states include the position of the lever
arm, which can point either to the right or to the left, as well as the internal
structure of the motor head itself, which may be different depending on whether
it is bound to ATP, ADP plus inorganic phosphate, ADP alone, or no nucleotide
at all, as well as on whether it is being stretched or compressed by the action of
an external force or biological load. (B) A complete description of the state of
an individual motor molecule must encompass its position with respect to the
filament track as well as its internal conformation. The track along which the
translational motor moves is divided into a set of boxes that are labelled by the
parameter n. Here, each of five different protein conformations is schematized
at the same position on the filament, position n. If the motor steps forward or
backward, it will find itself at position n+1 or position n-1, where again it can
assume any of several internal conformations. To generalize this treatment, we
imagine that the motor can assume any of P distinct states at any position along
the filament as shown in the bottom schematic. The description of a particular
motor at any instant in time can be summarized by just two parameters, its
position (n-1, n, n+1, etc.) and its internal state (0, 1, 2, etc.).
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already seen this for myosin V, where each head moves about 74 nm in each
cycle of ATP hydrolysis (fig. 16.11) and for F1, which rotates in 120 degree steps
(fig. 16.15).

To model the dynamics of the motor over this set of discrete states we
introduce the probability pm(n, t), which is the probability that the motor is
at position na along its polymer track and has internal state m at time t.
The length a is defined as the distance between successive periodic positions
of the track along which the translational motor moves as shown in fig. 16.19.
We claim that a knowledge of the function pm(n, t) permits the calculation of
quantities of interest such as the mean velocity as a function of applied load.
In practice, experimenters usually perform this operation in reverse; speed is
directly measured under a variety of externally imposed load forces, and the
underlying kinetic rate constants are determined by fitting kinetic models to
the data.

16.2.2 The One-state Model

As a first example, we adopt the simplest possible model of the motion of a
motor as depicted in fig. 16.20. In this case, we assume that the motor has
no internal states and simply hops from one site to the next with forward rate
k+(F ) and backward rate k−(F ) under the action of the applied force F . k+(F )
is the probability per unit time of the motor moving forward by one site, while
k−(F ) is the probability per unit time of the motor moving backward by one
site. Note that there is an explicit dependence of these rates on the applied
force, which we assume to be applied in the backward direction. We begin with
this oversimplified case as a way to explore the position-state treatment, but
recognize that it cannot be directly applied to any real motor, because motors
must couple energy utilization (e.g. in the form of ATP hydrolysis or ion trans-
port down an electrochemical gradient) to a mechanical conformational change,
indicating that in reality they must exist in at least two states in order to do
useful work. For the simplicity of the mathematical derivation, we have chosen
to acknowledge the importance of energy utilization by allowing the forward
rate constant k+(F ) and the backward rate constant k−(F ) to be different,
even when the applied force F is zero. For a truly one-state motor, it would not
be able to distinguish its position along the filament or distinguish a forward
step from a backward step, because it would remain in the same single state
regardless of its location, so there would be no way for these two rates to differ.
Such a molecule would be able to move in a random walk along its filament,
but could not impose a bias in either direction, and therefore could not produce
useful work. So in reality, our treatment here is of a “quasi-one-state” motor,
which does have different rate constants for taking a forward step vs. a back-
ward step, but we will set aside for the moment the internal complexities of
the motor that permit these differences (we will subsequently derive a two-state
model that treats the differences explicitly).

At present, our goal is to determine an evolution equation for the proba-
bility distribution of the motor state p1(n, t) = p(n, t), where we have dropped
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k+(F)k–(F)

Figure 16.20: Schematic of a one state motor. The motor can only be in one
state in each box. The rate constants characterize the probability that the
motor will jump left or right per unit time.

reference to the label m since at each site the motor can only be in one internal
state. In other words, p(n, t) is the probability of finding a motor at position n
at time t, where for convenience we take the time to be discretized in steps ∆t.
The Dynamics of a Molecular Motor Can Be Written Using a Master
Equation

At this point, we argue that the probability p(n, t + ∆t) can be gotten by
summing over all of the processes that take place during time ∆t, which start
at time t and have as their outcome the motor ending up at site n at time
t + ∆t. That is, we sum over all of the individual microtrajectories available to
the system with the constraint that the final state is the prescribed one. For
example, the site at n + 1 could be occupied at time t and the motor could
hop backwards resulting in it being at site n in time t + ∆t. As we have done
throughout the book, one convenient scheme for examining dynamical processes
of this sort is through “Trajectories and Weights” diagrams such as that shown
in fig. 16.21.

To determine the evolution equation, we sum over all microtrajectories and
the result can be written as

p(n, t+∆t) = k+∆tp(n− 1, t)︸ ︷︷ ︸
jump from site to left

+ k−∆tp(n + 1, t)︸ ︷︷ ︸
jump from site to right

+ (1− k−∆t− k+∆t)p(n, t)︸ ︷︷ ︸
stay put

.

(16.1)
This “master equation” adds up the probabilities of all the trajectories that lead
to a given site being occupied as a result of the microscopic steps of the motor.
Further, this equation can be recast in a more useful form by bringing p(n, t)
to the lefthand side and dividing through by ∆t. This results in

p(n, t + ∆t)− p(n, t)
∆t

= k+(p(n−1, t)−p(n, t))+k−(p(n+1, t)−p(n, t)). (16.2)

The next key point in the analysis is to think of the probability distribu-
tion as a continuous function of the position x along the filament, where the
probability p(x, t) for finding the motor at position x is equal to p(n, t), when
x = na. For the probability p(x, t) we can use a Taylor expansion (see “The
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Figure 16.21: Trajectories and weights for molecular motors. The diagram
shows all of the trajectories for a given motor during a time step ∆t. The motor
can jump forward (to the right, against the applied force) or backward (to the
left, in the same direction as the applied force), or it can stay put.
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Math Behind the Models” on pg. 273)

p(x± a, t) ≈ p(x, t)± ∂p

∂x
a +

1
2

∂2p

∂x2
a2, (16.3)

where we ignore higher order terms. Substituting this result back into eqn. 16.2
leads to the differential equation

∂p

∂t
= −(k+ − k−)

∂p

∂x
a +

1
2
(k+ + k−)

∂2p

∂x2
a2, (16.4)

where we have also used the approximation

p(x, t + ∆t)− p(x, t)
∆t

≈ ∂p(x, t)
∂t

. (16.5)

Note that this equation is of precisely the form already described in chap. 13,
namely,

∂p

∂t
= −V

∂p

∂x
+ D

∂2p

∂x2
, (16.6)

where we have made the following definitions

V = a[k+(F )− k−(F )] (16.7)

and

D =
a2

2
[k+(F ) + k−(F ]. (16.8)

What we have recovered (not surprisingly) is the equation for diffusion in the
presence of a force. What we have learned is that the probability distribu-
tion p(x, t) describing a one-state motor can be characterized by equation 16.6,
which is a driven or biased diffusion equation also known as the Smoluchowski
equation. The physical essence of this equation is that the motors move with
an average velocity V . However, if we start a collection of motors on parallel
filaments all at the same time (like a collection of sprinters in a race), we will
find that over time, they spread out in a way characterized by the diffusion
constant D. To see this explicitly, we can solve the equation.
The Driven Diffusion Equation Can Be Transformed into an Ordinary
Diffusion Equation

One way to solve the equation is to perform a change of variables that turns
it into the conventional diffusion equation, without a driven term, for which we
already know the solution as was shown in chap. 13 (see eqn. 13.32 on pg. 689).
The relevant change of variables is given by

t̄ = t (16.9)

and
x̄ = x− V t. (16.10)
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The fun of a transformation like this is that it amounts to shifting to a frame of
reference which is moving along at the mean velocity. The derivatives appearing
in the driven diffusion equation are now determined as follows. First, the time
derivative is given by

∂p

∂t
=

∂p

∂t̄

∂t̄

∂t
+

∂p

∂x̄

∂x̄

∂t
=

∂p

∂t̄
− V

∂p

∂x̄
. (16.11)

We can perform a similar exercise with the spatial derivatives resulting in

∂p

∂x
=

∂p

∂x̄
(16.12)

and
∂2p

∂x2
=

∂2p

∂x̄2
. (16.13)

Using these transformations, we see that eqn. 16.6 takes the form

∂p

∂t̄
= D

∂2p

∂x̄2
, (16.14)

precisely the familiar diffusion equation already discussed in detail in chap. 13.
The solution in the case of initial conditions where the motor is localized at

x̄ = 0 at t = 0 is given by

p(x̄, t̄) =
1√

4πDt̄
e−

x̄2
4Dt̄ . (16.15)

This can be recast in terms of the original variables as

p(x, t) =
1√

4πDt
e−

(x−V t)2

4Dt . (16.16)

The evolution of this probability distribution is presented in figure 16.22, where
it is seen that the probability distribution broadens due to diffusion as it prop-
agates along with a mean velocity V .

Our discussion thus far has centered on the overall dynamics of the one-
state motor without reference to the actual values adopted by parameters such
as k+(F ) and k−(F ). As was noted above, one of the primary physical aspects
of the model is the presence of the asymmetric jump rates, k+ and k−. In
particular, these jump rates are related to the force acting on the motor, shown
schematically in fig. 16.23. In equilibrium we know that the ratio of the rates has
to satisfy a special relation which is dictated by the characteristics of the energy
landscape such as is shown in fig. 16.24. By equilibrium we mean that there is
no net flux from one state, where the motor can be found with probability pi, to
the other, where the occupancy of the motor has probability pj . For neighboring
sites n and n + 1 this condition can be written as

k+pn = k−pn+1. (16.17)
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Figure 16.22: Solution to the driven diffusion equation. As time passes, the
center of mass of the probability distribution moves to the right with mean
velocity V . As time passes, the distribution gets wider.

Equilibrium probabilities are given by the Boltzmann formula pn = exp(−βGn)/Z,
where Gn is the free energy of the motor when on the nth site along the fil-
ament. Using this definition in the equilibrium condition above leads to the
relation between the forward and backward rate

k+

k−
= e−β∆G (16.18)

where the free energy change is given by ∆G = Gn+1 −Gn.
In the presence of force applied in the backward direction, the free energy of

the nth site is raised above the no-force value by the work of the motor against
the applied force Fna, that is Gn → Gn + Fna. This is depicted in fig. 16.23
in our usual way by using a pulley and mass to represent the applied force on
the motor. Now applying the same reasoning as above for the no-force case, we
arrive at

k+(F )
k−(F )

= e−β(∆G+Fa). (16.19)

The significance of this expression is described in figure 16.24 where it is seen
that the effect of the force is to tilt the energy landscape and thereby change
the barrier height and the allied rates.

This idea can be tested experimentally by using an optical trap to apply
force to a single motor and pulling the load either forward or backward relative
to the motor’s preferred direction. Data from one such experiment is shown in
fig. 16.25. In this case, pulling forward on myosin V increases its stepping speed
by nearly ten-fold compared to pulling backward with the same force.

To say anything more about how this class of model behaves with force, we
have to actually make a precise statement about how the forward and backward
rates depend individually on the force. To that end, we examine several different
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Figure 16.23: The effect of force on jump rate. A molecular motor subjected to
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Figure 16.24: Energy landscape of a one-state model in the absence of any force
(black) and when the application of forces pulling backward on the motor tilts
the landscape (gray).
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Figure 16.25: Effects of forward and backward forces on stepping rates for
myosin V. (A) The average time between steps is a reflection of the motor rate.
When a forward pulling force is applied to myosin V, individual steps take place
in rapid succession, so the histogram of “dwell times” is dominated by very brief
pauses between steps (black boxes). In contrast, the histogram of dwell times
for the same motor subjected to a backward-pulling force shows very few brief
pauses and many more long ones. (B) Over a range of ATP concentrations, the
dwell time histograms for myosin V are best fit by a model that invokes two
different internal states and two rate constants (see section 16.2.4). The rate
constant for one of the state transitions, k1, is dependent on ATP concentra-
tion but does not change with applied force (the two lines lie on top of each
other). The second rate constant, k2, is independent of ATP concentration,
but strongly force-dependent, increasing significantly when forward force is ap-
plied rather than backward force. This result shows that the force-dependence
of motor activity can be at least partially uncoupled from the mechanism of
energy utilization. (Adapted from T. J. Purcell et al., Proc. Nat. Acad. Sci.,
102:13873, 2005.)
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Figure 16.26: Molecular motor velocity as a function of applied force. (A) The-
oretical result assuming force-dependence in the forward rate. (B) Theoretical
result assuming force-dependence in the backward rate. (C) Data for myosin
V, where negative forces represent forward pulling and positive forces represent
backward pulling. The shape of the curve most closely resembles the curve in
part (B), which would be interpreted in the simple one-state model as indicating
that the effects of force on this motor result in changes in the backward rate,
not the forward rate. (C, adapted from J. C. Gebhardt et al., Proc. Nat. Acad.
Sci., 103:8680, 2006.)

case studies in which the applied force is present in different parts of the rates.
As our first example, we assume that all the dependence of the force is in k+.
This means that

k+(F ) = k−e−β(∆G+Fa) (16.20)

which can be plugged into eqn. 16.7 to obtain

V (F ) = ak−(e−β(∆G+Fa) − 1). (16.21)

This result is shown in fig. 16.26(A). A second case study is built around the
idea that k+ is independent of the force, assigning all the force dependence to
k− and resulting in

k−(F ) = k+eβ(∆G+Fa) (16.22)

which implies in turn that

V (F ) = ak+(1− eβ(∆G+Fa)). (16.23)

This result is shown in fig. 16.26(B). In both cases, if the force is large enough,
the motor will start moving backwards. Backward stepping under large applied
forces has been directly observed for both myosin V and kinesin. Data from an
experiment measuring velocity as a function of applied force for myosin V are
shown in fig. 16.26(C) revealing a trend more consistent with the version of the
model in which the force primarily influences the magnitude of k−. However,
the reader should bear in mind that this simple one-state model is primarily
aimed to illustrate a style of analysis rather than to convey molecular realism
consistent with translational motors such as myosin V and kinesin.
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Figure 16.27: Randomness parameter measured for kinesin under a variety of
conditions. (A) At high (saturating) concentrations of ATP, the randomness is
generally low, indicating that the motor moves at a fairly constant speed. When
the load force is very high, approaching the stall force, randomness increases.
(B) Randomness also increases at very low levels of ATP (i.e. when the binding
rate of ATP may become rate-limiting), and there is a complex relationship
between force and randomness at low ATP concentrations, again with higher
forces causing higher randomness, or more variability in motor speed. Although
this data cannot be fit by a simple one-state model like that described in the
text, models invoking more internal states do a better job of accounting for the
measurements. (Adapted from K. Visscher et al., Nature, 400:184, 1999.)

In addition to the force dependence of the velocity, this model can help
us begin to think about another important experimental parameter called the
randomness as well. If we introduce a characteristic time τ = a/V we can
ask what is the diffusive excursion, ∆x2 = 2Dτ = 2Da

V , over that time. The
randomness is defined as

randomness = r ≡ ∆x2

a2
=

2D

V a
=

k+(F ) + k−(F )
k+(F )− k−(F )

, (16.24)

where the actual final formula relating the randomness to the rate constants is
only valid for the one-state motor we are considering in this model. Note that
if k+ = k0[ATP ], then the randomness will approach one as the ATP concen-
tration gets large. It is more difficult to accurately measure the randomness
parameter than it is to measure speed, but nevertheless some data is available.
Fig. 16.27 shows one such set of measurements for kinesin. In this case, the ex-
perimental results are more subtle than can be captured by the simple one-state
model, but are fit reasonably well by a more realistic two-state model, which
we will develop below. The problems at the end of the chapter present another
opportunity to explore randomness within the one-state model.

16.2.3 Motor stepping from a free energy perspective

So far we have made use of a master equation approach whereby the motor
motion is described as a random walk along the filament. The rates k+ and
k− describe the probability of the motor stepping a distance a to the right, or
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Figure 16.28: The free energy of a motor moving along a filament. n labels the
discrete positions of the motor on the filament. The overall tilt of the free energy
surface leads to motion of the motor with an average speed to the right. The
forward and backward rates are determined by the free energy barriers between
the n and n + 1 state.

to the left, in unit time. An alternative view is provided by the model which
depicts the molecular motor as diffusing on a free energy landscape, as shown
in fig. 16.28. In this case the rate k+ can be computed as the inverse average
time for the motor to diffuse over the barrier from the nth to the n+1st site on
the filament, while for k− the diffusion from n + 1 to n is the one to consider.
Here we make the simplifying assumption that the transition rates are given by
the height of the barrier separating the two states via the Arrhenius relation,
k = Γ exp(−β∆Gbarrier), where Γ is the frequency of attempts to go over the
barrier, and ∆Gbarrier is the height of the barrier on the free energy landscape.

As in our analysis of the effect of force on motor speed, we can make use of
equilibrium arguments to constrain the space of allowed models for the stepping
rates k+ and k− and how they depend on the concentration of ATP in the
toy model of a one-state motor. To begin, we compute the change in free
energy associated with a single step of the motor. We assume that each step is
accompanied by hydrolysis of a single ATP molecule which in the lattice model
shown in fig. 16.29 is represented by having the number of ATP molecules in
solution decrease by one, while the number of ADP and Pi increases by one.

If the state that corresponds to the motor being at site n has A ATP
molecules in solution, D ADP molecules, and P inorganic phosphates, the sta-
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Figure 16.29: Lattice model of motor motility coupled to ATP hydrolysis. Each
step of the motor is accompanied by a single hydrolysis event, which decreases
the number of ATP molecules by one, and increases the number of ADP and Pi

molecules by one.

tistical weight of that state is

wn =
Ω!

A!D!P !(Ω−A−D − P )!
e−βAεbond (16.25)

where the combinatorial term accounts for all the ways of rearranging the
molecules in solution among the Ω boxes, and the Boltzmann factor corresponds
to all the bonds between the inorganic phosphate and the ADP present in each
of the ATP molecules. Upon hydrolysis the motor moves to the n + 1 site and
one ATP molecule breaks down into an ADP and a Pi. Therefore the statistical
weight of this state is

wn+1 =
Ω!

(A− 1)!(D + 1)!(P + 1)!(Ω− (A− 1)− (D + 1)− (P + 1))!
e−β(A−1)εbond .

(16.26)
The free energy difference between the state n + 1 and the state n, which is the
free energy of hydrolysis, ∆Ghydrolysis, is related to the ratio of the statistical
weights for the nth and the n + 1 state:

e−β∆Ghydrolysis =
wn+1

wn
=

A

DP
Ω eβεbond . (16.27)

In the last equality we have made the simplifying assumption that the number
of boxes in the lattice model is much greater than the number of molecules of
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the three species, which are in turn all much bigger than one. Also note that we
have rederived from a lattice model perspective the formula for the free energy
of ATP hydrolysis (see eqn. 6.122 on pg. 352)

∆Ghydrolysis = ∆G0 + kBT ln
(

[D][P ]
[A]

v

)
(16.28)

where the concentrations of the different molecular species are given by the
number divided by the volume of the solution, Ωv, where v is the volume of
a single box. The “standard state free energy” ∆G0 = −εbond in this case
corresponds to the energy released upon breaking a single chemical bond in
an ATP molecule. The standard state for the lattice model is one where all
the boxes are occupied by the three molecular species, i.e. when [A] = [D] =
[P ] = 1/v. (We choose this as the standard state for convenience; biochemists
traditionally and arbitrarily use a standard state of 1 M concentration for all
chemical species.) Clearly in this state there is no entropy change when a single
ATP breaks up into ADP and Pi since there is no freedom for placing these
molecules into different boxes, and the free energy of hydrolysis is just the bond
breaking energy.

The free energy of hydrolysis we have computed above corresponds to the
difference in free energy of successive minima on the free energy landscape on
which our motor diffuses and therefore it is equal to the overall slope of the
diagram in fig. 16.28. We see that changes in the concentration of ATP, ADP
or Pi will lead to a change in the slope of the free energy landscape as required
by eqn. 16.28. Hence, within this highly simplified model, the motor velocity
will inherit this concentration dependence.

To obtain a formula for how the motor speed depends on ATP concentration,
equilibrium considerations are not enough. In the simple model described by
the free energy landscape shown in fig. 16.28 we still have to specify how each of
the forward rates depends on the ATP concentration. Following our analysis of
the effect of force on the motor speed here too we consider two simple scenarios,
one in which all the ATP dependence is in the forward rate, and the other where
only the backward rate is affected by changing the amount of ATP. The two
scenarios are depicted graphically in fig. 16.30.

For the case when only the forward rate is ATP dependent we can use the
Arrhenius formula to obtain

k+ = Γ+e−β(∆G−
barrier+∆Ghydrolysis)

k− = Γ−e−β∆G−
barrier . (16.29)

Since the motor speed is V = a(k+−k−), using eqn.16.28 in the above equation
for k+ yields

V = a(k0
+[A]v − k−) (16.30)

where the rate k0
+ = Γ+e−β(∆G−

barrier+∆G0) 1
[D][P ]v2 is independent of ATP, and

is the forward rate for the standard state concentration of ATP, [A] = 1/v. The
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Figure 16.30: Possible scenarios for how the rates depend on the ATP concen-
tration. (A) The backward rate is the ATP-dependent step, while the forward
rate is not affected by the concentration of ATP. (B) The forward step is the
only one that is ATP-dependent. The dashed line represents the free energy
surface for a smaller concentration of ATP and the arrow indicates the change
upon increasing the amount of ATP in solution.
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prediction is that the speed of the motor increases linearly with ATP concentra-
tion. This is clearly contradicted by experiments in the large ATP concentration
limit where the motor speed saturates. In fact, the model itself becomes incon-
sistent for large enough ATP concentrations. Raising the ATP concentration
has the effect of decreasing the barrier for stepping from the nth site to the
n+1 site. When the barrier is gone, i.e. when ∆G−

barrier +∆Ghydrolysis = 0, the
Arrhenius form for the transition rate is no longer valid. At best the present
model can be used to give an idea of how the motor behaves at concentrations
of ATP that are well below saturation.

The case of the backward rate having all the ATP dependence can be ana-
lyzed in an analogous way. In this case the rates have the form

k+ = Γ+e−β∆G+
barrier

k− = Γ−e−β(∆G+
barrier−∆Ghydrolysis) , (16.31)

and the speed of the motor is described by

V = a

(
k+ −

k0
−

[A]v

)
, (16.32)

where k0
− = Γ−e−β(∆G+

barrier−∆G0)[D][P ]v2. This model does predict satura-
tion of the motor speed at large ATP concentrations, but as is the case of the
previous model for high ATP concentrations, at low enough ATP concentra-
tions the barrier for a backward step vanishes rendering the Arrhenius formula
meaningless.

The predictions for the dependence of motor speed as a function of ATP
concentration for the two models described above are shown in fig. 16.31. They
lack the nuance to respond to the full range of experimental data. Still, the
one-state motor provides a good starting point for building intuition about the
nature of motor dynamics. To actually make convincing contact with experi-
mental data on motors like kinesin, in the next section we begin to analyze a
two-state motor.

16.2.4 The Two-state model

The most immediate generalization of the model presented in the previous sec-
tion is to consider the case in which there are two internal states associated
with each position. A schematic description of this model is shown in fig. 16.32.
We adopt the indices 0 and 1 to characterize the internal states. An interesting
feature of the two-state model, which is different from the one-state picture, is
that some of the allowed transitions are not associated with geometric displace-
ments along the filament, but rather, refer to internal transitions such as those
involving hydrolysis. For real molecular motors, the internal conformational
transitions associated with ATP hydrolysis are coupled to a protein conforma-
tional change that generates a single step along the substrate and also to a
change in the affinity of the motor head for its substrate. The coupled cycles of
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Figure 16.31: Speed of a molecular motor as a function of the ATP concen-
tration as predicted by the one-state model. (A) All the dependence in ATP
concentration is in the forward stepping rate. (B) The backward step is ATP
dependent while the forward step is not.

binding, ATP hydrolysis, stepping, and unbinding generate directed movement.
In the one-state model we were forced to make the non-physical assumption that
the forward and backward rate constants were different from one another even
though the internal state of the motor was unchanged regardless of the stepping
direction; we are now prepared to render the model more realistic (and, as we
will see, surprisingly powerful in its ability to make quantitative predictions) by
incorporating the second state.
The Dynamics of a Two-State Motor Is Described By Two Coupled
Rate Equations

As with our analysis of the one-state motor, our ambition is to write a set of
rate equations that describe the time evolution of the probability distribution
pi(n, t) where the label i refers to the internal state (either 0 or 1) and n refers to
the position on the linear track. For example, if we interest ourselves in p0(n, t),
we need to consider several different processes that result in the motor being
at time t in state 0 at site n. In particular, the motor can come into this state
from state 1 at position n− 1 with a rate k+

A . In addition, we need to consider
the processes in which the motor arrives in this state from state 1 at position
n with a rate k−B . Finally, there is the uneventful situation where the motor
stays put and remains in state 0 at position n during the time interval from t
to t + ∆t. This last microtrajectory occurs with probability 1− (k−A − k+

B)∆t.
Following a strategy similar to that we used in the case of the one-state

motor, we can write the time evolution of p0(n, t) as

dp0(n, t)
dt

= k+
A p1(n− 1, t) + k−B p1(n, t)− k−A p0(n, t)− k+

B p0(n, t). (16.33)

Similar reasoning applies to the equation for the time evolution of p1(n, t) which
can be written as

dp1(n, t)
dt

= k−A p0(n + 1, t) + k+
B p0(n, t)− k+

A p1(n, t)− k−B p1(n, t). (16.34)
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Figure 16.32: Two-state motor model. (A) The rates for the transitions that
can occur to change the occupancy of internal state 0. The dark icon indicates
the current state of the motor head and the two light icons indicate the two
possible states in the next time step. In the two-state model, the motor head is
constrained to convert from internal state 0 to internal state 1. This can occur
either while the motor remains stationary with respect to the filament (with
rate constant kA) or while the motor takes a single step backwards (with rate
constant kB) (B) The rates for the transitions that can occur to change the
occupancy of internal state 1. The motor head can convert to internal state 0,
either while remaining in place, or while taking a single step forward.
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We are interested in the position of the motor as a function of time which we
now derive using certain general observations about the problem.

Though we do not want to enter into the details of how to fully solve models
such as the two-state model presented above and we leave this as a homework
problem, there is a clever and simple scheme for deducing the velocity in such
a model. The trick is to introduce the probabilities P0 and P1, which are the
probabilities that the motor will be at any site n, but in state 0 or state 1,
respectively. That is, we ignore the question of which site the motor occupies
and only concern ourselves with its internal state. As a result, we have effectively
mapped our problem onto a two-state problem. We can immediately write down
the rate equations that capture the dynamics of this two state system as

dP0

dt
= k+

A P1 + k−B P1 − k−A P0 − k+
B P0, (16.35)

and
dP1

dt
= k−A P0 + k+

B P0 − k+
A P1 − k−B P1. (16.36)

These two equations can be obtained directly from eqn. 16.33 and eqn. 16.34 by
summing both sides over all the sites n = 1 to ∞. (For this to make mathemat-
ical sense we should make the additional assumption that the motor is moving
along a microtubule that is infinitely long.) In steady state, we see that

(k+
A + k−B)P1 = (k−A + k+

B)P0. (16.37)

A second condition on our probabilities is that the motor be either in state 0 or
state 1, which stated mathematically is

P0 + P1 = 1. (16.38)

These two conditions can be used to determine P0 and P1 themselves as

P0 =
k+

A + k−B
k−A + k−B + k+

A + k+
B

, (16.39)

and

P1 =
k−A + k+

B

k−A + k−B + k+
A + k+

B

. (16.40)

Given these probabilities, we can now compute the motor velocity by exam-
ining the motions implied by each of the possible 0 → 1 and 1 → 0 transitions.
For concreteness, we assume that in going from state 0 to 1 at a given site, the
distance traveled by the motor is δ and in going from state 1 at one site to state
0 at the next site, the distance moved by the motor is a − δ, where a is the
periodicity of the cytoskeletal filament on which the motor moves.

The basic picture is that during each time interval ∆t, there are four possible
transitions the system can make - a step to the right or the left of length δ can
be made by the transition between the 0 and 1 states on the same site, or
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alternatively, a step of length a − δ can be made to the right or to the left by
transitions between states 1 and 0 on different sites of the filament. The net
result is that the average velocity is given by

V = δ(P0k
+
B − P1k

−
B) + (a− δ)(P1k

+
A − P0k

−
A). (16.41)

If we now use the results for P0 and P1 given in eqns. 16.39 and 16.40, the
velocity may be rewritten simply as

〈V 〉 = a
k+

Ak+
B − k−Ak−B

k−A + k−B + k+
A + k+

B

. (16.42)

An interesting outcome is that the average velocity does not depend on the
change in position of the motor (characterized by δ) as it transitions between
the two internal states on the same site.

Note that we can rewrite the motor velocity in much the same way that we
did for the one-state motor, V = a(k+(F )− k−(F )), but with the definitions

k+(F ) =
k+

A k+
B

k+
A + k+

B + k−A + k−B
(16.43)

and

k−(F ) =
k−A k−B

k+
A + k+

B + k−A + k−B
. (16.44)

A more detailed analysis of the eqns. 16.33 and 16.34, which is left to the reader
as a homework problem, reveals that the diffusion constant for the motor in the
two-state model is given by an equation analogous to the one derived for the
one-state model, D = (a2/2)(k+(F ) + k−(F )), with the effective rates as given
above.

Models with two or more internal states are more adept at responding to
experimental data than the one-state model introduced earlier. An example of
the kind of data that has been experimentally measured for kinesin is shown
in fig. 16.33. In these experiments, the speed of kinesin-driven movement was
carefully measured over a range of ATP concentrations and load forces. The
speed of the motor increases when more ATP is present, approaching a constant
rate at very high concentrations of ATP. This is reminiscent of the turnover
rates of enzymes behaving with Michaelis-Menten kinetics (see fig. 16.53 on
pg. 897). For kinesin, the motor speed can be assumed to be proportional to
the ATPase enzyme turnover rate, because individual motor steps are uniform in
size and are tightly coupled to ATP hydrolysis. Performing the same experiment
under different applied loads reveals that increasing the load not only decreases
the maximum speed that can be achieved by the motor, but also increases the
apparent binding constant of ATP for the motor (that is, the ATP concentration
at which the speed is one-half of its maximum value).
Internal States Reveal Themselves in the Form of the Waiting Time
Distribution
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Figure 16.33: Speed of kinesin motors varying with ATP concentration and
applied force. (A) Kinesin speed increases with increasing ATP at low concen-
trations and saturates at high concentrations. (B) Load dependence of motor
velocity for several ATP concentrations. (Adapted from K. Visscher et al., Na-
ture, 400:184, 1999; and M. J. Schnitzer et al., Nat. Cell Biol., 2:718, 2000.)

The two-state motor involves internal states which are characteristic of any
general treatment of motor dynamics. Some recent experiments have suggested
the existence of multiple substates for movements of real molecular motors.
Even in cases where we are not able to resolve the internal states in a direct
manner there are still some indirect consequences of their existence. One of
the most immediate ways in which these internal states reveal themselves is
through the waiting time distribution which provides a measure of the pauses
between forward steps of the motor. To show how these internal states alter the
waiting time distribution, we will consider the case in which each substate has
a characteristic lifetime τi. This implies that the composite process resulting in
net translation of the motor is going to be related to some combination of these
times.

Our maximum entropy analysis from chap. 15 showed that the probability
density function for waiting times given some average waiting time 〈t〉 is of the
form

p(t) =
1
〈t〉

e−t/〈t〉. (16.45)

Recall that this distribution emerges as a result of the constraint

〈t〉 =
∫ ∞

0

t p(t) dt. (16.46)

In order to determine the waiting time distribution for a composite process built
up of two subprocesses both of which are characterized by exponential waiting
times such as in eqn. 16.45, the net waiting time distribution is obtained as

p(t) =
∫ t

0

pA(τ) pB(t− τ) dτ. (16.47)

pA(τ) is the probability that the first step occurs after time τ and pB(t−τ) is the
probability that the second step occurs after time t−τ . p(t) is the probability of
a total waiting time for the composite process. The integral written in eqn. 16.47
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Figure 16.34: Trajectories for a two-state system. The total time to make the
two transitions is τ . There are many different ways that the system can make
the two transitions during this time τ . There is a waiting time τA to make the
first step and τB to make the second step.

represents a sum over the set of all allowed microtrajectories. For example, if
t = 5 sec, then the integral is a sum over all those intermediate steps whose
waiting times add up to a total of 5 seconds. In the case when taking τ =
2 seconds for process A, this implies process B will take 3 seconds. Examples
of different allowed composite microtrajectories are shown in fig. 16.34.

We already know the probabilities for the separate subprocesses which can
be written in the form

pA(t) = τ−1
A e−t/τA (16.48)

and
pB(t) = τ−1

B e−t/τB . (16.49)

As a result, eqn. 16.47 can be written explicitly as

p(t) =
∫ t

0

e−τ/τAe−(t−τ)/τB dτ
1

τAτB
. (16.50)

This integral can be evaluated (assigned as a problem at the end of the chapter)
and results in

p(t) =
1

τB − τA

(
e−t/τB − e−t/τA

)
(16.51)
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Figure 16.35: Probability distribution for waiting times for a two-state motor.
(A) Theoretical result, as stated in eqn. 16.51. (B) Data on dwell time distri-
bution for a single-headed version of myosin V, at 10 µM ATP. (Adapted from
Purcell et al., 2005, and J. C. Liao et al., Proc. Nat. Acad. Sci., 104:3171,
2007.)

Fig. 16.35 shows the functional form of this class of waiting time distribution.
In practice, observed dwell times for various molecular motors fit well to this
kind of scheme.

Because the rates of internal conformational changes for motors in position-
state models depend on nucleotide hydrolysis state and on applied force, we ex-
pect that dwell time distributions should also depend on these factors. Fig. 16.36
shows average dwell times for myosin V as a function of force for two different
concentrations of ATP. At high ATP, dwell times are initially very short, but
increase with load as the motor is forced to do more work. At very low con-
centrations of ATP, the behavior of the motor is dominated by the state while
it is waiting for a nucleotide to bind, and is less sharply dependent on applied
force. The conclusion of this analysis is that the overall distribution of dwell
times provides a window on the composite processes that make up the overall
motor dynamics and a filter on the different classes of models set forth to greet
data on dwell times.

16.2.5 More General Motor Models

In general, the internal dynamics of molecular motors can be considerably more
complex than the one- and two-state motors considered thus far. The P-state,
N-position class of models introduced in fig. 16.19 is probably still a useful
framework for thinking about these motors. For example, in order to fit all
the data available for kinesin, it appears that a model based upon four internal
states is most realistic. The complexity of the mathematics and the proliferation
of parameters makes these models largely beyond the scope of this book. How-
ever, before turning to other classes of motors besides the translational motors
considered here, we first make some general observations.

As an example of the proliferation of internal states consider the particular
case of myosin shown in fig. 16.37. This figure schematizes the various subpro-
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Figure 16.36: Average dwell times for myosin V as a function of load, for high
ATP (solid circles) and low ATP (open circles). The lines represent a fit of the
data to a two-state model. (Adapted from A. D. Mehta et al., Nature, 400:590,
1999 and A. B. Kolomeisky and M. E. Fisher, Biophys. J., 84:1642, 2003.)

cesses present in the cycle of a myosin molecule as it moves along actin. In
the first stage, a myosin head is bound to an actin filament (attached), from
which it unbinds upon ATP binding allowing it to move along the filament
(released). ATP gets hydrolyzed (the resulting ADP and phosphate remain
bound) producing a larger conformational change, which causes the head to be
displaced around 5 nm along the filament (cocked). The phosphate gets released
in order to bind the head to the new position on the filament and the power
stroke starts, during which the ADP molecule gets released (force-generating)
returning to the initial stage. The argument is that each of the internal states
exhibited by myosin can be represented in the framework introduced above, but
now with further internal states per geometric position.

There are a number of different experimental dials that can be controlled to
elicit different motor responses. Two of the most interesting ways to perturb the
dynamics of molecular motors like myosin and kinesin are to change the ATP
concentration and to apply forces to the motor, as we have seen in several cases
above. Another particularly interesting kind of perturbation is to link several
individual motors so that they are forced to work together. We now turn to this
fascinating topic.

16.2.6 Coordination of Motor Protein Activity

Thus far we have focused on the remarkable mechanical properties of individual
motor molecules. Nevertheless, in cells it is rare for a single molecule to accom-
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Figure 16.37: Model of myosin walking on an actin filament in a muscle. Actin
thin filaments and myosin thick filaments are arranged in a regular array in
muscle such that individual myosin heads protruding from the thick filaments
are conveniently positioned to step along the actin filament tracks. At the
beginning of a single step cycle, the myosin motor head domain is attached to
the actin filament. Binding of ATP to the myosin releases it. ATP hydrolysis is
coupled to a conformational change such that the head is poised over the next
subunit on the actin filament. When phosphate is released from the myosin
head it is able to bind in this new position. Release of ADP from the myosin
head is coupled to the force-generating power stroke. (Adapted from B. Alberts
et al., Molecular Biology of the Cell, 4th ed. New York: Garland Science, 2002.)
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plish anything notable on its own. More typically, the action of many individual
motors must be coordinated to achieve a larger scale goal. An impressive ex-
ample of this is seen in muscle fibers where the 1014 heads (as estimated in
section 16.1) must all cooperate and generate force nearly simultaneously with-
out interfering with one another. These concerted motor motions generate the
macroscopic shortening of the muscle that enables us to run, jump and swim.
How is this coordination achieved?

There are three requirements for motor coordination during muscle contrac-
tion: first, that all acting motor heads move in the same direction; second, that
they all generate force at the same time; and third, that they not interfere with
one another. In muscle, the first requirement is achieved by the exquisite geo-
metrical control exercised by cells during the development of the sarcomere as
shown in fig. 16.7. The second is achieved through the action of a group of actin
binding proteins called tropomyosin and the troponins whose choreographed re-
sponse to calcium signals is shown in fig. 16.38. The long tropomyosin protein
physically prevents binding of the myosin heads to the actin filaments so that
contraction can only occur in response to a positive signal, the influx of cal-
cium into the cell. Because calcium ions flood the entire cell extremely rapidly
as a consequence of the rapid propagation of membrane depolarization (which
will be discussed in chap. 17), the tropomyosin block can be removed nearly
simultaneously throughout the entire muscle cell, thus enabling large-scale co-
ordinated contraction. The third requirement is alleviated by the fact that an
individual myosin head in a skeletal muscle remains tightly bound to the actin
filament for only a short fraction of the time of its ATPase cycle (less than 5
percent). Thus, one head generates a power stroke and rapidly detaches so as
not to interfere with the action of other heads. Tellingly, this feature is not true
for motor proteins such as myosin V or kinesin that have to work processively
on their own; these motor heads remain tightly bound for more than 50 percent
of their ATPase cycle.

Muscle is a special case, where evolution has resulted in a system where
motor head behavior can be coordinated for millions of individual molecules
throughout an entire cell. More commonly, it is smaller teams of motors that
need to work together. For the two-headed processive motors such as myosin V
and kinesin, it is important that the rear head not release from the filament until
the front head is firmly bound. Otherwise, the motor and its attached cargo
would be at risk of drifting away due to thermal motion, which is significant
at molecular distance scales. Thus, the two heads must somehow communicate
through their linked domains to influence one another’s cycles of ATP hydrolysis
and filament binding. The mechanisms of this form of molecular communication
are currently under investigation. One interesting approach to this problem is
illustrated in fig. 16.39. In this experiment, protein engineering was used to
create a series of artifically oligomerized kinesin motor heads, linked by a series of
rigid rod-shaped protein domains and elastic spring-like protein domains. While
individual kinesin heads were able to generate microtubule gliding at reasonable
rates, linked pairs and triplets were able to cooperate to generate progressively
faster motion. Cooperation was manifested even by these artificially engineered
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Figure 16.38: Schematic of coordination in muscle contraction. (A) A bundle
of muscle fibers is innervated by a single motor neuron which forms communi-
cation synapses with all the fibers in the bundle. (B) At each of these synapses
a differentiated portion of the nerve terminal is stuffed with acetylcholine con-
taining vesicles lined up across the intercellular gap from their target muscle
cell. After the neuron releases its neurotransmitters, acetylcholine binding to
receptors on the muscle cell triggers a nearly instantaneous influx of calcium
ions throughout the entire cytoplasm of the giant muscle cell. (C) In the resting
muscle cell, myosin heads are prevented from binding to the actin filaments be-
cause the actin is coated with a series of copies of a long, skinny protein called
tropomyosin, which is also associated with several small calcium-binding pro-
teins called troponins. When calcium ions bind to troponin, a conformational
change causes tropomyosin to shift its position on the actin filament reveal-
ing the myosin binding sites which can then be simultaneously attacked by the
myosin motor heads poised nearby. (A, courtesy of Thomas Caceci ; B, cour-
tesy of John Heuser; C, adapted from B. Alberts et al., Molecular Biology of
the Cell, 4th ed. New York: Garland Science, 2002.) )
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Figure 16.39: Cooperation among linked motors. (A) Schematic of the experi-
ment, showing immobilized kinesin oligomers moving microtubules in a gliding
assay. (B) Speed measurement histograms for individual microtubules being
moved on slides coated with either single kinesin heads (top), linked pairs of ki-
nesin heads (middle), or linked triplets of kinesin heads (bottom). Although the
individual molecular motor head units are identical in each case, coupling mul-
tiple heads together enables them to generate faster gliding speeds. (Adapted
from M. R. Diehl et al., Science, 311:1468, 2006.)

protein constructs, where the molecular structure of the links between the motor
heads bears no resemblance to the links found in any real molecular motors. This
result provides hope that the mechanisms of cooperation between linked heads
can perhaps be understood in purely mechanical terms.

Frequently, it is necessary for multiple copies of different kinds of motors to
work together, for example in the intracellular transport of membrane-bound
organelles and vesicles. One example of this kind of transport is shown in
fig. 16.40. These cells, melanocytes, contain many small vesicles filled with
dark pigment called melanosomes. In some fish and amphibians, the cells can
change colors in response to hormonal signals, communicating when the animal
is frightened, angry or sexually aroused. This is accomplished by virtue of the
fact that each melanosome is coated with three different types of motor protein,
a dynein motor that moves the melanosomes inwards towards the center of
the cell along microtubule tracks, a kinesin motor that moves in the opposite
direction along the same track, and a myosin V motor that moves along actin
filaments at the cell periphery. Strikingly, when a cell receives a hormonal signal,
all the melanosomes in the cell switch directions simultaneously. This is because
the hormonal signals indirectly induce phosphorylation of proteins that regulate
the motors’ activity such that either the inward motor or the outward motor
predominates. The examination of coordinated motor activities is one of the
exciting current frontiers in motor research.
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20 mm

Figure 16.40: Transport of pigment granules. Pigment cells cultured from the
skin of a black tetra reorganize their pigment granules after stimulation with
adrenaline. Frames shown from a video sequence are separated by approximately
two minute intervals. The aggregation of the pigment granules in the center of
the cell makes the fish appear to change to a lighter color. (Adapted from
V. I. Rodionov and G. G. Borisy, Nature, 386:170, 1997.)
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16.2.7 Rotary Motors

Throughout the preceding section we have developed the idea of position-state
models for translational motors imagining that each energy requiring step is
coupled to the movement of a motor along a linear track. This same formalism
can easily be generalized to the second major biological class of motors, the
rotary motors, by imagining the track bent into a closed circle. As illustrated in
fig. 16.15, rotary motors also move in a series of discrete steps with each rota-
tional step is tightly coupled to an energy releasing reaction. These are typically
either the hydrolysis of ATP or the transport of an ion across a membrane down
an electrochemical gradient.

Important mechanical quantities introduced to describe translational motors
all have direct analogs in the rotational motor setting. For example, linear
speed in the translational context becomes angular velocity in rotary motors,
the force generated becomes torque. An interesting question to consider then
is: how is the angular velocity of a rotary motor related to the applied torque,
and how does it depend on the available energy (i.e. ATP concentration or
electrochemical potential)?

As shown in fig. 16.41, rotary motors are typically large, multiprotein ma-
chines with a series of similar subunits arranged in a ring. In the example illus-
trated in this figure, the transport of a single sodium ion across the membrane
is accompanied by a conformational change in the motor that is equivalent to a
single step of the moving ring (called the rotor) with respect to a complementary
immobile unit (called the stator).

The motor is driven by thermal fluctuations which result in rotational diffu-
sion of the rotor. Diffusion of the rotor is rectified, leading to directed motion,
by electrostatic interactions between the charges on the rotor, the stator, and
the Na ions. Specifically, the rotor charge is captured by the stator charge,
which is of opposite sign. The captured rotor charge can then diffuse away from
the stator charge until it finds itself in the input channel (fig. 16.41), where it is
exposed to a large concentration of Na+ ions on the periplasmic side. The rotor
charge can then capture a Na+ atom from the periplasm rendering it partially
neutral, which allows it to diffuse away from the stator charge. Once it leaves
the stator, the Na+ ion is released on the low-concentration cytoplasmic side.
The driving force leading to the rotation of the motor is thus the free energy
difference experienced by the Na+ ion as it travels from the periplasmic to the
cytoplasmic side.

This type of mechanism applies to torque generation by both the bacterial
flagellar rotor and the F0 subunit of ATP synthase. In the case of ATP syn-
thase, we have an interesting opportunity to compare torque generation by ion
transport (for F0) and torque generation by ATP hydrolysis (for F1).

• Estimate: Competition in the ATP Synthase. One of the remark-
able features of the ATP synthase is that it can rotate in either direction
depending upon the magnitude of the ion gradient across the membrane
and upon the concentrations of ATP, ADP and Pi. In this estimate, our
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Figure 16.41: Operation of a sodium ion transporter. Diagram of the F0 motor
from the bacterium Propionigenium modestum. While the F0 of most bacteria
transports hydrogen ions, this interesting example uses sodium ions instead. The
movement of a single sodium ion through the rotor requires a turn of one step to
bring the partially transported ion into registry with the charge distribution in
the stator ring. At any given moment, no direct channel between the periplasm
and the cytoplasm exists, but ions still move across the membrane. They enter
from the periplasm when the rotor is in one position and exits into the cytoplasm
when the rotor has turned by one step. This leads to rotational diffusion with
drift, of the rotor. (Adapted from C. Bustamante et al., Acc. Chem. Res.,
34:412, 2001.)
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interest is in examining the magnitude of the torque that can be applied
in each of the two directions. In particular, the F0 unit can be induced to
rotate as a result of an ion flux across the membrane, with a thirty degree
rotation resulting from each ion transported. By way of contrast, the F1

subunit rotates as a result of ATP hydrolysis with a 120 degree rotation
for each ATP hydrolyzed.

We can estimate the torque produced by the motor in both of these modes
of operation by assuming that the entire free energy change associated with
ion transport (F0) or ATP hydrolysis (F1) can be converted into useful
work. The torque is equivalent to the tilt of the free energy landscape
on which the motor diffuses, and as such serves as the driving force for
directed rotational motion, directly analogous to the way that applied
force tilts the free energy landscape for a linear translation motor For F0,
we can write

∆Gtot = ∆Gpot + ∆Gconc, (16.52)

where ∆Gpot is the free energy change associated with moving an ion
across the transmembrane electrical potential and ∆Gconc is the free en-
ergy change associated with the change in entropy corresponding to taking
the charge at a concentration cout and moving it to a region with concen-
tration cin. The contribution to the free energy resulting from moving the
ion across the transmembrane potential is given by

∆Gpot = e∆V. (16.53)

For a typical membrane potential difference of 90 mV this results in an
energy release of roughly 4 kBT. The entropic contribution to the free
energy release associated with taking ions at the concentration outside
the cell and installing them inside the cell is given by

∆Gconc = kBT ln
cout

cin
. (16.54)

If we assume perfect free energy conversion, this means that the entirety
of the free energy difference due to ion transport is available to do work
and results in a torque

τF0 ≈
4 kBT

π/6
+

kBT

π/6
ln

cout

cin
≈ 30 + 20∆pH pN nm. (16.55)

where ∆pH is the difference in pH between the inside and the outside of
the cell.

As noted above, the motor can run in reverse if the concentration of ions
is sufficiently low and the concentration of ATP is sufficiently high. When
running in reverse, the maximum torque that can be generated by F1 can
be estimated as

τF1 ≈
∆G0

2π/3
+

kBT

2π/3
ln

[ADP ][Pi]
[ATP ]

≈ 40pN nm (16.56)
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where in the last equation we made use of the typical value, 20kBT , for
the free energy released during a hydrolysis event of a single ATP molecule
under physiological conditions.
Comparing the two equations for the torque we see that by tuning ∆pH,
one can reverse the direction of the motor. The crossover point occurs
at approximately ∆pH ≈ 0.5. Healthy E. coli normally maintain ∆pH
around 0.75, meaning that normally the torque generated by F0 is stronger
and ATP is synthesized. ∆pH can vary from about 2.0 to about -0.25
depending on the pH of the external medium. When the external medium
is very alkaline (i.e. pH > 8.0), ATP synthase runs backwards.

16.3 Polymerization and Translocation as Mo-
tor Action

16.3.1 The Polymerization Ratchet

Until now, our quantitative discussion of motors has centered on translational
motors that move along cytoskeletal tracks. Interestingly, the cytoskeletal fila-
ments that serve as the scaffolding for translational motors themselves exhibit
motor action. Indeed, cytoskeletal polymerization is one of the cell’s main mech-
anisms for applying forces in particular places. An interesting model for force-
generating polymerization is the polymerization ratchet. The basic idea is that
the addition of monomers onto the end of a growing filament can result in a
pushing force on some resisting barrier, either by virtue of fluctuations in the
position of the barrier or in the position of the filament itself. For concreteness,
we can think schematically of growing actin filaments pushing against a cell
membrane at the leading edge of a crawling cell.

We begin by thinking of a cytoskeletal filament that has grown to a length
such that there is no room between it and the resistive barrier. This kind
of experiment was illustrated in fig. 10.33 (pg. 543). Once the cytoskeletal
filament has encountered the barrier it appears that there is no room for the
next monomer to come in and attach. It would seem that the polymerization
process would grind to a halt. However, if the barrier jiggles and a new monomer
sneaks in now and then when there is room for it to fit, the net result will be
an ever increasing displacement of the membrane. Similarly, the filament itself
will fluctuate and might bend away from the barrier so that a new monomer has
room to bind. Regardless of the precise mechanism the fluctuation is “frozen”
in, leading to the generation of a deforming force that acts on the membrane.
The net result is that a growing actin filament will do work against the elastic
forces that would like to keep the barrier undeformed.

Based on the ratchet picture described above and using thermodynamic
reasoning, we can estimate the maximum force that the growing filament can
exert. In the absence of a force, the free energy landscape for monomer addition
looks like the schematic shown in fig. 16.42. In the presence of a force, the
addition of a new monomer has an additional free energy cost because of the
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Figure 16.42: Free energy picture of equilibrium polymerization. The addition
of each monomer on to the growing filament leads to a decrease in the net free
energy of the system. Cells can harness the free energy decrease associated with
protein polymerization to do useful mechanical work.

work Fδ that it has to do in the presence of the barrier. This is simply the work
that the filament does against the applied force over a distance equal to the
length of the monomer. In terms of a free energy diagram, as shown in fig. 16.43
the effect of the force is to raise the free energy of the on state compared to the
off state by an amount Fδ. This change in the free energy difference between the
two states leads to an increase in the dissociation constant for the polymerization
reaction,

Kd(F ) = Kd(0) exp(Fδ/kBT ). (16.57)

As discussed in the previous chapter, the dissociation constant is equal to the
monomer concentration m at which the average filament length is not changing
in time. Therefore the maximum force that can be generated by the growth of
a filament when the monomer concentration is m is given by the relation,

m = Kd(0)eFmaxδ/kBT . (16.58)

Solving this equation for the maximum force we arrive at,

Fmax =
kBT

δ
ln

m

m∗ (16.59)

where m∗ = Kd(0) is the critical concentration in the absence of force.
Using this simple formula we can obtain estimates for the maximum force

exerted by polymerization of actin and microtubules. Inside of living cells,
the concentration of actin monomers is estimated to be ≈ 20 µM, that is m =
100m∗, and the length δ that the filament grows by addition of a single monomer
is given by

δ ≈ 5.4 nm
2 protofilaments

= 2.7nm (16.60)
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Figure 16.43: Polymerization against a force. The presence of an applied force
tilts the free energy landscape and makes the addition of the next monomer less
favorable than it would be in the absence of a force.

we get the maximum force as,

Fmax =
4 pN nm
2.7 nm

× ln 100 ≈ 7 pN. (16.61)

For microtubules, for the sake of an estimate we take excess tubulin concentra-
tion m = 100m∗ to be on the same order as the excess actin concentration, with
a length change contributed by addition of a single monomer given by

δ =
8 nm

13 protofilaments
≈ 0.6 nm. (16.62)

Hence, the critical force is given by

Fmax =
4 pN nm
0.6 nm

× ln 100 ≈ 30 pN. (16.63)

This result suggest that, all other things being equal, polymerization motors
that take smaller unit steps are able to generate larger forces. In real cells, it
is sometimes observed that individual growing or shrinking microtubules may
exert biologically significant forces, while actin filaments almost always work in
groups.

One limiting factor that is not taken into account by the previous estimate
is that the maximum force exerted by a polymerizing filament might not be
attained if the filament buckles. While the polymerization force generated by
a single filament is constant regardless of filament length, longer filaments are
more easily buckled than shorter filaments. As we discussed in chap. 10 and
derived in eqn. 10.70 (pg. 545), we can estimate the buckling force as

Fbuckle ≈
kflex

L2
(16.64)
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where the flexural rigidity of the filament is the parameter that characterizes
its resistance to bending, and it is related to its persistence length via kflex =
ξP kBT . From this formula we see that kflex has units of Energy × Length, and
therefore we must divide by Length2 to obtain a force.

Since the buckling force is inversely proportional to the length squared, it is
only very short filaments that will be able to sustain a load equal to Fmax without
buckling. The critical length is determined by setting the two forces equal. For
an actin filament with a persistence length of 15 µm, setting Fbuckle = Fmax

and using eqn. 16.64, yields

4 pN nm · 15 µm
L2

max

= 7 pN (16.65)

and Lmax ≈ 0.1 µm is the maximum length that can withstand buckling. Arrays
of growing actin filaments that need to exert a force inside of cells are usually
linked together by crosslinking proteins, forming bundles or networks where the
average length of a free filament end is much shorter than this limit, as shown
in figs. 14.2 (pg. 716) and 15.3 (pg. 756). We can make the analogous estimate
for microtubules, for which Fmax ≈ 30 pN, and which are considerably stiffer
than F-actin with a persistence length of 3 mm, to obtain Lmax ≈ 0.6 µm.
The Polymerization Ratchet Is Based on a Polymerization Reaction
That Is Maintained Out of Equilibrium.

The thermodynamic arguments put forward above give upper bounds on
the size of the force that a growing filament can exert on a load. In order to
judge the usefulness of this estimate, as well as gain quantitative intuition about
the time scales involved in filament polymerization against a load, we require
a dynamical model that can provide an estimate for the length of time that it
will take to add each monomer to a growing filament. At a molecular scale, it
is likely that thermal motion of some element in the system will be sufficient
to open up a monomer-sized space between the end of the filament and the
barrier load. The general class of kinetic models that assume thermal motion as
a rate-limiting step is commonly referred to as the thermal ratchet or Brownian
ratchet model.

A schematic of one form of the Brownian ratchet is shown in fig. 16.44. A
polymer made up of monomers of length δ is growing near a load object, such
as the cell membrane. Each time thermal fluctuations of the position of the
membrane cause the gap between the polymer and the load to be greater than
δ, a monomer can attach itself to the growing tip, thereby effectively pushing
the load forward. One of the key quantities we wish to compute is the velocity
with which the load will move.

In the absence of a force on the load object we can obtain an estimate of
its velocity by making two simplifying assumptions: i) once monomers attach
they do not fall off, and ii) monomers attach immediately upon appearance of
a gap which is larger than the monomer size δ. The time for the load to diffuse
over a distance δ can be estimated from its diffusion constant, tD = δ2

2D . Using
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Figure 16.44: Polymerization Brownian ratchet. The growing filament induces a
displacement of the obstacle which pushes back with a force f . In this particular
model, the barrier is able to move back and forth along the x axis due to thermal
fluctuations, occasionally opening up a large enough space for the insertion of
a new monomer at the growing tip.

the simplifying assumptions given above, we can estimate the velocity on the
grounds that after this time the load will have displaced permanently by an
amount δ. Therefore its average (“ideal”) velocity is, vid = δ

tD
and

vid =
2D

δ
. (16.66)

The result is that the ideal velocity of the tip must be proportional to the
diffusion constant of the load object.

This idea has been tested experimentally, by using different sizes of bacteria
or of polystyrene beads coated with bacterial proteins to generate polymerization-
driven actin comet tails such as those shown in fig. 15.3 (pg. 756). Contrary
to the predictions of this very simple model, the speed depends only weakly on
the size of the load object, and is not proportional to its diffusion coefficient.
An alternative model in which the fluctuations of the growing filament itself are
responsible for opening up monomer-sized gaps has been proposed to account
for this discrepancy, and makes more accurate predictions of how speed depends
on varying experimental conditions. A further complication of the real systems
compared to this idealized treatment is the influence of other forces on speed,
including adhesive forces connecting a subset of the growing actin filaments to
the load object. Nevertheless, regardless of details, the basic idea of ratchet-
ing thermal fluctuations of some mechanical element of the system (including
the load and the filament tips) by maintaining a non-equilibrium concentration
of monomers is a good starting point for building a quantitative model of the
polymerization motor.

We can generalize the kinetic model in a way that is applicable to any of these
particular implementations of the idea of the Brownian ratchet by calculating
the speed in terms of the probability per unit time that a monomer will be
added to the growing filament, regardless of the precise physical mechanism
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Figure 16.45: Trajectories for the load position (top, X) juxtaposed with poly-
mer length (bottom, n) for the (A) diffusion-limited and (B) reaction-limited
regimes of the simple Brownian ratchet. When the elongation reaction is
diffusion-limited, the load is frequently in a position favorable for monomer ad-
dition, but monomers collide with the filament end comparatively rarely. When
the elongation reaction is reaction-limited, the load is rarely in a position fa-
vorable for monomer addition, but monomer addition occurs every time it is
permitted.

that opens up the space. Here, we need to consider two slightly different kinetic
scenarios, illustrated in fig. 16.45. In the first regime, termed diffusion-limited,
the rate-limiting step for elongation of a filament is simply the time it takes for a
diffusing monomer to accidentally collide with the filament tip. Once a collision
has occurred, the monomer quickly becomes incorporated. In the second regime,
termed reaction-limited, the incorporation of a monomer into a filament is much
rarer than the collision frequency. In either case, the probability that a monomer
attaches to a filament in time interval ∆t can be written as the probability that
an attachment is allowed, times the probability that an attachment will occur
assuming it is allowed: ∆p(on) = p(allowed)× konm∆t. In the reaction-limited
regime, the probability that an attachment is allowed is equal to the probability
that the load position from the edge of the growing filament is greater than δ.
In the diffusion-limited regime, the time between attachments is long enough so
that the load can sample all possible positions. Therefore, the probability that
an attachment is allowed is equal to the equilibrium probability that the load
position is greater than δ, peq(x > δ). For actin and microtubule polymerization,
most experimental work indicates that their growth is likely to be diffusion-
limited rather than reaction-limited, even under substantial load forces.

Now we can write the average polymerization rate as

v = δ(konmpeq(x > δ)− koff). (16.67)

The equilibrium probability that the gap between the polymer and the load is
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greater than x is given by,

peq(x > δ) =
∫ ∞

δ

peq(x)d x (16.68)

where

peq(x) =
F

kBT
e−Fx/kBT (16.69)

is the equilibrium probability of finding the load at position x away from the
growing tip of the filament. Doing the integral in eqn. 16.68 and substitut-
ing the result into eqn. 16.67 leads to the expression of the force dependent
polymerization rate in the reaction limited regime

v = δ[konme−Fδ/kBT − koff ] . (16.70)

An implicit assumption we have made all along is that the off-rate is not affected
by the force. One experimentally testable prediction of the model is the expo-
nential fall-off of the rate on applied force with a characteristic force of kBT/δ.
For microtubules the characteristic force is approximately 7 pN, while the ex-
periments find a corresponding value of roughly 2 pN, which is reasonably good
agreement considering the extreme simplifications incorporated in the model.
Also, note that the model predicts the maximum force equal to that predicted
earlier from equilibrium considerations. At this value of the force the filament
switches from growth to shrinkage.

To make further progress, we now switch our attention to the assumption
that the reaction time is much less than the diffusion time, another straight-
forward consequence of working in the diffusion-limited regime. In this case a
movie of the growing filament would reveal rapid fluctuations of the filament
between states with length n and n− 1 with the filament in the n state most of
the time (this assumes that konm > koff) as shown in fig. 16.45. (One might also
observe shorter filament lengths as well but these would require two consecutive
events with a monomer falling off the filament, which is considerably less likely
than an off event followed by an on event.)

Eventually the movie would show the filament growing to length n + 1, but
this would happen only after the load has had time to diffuse over a distance δ.
On the diffusion time scale, the monomer would attach instantaneously, as soon
as the load is at a position to allow for the attachment of a new monomer. At
this point in time the filament length would begin to fluctuate between length
n + 1 and n. We conclude that in this diffusion limited regime the average
filament growth rate would be 1/τ1, where τ1 is the average time it takes the
diffusing load to reach the position δ; this time is also referred to as the first
passage time. Computing the first passage time is a classic problem in diffusion
theory and here we do it in the simple setting of one-dimensional diffusion.
The Polymerization Ratchet Force-Velocity Can Be Obtained By Solv-
ing a Driven Diffusion Equation
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Figure 16.46: Mean time to capture

As a warm-up exercise we compute the first passage time in the absence
of a force. We consider the diffusion equation for the steady-state probability
p(x) of finding a particle at position x within an interval of width δ as shown
in fig. 16.46. We assume that when a particle crosses the x = δ boundary it
disappears and then immediately reappears at x = 0. This condition ensures
that the probability of finding the particle anywhere in the (0, δ) interval is equal
to one. Furthermore, with this boundary condition the mean rate at which the
particle reaches the boundary at x = δ starting at x = 0 is nothing but the
steady state diffusion current j0 = −D∂p/∂x.

The steady-state diffusion equation states that

∂2p

∂x2
= 0 , (16.71)

which means that the probability is a linear function of position, i.e., p(x) =
Ax + B. To compute the coefficients A and B we make use of two conditions:
first we have the normalization condition,∫ δ

0

p(x)d x = Bδ + A
δ2

2
= 1 (16.72)

while the second condition ensures that the probability vanishes at x = δ,

p(δ) = Aδ + B = 0 ; (16.73)

this is the condition that the particle will vanish when it reaches this boundary.
From these two equations we find A = −2/δ2 and B = 2/δ. The current is
therefore

j0 = −DA =
2D

δ2
(16.74)
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while the first passage time is the inverse of this quantity, τ1 = δ2/2D. The
filament polymerization rate is then finally

v =
δ

τ1
=

2D

δ
(16.75)

.
Now we can repeat the calculation in the presence of a force acting on the

diffusing particle (in the case of the polymerization ratchet this would be the
load). In this case the current also has a contribution from the drift produced
by the applied force,

j0 = −D
∂p

∂x
− F

γ
p (16.76)

where γ is the friction coefficient that relates the force to the velocity. The
negative sign in front of the drift term is due to the fact that the force is taken
to point in the negative x direction. The friction coefficient is related to the
diffusion constant by the Einstein relation, γD = kBT . All of these ideas for
treating driven diffusion were developed in sections 13.2.4 (pg. 695) and 13.2.5
(pg. 696).

In steady state the current is constant and we can solve the differential
equation for p(x) in terms of the unknown current j0. The solution is the sum
of the general solution of the homogeneous equation and a particular solution
to the inhomogeneous equation:

p(x) = Ae
− F x

kBT︸ ︷︷ ︸
homogeneous

−j0
γ

F︸ ︷︷ ︸
inhomogeneous

(16.77)

Since once again, p(δ) = 0 and
∫ δ

0
p(x) = 1 we get two equations for the two

unknown constants, A and j0, namely,

Ae
− F δ

kBT − j0
γ

F
= 0

−A
kBT

F

(
e
− F δ

kBT − 1
)
− j0

γ

F
δ = 1.

These two equations yield a steady-state current of the form

j0 =
1

kBTγ
F 2

(
e

F δ
kBT − 1

)
− γδ

F

(16.78)

which like in the no-force case leads to an expression for the polymerization rate

v = δj0 =
D

δ

(Fδ/kBT )2

eFδ/kBT − 1− Fδ/kBT
. (16.79)

It is comforting to find that in the limit Fδ � kBT this expression reduces to
the one obtained in the zero force limit. This makes intuitive sense since in this
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case the thermal energy is so large that the diffusing “particle” does not “know”
about the potential.

In the other limiting case, when Fδ � kBT , the formula for the polymer-
ization rate reduces to v = F 2Dδ/(kBT )2 exp(−Fδ/kBT ). This corresponds
to a first passage time for the “particle” that is of the form, τ1 = δ/v =
(kBT/F )2/D exp(Fδ/kBT ). The prefactor is the time to diffuse a distance
kBT/F , while the exponential Arrhenius factor accounts for the probability
that the particle finds itself with energy Fδ while in thermal equilibrium at
temperature T .

16.3.2 Force Generation by Growth

Polymerization Forces Can Be Measured Directly

Several techniques have been developed enabling direct measurement of
forces generated by polymerizing filaments. The first direct measurement of
force generated by polymerization of a single microtubule used the elastic beam
properties of the microtubule itself as a transduction device to measure force.
We have already discussed this experiment in fig. 10.33 (pg. 543), but there fo-
cused on calculation of the force needed to bend a microtubule. In actuality, the
purpose of this experiment was not to measure the bending force, which was
known through other means, but rather to measure the polymerization force
generated at the interface between the growing microtubule and the wall and
using the bending only as a readout. This classic experiment demonstrated that
an individual microtubule can generate several piconewtons of actual pushing
force while growing in this constrained geometry, as shown in fig. 16.47. This
magnitude is similar to the force generated by a single kinesin or dynein motor
as discussed earlier in this chapter.

Some complications arise from using the growing microtubule itself as the
device to measure force generation. In particular, if the stiffness of the mi-
crotubule changes as it grows, a proposition for which there is experimental
support, this may lead to an incorrect deduction of the force. It is therefore
useful to have an independent way of measuring the polymerization force. This
has been achieved using an optical trap as shown in fig. 16.48. As we have seen,
optical traps are well suited for measuring forces in the piconewton range, with
step sizes of several nanometers. These optical-trap based measurements are
in excellent agreement with the measurements based on microtubule bending.
This demonstrates that growth-dependent changes in microtubule flexibility are
insufficient to significantly alter the interpretation of these measurements.

In vitro it is possible to measure forces generated by single motors, whether
translational or polymerization motors. However, in cells it is rare for any kind
of motor to operate in isolation. Most biological force generation involves arrays
of cooperating force generating elements. Optical traps are not strong enough
to measure the forces provided by a network of actin filaments. For this kind
of measurement, the cantilever-based microscopies described in chap. 10 permit
the investigation of much larger forces. As we showed in chap. 10, the stiffness
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Figure 16.47: Average polymerization velocity for growing microtubules pushing
up against a rigid barrier, as a function of applied force. In this experiment, the
force was applied by the elastic bending of the growing microtubule itself. As for
other molecular motors, the speed of the polymerization motor decreases as the
force increases. (Adapted from M. Dogterom and B. Yurke, Science, 278:856,
1997.)
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Figure 16.48: Optical trap measurement of the force of microtubule polymer-
ization. (A) A bundle of microtubules is attached to a bead which is then held
in an optical trap. The end of the trapped bundle is brought into close proxim-
ity of a rigid, nanofabricated wall. Addition of soluble tubulin dimers permits
growth at the interface between the bundle and the wall, pushing the bead
backward in the optical trap. (B) An individual trajectory measured for a sin-
gle experiment reveals phases of microtubule growth followed by force-induced
catastrophe. (Adapted from J. W. Kerssemakers et al., Nature, 442:709, 2006.)
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Figure 16.49: AFM measurement of polymerization forces. (A) Schematic of the
experiment. A cantilever coated with a protein that promotes actin nucleation
is brought close to a glass surface. When a solution is added containing actin
monomers and crosslinking proteins, network growth is initiated on the can-
tilever. Continued network growth deflects the cantilever upwards. (B) Images
of the cantilever photographed through the glass slide showing the accumula-
tion of fluorescently labeled actin as the experiment progresses. (C) The top
graph shows the total length of the actin network as a function of time. As
the gel grows, the cantilever is deflected, and the amount of applied force in-
creases. The bottom graph on the right shows the same data presented as a
force-velocity curve for this experiment. The flat plateau on the left part of the
graph indicates that network growth velocity remains constant even as force
increases. (Adapted from S. H. Parekh et al., Nat. Cell Biol., 7:1219, 2005.)

of a cantilever is a simple function of its thickness so the force range can be
tuned. Fig. 16.49 shows a cantilever-based experiment where growth of an actin
network was triggered to occur on the cantilever surface held in close proximity
to a glass surface. Growth of the network deflecting the cantilever can be used
to measure both force and growth velocity. This experiment demonstrated that
arrays of actin filaments do not act together to generate force in a simple additive
manner. Surprisingly, network growth occurs at a nearly constant rate over a
large range of forces in contrast to all the individual molecular motors discussed
so far which exhibit a monotonically decreasing force-velocity curve.
Polymerization Forces Are Used to Center Cellular Structures

The fact that cytoskeletal filament growth can produce pushing forces can
be used by a cell to do much more than simply move. In particular, this phe-
nomenon is exploited by cells to set up a universal coordinate system whereby
they are able to locate their organelles at precise geographical locations in the
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enormous cellular volume. Specifically, if microtubules within a cell are labeled
fluorescently, it can be seen that they typically emanate in a star-like array from
a single point known as the centrosome. The centrosome is a tiny object, less
than 0.5 µm across, that nonetheless can position itself near the middle of a
cell with typical sizes of tens of microns. How does the centrosome find the cell
center? One possible mechanism can be demonstrated by a clever experiment
illustrated in fig. 16.50 that involves isolating a centrosome and dropping it
into a nanofabricated hole with dimensions comparable to those of a cell. The
centrosome on its own diffuses around aimlessly. However, if tubulin is added
so that microtubules can grow from the centrosome, the centrosome quickly
(within minutes) zooms in to the geometric center of the hole, regardless of the
hole shape. If the centrosome is grabbed with a laser trap and displaced from
its central location, it will gently but insistently return to the center. The mech-
anism relies on the pushing forces at the tips of all of the microtubules when
they run into the walls. Only when the centrosome is at the geometrical center
of the enclosure do all of the forces cancel out. In living cells of the fission yeast
Schizosaccharomyces pombe, this mechanism has been directly observed center-
ing the nucleus halfway down this rod-shaped cell by virtue of microtubules
pushing against the two opposite ends.

16.3.3 The Translocation Ratchet

Another fascinating kind of motor action introduced at the beginning of this
chapter is associated with translocation. We argued that because of the divi-
sion of cells into different compartments, there are a host of molecular machines
whose job is to take polymers from one side of a membrane to the other (mech-
anisms like this might also be relevant for macromolecular assemblies like the
proteasome). A schematic of the translocation process is shown in fig. 16.51.
The polymer of interest is moving from left to right in the presence of a resis-
tive force. By virtue of the action of binding proteins, the diffusive motion is
ratcheted. The goal of this subsection is to examine the relation between the
force and the velocity.
Protein Binding Can Speed Up Translocation Through a Ratcheting
Mechanism

A rough quantitative feel for the speed up due to the presence of binding
proteins and their associated ratchet action can be obtained by comparing the
diffusion time in the absence and presence of the binding proteins. If we consider
a polymer of length L = nd, then the time scale for diffusion motion over the
entire length is

tdiffusion ≈
n2d2

D
, (16.80)

where d is the mean spacing between binding sites. The diffusive motion of
a biopolymer traversing such a membrane will be sped up as a result of the
binding of molecules to the polymer at a progression of sites once they have
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Figure 16.50: Self-centered centrosomes. (A) Diagrams showing time sequence
of a self-centering experiment. Initially, a centrosome is added to a microfab-
ricated square well along with soluble, tubulin subunits. As the centrosome
nucleates growth of microtubules, individual microtubules grow and shrink in
a process of dynamic instability. When a microtubule tip contacts the wall of
the chamber, it can continue to grow resulting in a pushing force on the cen-
trosome. Eventually, as microtubules grow longer and push against the wall in
all directions, the centrosome finds a stable position of the geometrical center
of the well. (B) Frames from a video sequence using differential interference
contrast (DIC) microscopy show this process over a period of several minutes.
(Adapted from T. E. Holy et al., Proc. Nat. Acad. Sci., 94:6228, 1997.)
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Figure 16.51: Translocation ratchet. Motion of a polymer across a membrane
is ratcheted by the presence of binding proteins which prevent the back motion
of the polymer.

crossed the membrane. In this case, the translocation time takes the form

ttranslocate ≈ n
d2

D
. (16.81)

This expression can be argued for simply by noting that d2/D is the time for a
single binding site to diffuse over a distance d. Assuming that this exposes the
binding site to a binding protein, which then binds and prevents any backward
motion of the polymer past this position, the total time for translocation is the
time for all n binding sites to complete this process. That is, the speed up
results from the fact that it is faster to make n diffusive trajectories of overall
length d than it is to make a single diffusive trajectory to diffuse an overall
distance nd.

In the case of a bacteriophage injecting its DNA into a bacterial cell the
binding of RNA polymerases can serve to produce a ratchet effect (at the same
time, of course, the RNA polymerase also performs the critical service of begin-
ning to express the genes of the bacteriophage). For DNA with a characteristic
length of 10 µm, typical of a genome of a bacterial virus, and with polymerase
binding sites located roughly one per micron, the speed up due to polymerase
binding will be n = L/d = 10. This will in fact be an upper bound given the fact
that all binding is reversible and once in a while an RNA polymerase will detach
from the DNA spoiling the ratcheting action. Because RNA polymerase is also
a translational motor, it can probably also contribute to injection of the DNA
genome by active energy-dependent movement. As we have previously discussed
in chap. 10, the differential pressure between the bacteriophage capsid and the
host cell cytoplasm can also contribute to the injection of DNA. However, other
biological systems including the import of newly translated proteins into to
the lumen of the endoplasmic reticulum and the delivery of cytoplasmically-
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expressed proteins into the various compartments of the mitochondria appear to
use mechanisms that can be schematized as translocation ratchets even though
the relevant binding proteins are not themselves translational motors and there
is no significant pressure differential.

To make these estimates more precise, we model the polymer as a rod dif-
fusing through an opening (channel) in the membrane, the translocation pore.
The polymer contains binding sites for proteins that cannot pass through the
translocation pore, which are a distance d apart. We make a further simplifying
assumption that the proteins are only present on one side of the membrane in
the cellular compartment that the polymer in question is translocating to. We
also assume that the binding of proteins is irreversible; the more realistic model
would take into account the on and off rates for protein binding. The transloca-
tion process then proceeds in the following manner: The translocating polymer,
buffeted by the solution, undergoes random diffusion through the translocation
pore. By pure chance a protein binding site will find itself on the side where
the binding proteins are present. If a protein then binds, the polymer will be
prevented from diffusing back and it will have translocated by distance d. We
can use this basic picture to calculate the average flux of protein binding sites
through the translocation pore.

To address the question of translocation velocity we focus on the protein
binding site which has last emerged from the pore. To describe the stochastic
motion of this binding site we introduce the quantity p(x, t)dx, which is the
probability of finding the last binding site to have crossed the pore at position
(x, x+dx) at time t. The translocation problem formulated in this way now maps
to the Smoluchowski equation for the variable p(x, t), the probability density.
Namely, the flux of protein binding sites is given by

Jx = − Df

kBT
p︸ ︷︷ ︸

Drift

−D
∂p

∂x︸ ︷︷ ︸
Diffusion

(16.82)

where we have included a drift term to account for the possible presence of
a force acting on the polymer during translocation; for f > 0 this is a force
that opposes translocation. In the example of DNA translocation during viral
infection a negative force is supplied during translocation by the host cells RNA
polymerases, which help the translocation process along, speeding up the cells
demise.
The Translocation Time Can Be Estimated By Solving a Driven Dif-
fusion Equation

The differential equation that prescribes the evolution of the binding site
probability is once again the Smoluchowski equation,

∂p

∂t
+

∂Jx

∂x
= 0, (16.83)

which in this case is the statement of the conservation of the number of bind-
ing sites, and is, upon substituting eqn. 16.82, the diffusion equation for p(x, t).
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“Well this is strange”, a careful reader might complain, “we’ve arrived at the dif-
fusion equation once again, so where is all the information about proteins, their
binding sites, etc.”. The answer is that this is what the boundary conditions
are for! The boundary condition appropriate to our problem is

p(d, t) = 0 (16.84)

which states that the probability of the protein binding site being at position
x = d is identically zero. This follows from the fact that we are following the
motion of the last binding site to have emerged from the pore. As soon as
this site finds itself at position d a new binding site emerges from the pore and
binds a protein, and is now the new “last” site to emerge. The old “last” site
effectively disappears at this point.

To calculate the steady-state current (J = const) we solve Jx = J with the
boundary condition eqn. 16.84, essentially exactly as we did in the previous
section for the polymerization motor. The solution to the homogeneous part of
the resulting differential equation is

phom(x) = Ce
− fx

kBT (16.85)

while
ppart(x) = −J

kBT

Df
(16.86)

is a particular solution; the sum of the two is the general solution with C a
constant that can be determined from the boundary condition. After a bit of
algebra we arrive at

p(x) = J
kBT

Df

(
e

f(d−x)
kbT −1

)
(16.87)

which gives us the probability of finding the last protein binding site to have
crossed the pore a distance x away from the pore, in the steady state (thus the
lack of any time dependence).

At this point we should remind ourselves of the original goal we set out
to accomplish. We are really interested in the translocation velocity for the
polymer in the steady state vtr, which is simply related to the current J : vtr =
Jd. In order to calculate J we make use of the fact that the probability of
finding the last protein site anywhere on the interval (0, d) is one, i.e.,∫ d

0

p(x)dx = J
d2

D

(
kBT

fd

)[
e

fd
kBT − fd

kBT
− 1
]

= 1. (16.88)

Finally, solving the above equation for the steady state current leads to a formula
for the translocation velocity as a function of the force acting on the polymer

vtr =
D

d

w2

ew − w − 1
(16.89)

where w = fd
kBT is the dimensionless force. Note that in the small load force

limit we arrive at a simple expression, vtr = 2D/d which follows from a simple
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argument: the time for the protein binding site to diffuse over a distance d
unassisted by an applied force is d2/2D; once this occurs a new protein is bound
and the polymer has translocated by distance d. Therefore, the translocation
velocity is given by d/(d2/2D) = 2D/d, same as above.

In a more realistic model of translocation, the irreversibility of the protein
binding should be relaxed. Instead one has on and off rates for the binding
of these proteins. This will enter the model described above, again, through
the boundary condition for p(x) in the equation for the steady state current.
The main qualitative difference that this imparts on the predicted translocation
velocity dependence on the force is the emergence of a finite stall force at which
vtr goes to zero. In the model worked out above, eqn. 16.89 leads to an infinite
stall force, which is an unphysical feature.

16.4 Summary and Conclusions

Directed forces in biological systems are powered by molecular motors devoted
to the conversion of chemical energy into mechanical energy. Although their
detailed mechanisms and biological functions are impressively diverse, we have
shown in this chapter that many aspects of motor function can be fruitfully
considered by breaking motor activity down into a series of small, discrete steps.
Transitions between steps can be considered using either discrete or continuous
formalisms that acknowledge differences in energy for different internal motor
states and also the influence of diffusive and stochastic events. Many mechanical
properties of motors including speed, force or torque, power and variability can
be thus considered in a unifying theoretical framework.

16.5 Problems

1. Randomness in the one-state model An alternative definition for the
randomness to that given in the chapter is

r = lim
t→∞

〈x(t)2〉 − 〈x(t)〉2

a〈x(t)〉
. (16.90)

(a) Using the definition of randomness given above and the probability distri-
bution for the one-state motor in the continuum model of eqn. 16.16, work out
an explicit expression for the randomness.
(b) Eqn. 16.24 provides an expression for the randomness in terms of the force-
dependent rate constants. Using the model in which all of the force dependence
is in the forward rate, obtain an expression for the randomness and make a plot
of its force dependence.

2. Stepping of myosin V Single molecule experiments have been performed
on myosin V where a fluorescent marker was placed at different locations on the
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Figure 16.52: Single molecule measurements of steps taken by mysoin V along
actin filaments. The histogram in the inset is of all the measured step sizes,
which are measured with 1.5 nm precision. (Adapted from A. Yildiz et al.,
Science, 300:2061, 2003.)

light-chain domain (one of the two ”legs of the motor) and individual steps were
recorded. It was found that the average step size is about 37 nm; see fig. 16.52.
(a) If the dye is placed on the light-chain domain a distance x from the mid-point
between the two heads of the motor (the ”feet that bind to the actin filament)
and along the direction of motion of myosin V, what step sizes do you expect
to observe. What value of x explains the data shown in fig. 16.52?
(b) Assume that the stepping rate is k. This is the probability per unit time that
the motor will make a step. Calculate the expected waiting time distribution
between two steps observed in experiments, if the fluorescent marker is placed
at position x found in part (a). What is the expected distribution, assuming a
hand-over-hand stepping mechanism, if the marker is placed very close to one
of the heads (ie., x ≈ 37 nm)? Use your calculated distributions to rationalize
and fit the data from the Yildiz et al. paper provided on the book web site.
Does your analysis support the hand-over-hand mechanism? What value of k
do you obtain?

3. Kinesin as an ATP hydrolyzing enzyme
As described in the chapter, careful measurements have been performed which
examine the dependence of motor velocity on ATP concentration. Under certain
conditions the hydrolysis reaction performed by a molecular motor can be de-
scribed using the Michaelis-Menten model introduced in section 15.2.7 (pg. 783).
In the particular case of kinesin its stepping is strongly coupled to its ATPase
activity, which translates into relatively constant step sizes. Finally, its high
processivity allows for a clear definition of a speed since it gets to do many
steps before falling off from the microtubule.
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Figure 16.53: Michaelis-Menten kinetics. Speed of a kinesin motor as a function
of ATP concentration and fit of the data to a Michaelis-Menten model. (Adapted
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Relate the reaction speed (the rate of ATP hydrolysis) to the maximum stepping
speed of kinesin and determine its dependence on ATP concentration. Work out
what change in substrate concentration is needed to increase the reaction rate
from 0.1vmax to 0.9vmax. Finally, fit your model to the data by Schnitzer and
Block shown in fig. 16.53.
Relevant data for this problem is provided on the book web site.

4. Kinetics of two-state motors In the chapter, in order to obtain the
velocity of a two-state motor, we made use of a trick to circumvent solving the
master equation directly. Here we take upon this task and in the process also
derive an expression for the randomness.
(a) Consider a trial solution of the system of equations for p0(n, t) and p1(n, t),
given by eqns. 16.33 and 16.34, which is of the form(

p0(n, t)
p1(n, t)

)
= eı(Kn−ωt)

(
A
B

)
. (16.91)

Find a relation between K and w that guarantees the existence of a solution of
this form. This is the so-called dispersion relation.
(b) By substituting the trial solution exp(ı(Kx−ωt)) into the differential equa-
tion for diffusion with drift (eqn. 13.54), show that the dispersion relation in
this case is

ω = vK − ıDK2.

(c) We now demonstrate that in the limit K � 1 the dispersion relation for
the two-state motor is the same as that for diffusion with drift. To do this
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Taylor expand ω(K) in K and solve the equation for ω obtained in part (a)
order by order in K, which amounts to computing the coefficients in the Taylor
expansion. Compare your result to the dispersion relation for dispersion with
drift and read off the diffusion coefficient for the motor and its speed. Check
that the formula for the speed matches the one obtained in the chapter.

5. Myosin and Muscles: Some Estimates In the chapter we described
(very briefly) the organization of muscles. In this problem, we will examine this
in more detail.
a) Give a “multiscale” description of muscles. That is, describe the various
levels in the structural hierarchy of muscles starting with the entire muscle
itself (at the largest scales) and ending with the individual myosin molecules
(at the smallest scales). Make sure you discuss each structural feature in some
detail, making sure to describe the relevant length scales.
b) Make an estimate of the cross-sectional area of a muscle and work your
way through to the maximum force available during contraction of the muscle
by figuring out the force available per molecule (again, think about a cross
section). You will probably have to refer to some of the single molecule work
on myosin to really carry out a correct estimate (see Howard, pg. 267, for
example). In particular, once you have your estimate of the number of myosins
per cross section and the force available per myosin, you will be able to make
a preliminary estimate (although not all myosins are attached at all times and
you may want to consider that also).

6. Polymerization ratchet estimates.
In the chapter we analyzed the polymerization ratchet in the two limiting

cases of diffusion limited and reaction limited polymerization. By comparing
the time for a load, a polystyrene sphere 1 µm in diameter, to diffuse a distance
given by the actin monomer size, and the average time for an actin monomer to
be added to the growing end of the filament, find the condition for the free actin
monomer concentration that is necessary for the polymerization in the presence
of the load to be reaction limited. Compare this concentration with the critical
concentration for actin filament growth.

16.6 Further Reading

S. Vogel, Prime Mover - A Natural History of Muscle, W. W. Norton
and Company, New York: New York, 2001. Like all of Vogel’s books, this one
makes for fascinating reading and is pertinent to part of the story developed in
this chapter.

J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer
Associates, Inc., Sunderland: Massachusetts, 2001. Howard’s book is the first
source that we go to when trying to learn more about motors.
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T. Duke, “Modelling Motor Proteins” in Physics of Bio-molecules and
Cells, edited by H. Flyvbjerg, F. Jülicher, P. Ormos and F. David, EDP Sci-
ences, Springer-Verlag, Les Ulis: France, 2002. An instructive discussion of
motor proteins.

P. Nelson, Biological Physics: Energy, Information, Life, W. H. Freeman
and Company, New York: New York, 2004. Very interesting discussion of motor
proteins.

M. E. Fisher and A. B. Kolomeisky, “The force exerted by a molecular motor”,
Proc. Nat. Acad. Sci., 96, 6597 (1999).

M. E. Fisher and A. B. Kolomeisky, “Simple mechanochemistry describes the
dynamics of kinesin molecules”, Proc. Nat. Acad. Sci., 98, 7748 (2001). This
interesting paper examines how simple models like those described in the chap-
ter can respond to single-molecule data on motor dynamics.

N. Thomas, Y. Imafuku and K. Tawada, “ Molecular motors: thermodynamics
and the random walk”, Proc. Roy. Soc. London B268, 2113 (2001).

L. Mahadevan and P. Matsudaira, “Motility powered by supramolecular springs
and ratchets”, Science, 288, 95 (2000). This interesting review summarizes sev-
eral exotic kinds of force generation that we do not address.

F. Jülicher, A. Ajdari and J. Prost, “Modeling molecular motors”, Rev. Mod.
Phys. 69, 1269 (1997). A comprehensive review with many useful and general
insights into motor function.

S. M. Simon, C. S. Peskin and G. F. Oster, “What drives the translocation of
proteins?” Proc. Nat. Acad. Sci.. 89, 3770 (1992). An important and thought
provoking paper on the translocation ratchet.

J. A. Theriot, “The Polymerization Motor”, Traffic, 1, 19 (2000). This review
summarizes the theoretical basis for force generation by filament assembly.

C. S. Peskin, G. M. Odell and G. F. Oster, “Cellular motions and thermal fluctu-
ations: the Brownian ratchet”, Biophys J., 65, 316 (1993). This beautiful paper
describes the physics of motors like those described in the tail end of our chapter.

R. Zandi, D. Reguera, J. Rudnick and W. M. Gelbart, “What drives the translo-
cation of stiff chains?” Proc. Nat. Acad. Sci., 100, 8649 (2003). More recent
insights into the nature of translocation ratchets.
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