Chapter 14

Life in Crowded and
Disordered Environments

“Nobody goes there anymore. It’s too crowded.” -Yogi Berra

Chapter Overview: In Which We Reexamine the Picture of Dilute
Solutions and Account for Cellular Crowding

The cellular interior is so crowded that the distance between neighboring
proteins is comparable to protein size itself. Similarly, the cell membrane is
richly inhabited with large numbers of proteins of different types in a lipid
background that is highly varied. This means that the material environment of
cells is far different from the conditions found in most biochemical experiments
and featured in many of the models described so far. In particular, we have
ignored the effects of this crowding by exploiting simple ideas about binding
which exploit the “dilute-solution” limit. Similarly, our treatment of diffusive
kinetics has been built around a random-walk picture in which molecules are
free to wander unencumbered by interactions with neighboring walkers. This
chapter examines how crowding alters both equilibria and kinetics and examines
some simple toy models of these effects.

14.1 Crowding, Linkage and Entanglement

Much of the substance of our quantitative story of cells has thus far centered
on different ways of viewing binding and diffusion problems. Binding and diffu-
sion are central to the biochemical reactions that are the engine of cellular life.
However, many of the assumptions which are hidden behind our use of these
concepts seem to be at odds with the way cells really work. Two of the key as-
sumptions that have been behind the scenes in much of what we have done are:
i) the assumption of ideality in which it is supposed that the molecules of inter-
est are sufficiently dilute that they do not interact either through direct contact
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or even through longer range potentials, and ii) the assumption of homogeneity
which posits that the environment at one place is just like it is somewhere else.
The present chapter examines how to relax these two assumptions and to ask
what new insights into biological structure and function then emerge.

Cellular life is colored by various broad classes of phenomena which are at
odds with the assumptions of ideality and homogeneity. One of the simplest
facts of cellular life that contradicts the ideality assumptions favored so far in
the book is the intense crowding of the cellular interior. A mean spacing of
less than 10 nm between proteins is a conservative estimate of the extent of
crowding, a fact that we will show has implications both for equilibria as well
as kinetics. This mean spacing should be contrasted with the roughly 100 nm
spacing between molecules that would be found in the “high” concentration of
an n vitro experiment taking place at millimolar concentrations.

Examination of cells using either light microscopy or an electron microscope
reveals a wide variety of organized structures which demonstrate that the ho-
mogeneity assumptions we have invoked so far are often inappropriate. What
is revealed is a heterogeneous environment characterized by linked polymer net-
works such as the actin network that crisscrosses the leading edge of motile cells
or the peptidoglycan network that confers bacterial shape. In addition, the pres-
ence of organelles such as are found in eukaryotes reveal even more subtle and
intriguing features such as different lipid compositions for adjacent organelles
such as the endoplasmic reticulum and the Golgi apparatus.

This chapter probably raises more questions than it answers, but it is built
around two broad thrusts: a) how should we amend our treatment of binding
and interaction to account for crowding effects on biochemical equilibria, and b)
how are the diffusive dynamics seen in cells different than that found in dilute
solutions?

14.1.1 The Cell is Crowded

The ability to experimentally perform a quantitative census of cells as was de-
scribed in chap. 2 has transformed our understanding of living matter. Experi-
ments like those shown in figs. 2.3 (pg. 63) and 2.10 (pg. 77) make it possible
to count up the number of copies of many of the different proteins that make
cells function. In addition, such experiments have served as the inspiration for
a new generation of iconic illustrations such as fig. 2.2 (pg. 62) whose aim is
“to help imagine biological molecules in their proper context: packed into liv-
ing cells.” (Goodsell, 1998) In biochemical reactions in the laboratory, much
care is taken to insure that features such as the concentration and the charge
state (as reflected in the pH and the ionic strength) mimic those of living cells.
On the other hand, many of these experiments ignore the need to “correct for
extract dilution with molecular crowding”, a dictum elevated to the status of a
biochemical commandment by Arthur Kornberg (Kornberg, 2000).

To get a sense of the crowded nature of the cellular interior, we return to
our estimates of section 2.1.2 (pg. 59), where we took stock of the census of a
bacterium. Hidden within those calculations is a simple way to view the extent
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of crowding within the cellular interior. The simplest estimate is to imagine
a bacterium as a cube with edge length of 1000 nm (i.e. 1 um). As shown in
fig. 2.2, we estimated that there are roughly several million proteins within an F.
coli cell. For simplicity, imagine that there are 108 such proteins in the cytoplasm
of our bacterium. This means that in our hypothetical cubic bacterium we can
line them up 100 on a side in all three directions. This means that the mean
center to center spacing is 10 nm. To further simplify our estimate, now imagine
that our proteins are all spheres with a radius of 2 nm. What this means is
that the “solution” between proteins is slightly more than 5 nm thick. The
picture this estimate paints of the cellular interior is one in which the diluteness
and homogeneity of ideal solution theory is drastically overthrown. However,
crowding is more diverse and subtle than the mere fact that there are lots of
proteins squashed together. One way in which this crowding is more subtle is
in the form of the many networks of filamentous molecules that crisscross cells,
a topic we explore presently.

14.1.2 Macromolecular Networks: The Cytoskeleton and
Beyond

As will be shown below, crowding of spheres is one instructive way to understand
excluded volume effects and the depletion forces they engender. However, these
ideas fall short as we try to more closely approximate structures and conditions
within living organisms. This is because most of the components responsible for
structural organization and mechanical properties of living cells and organisms
are better approximated by elastic beams rather than spheres. In chap. 10, we
considered the properties of individual filaments but now in our attempt to effect
a more realistic treatment of living conditions we must consider what happens
when large numbers of filaments are densely crowded together. This happens
not only within cells, but also outside of cells in extracellular matrix. Indeed,
the implausibly tall size of animals and green plants can only be maintained
against gravity because of the remarkable properties of filamentous structures
of the extracellular matrix.

Aligned filament structures are commonly seen in organisms. Some examples
are shown in fig. 14.1. We have already seen how parallel bundles of actin
filaments and microtubules are used in building cell surface projections that
resist buckling (see chap. 10) such as the microvilli seen in fig. 14.1(A). Bundles
of filaments are also found within cells contributing to intracellular traffic. A
dramatic example of this is the aligned bundles of microtubules and intermediate
filaments in the axon of a neuron as shown in fig. 14.1(B). Aligned filaments of
extracellular matrix shown in fig. 14.1(C) give our tendons and ligaments their
remarkable resistance against shearing. The alignment of collagen in tendons
can be easily seen even at the level of light microscopy. Similar alignment of
cellulose fibers in the plant extracellular matrix allows, as shown in fig. 14.1(D),
trees to grow against gravity to be up to several hundred meters tall.

Although formation of aligned filament bundles can greatly enhance the
strength and mechanical properties beyond that of individual filaments, a short-
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Figure 14.1: Gallery of filamentous network architectures found in cells and
extracellular matrix. (A) The upper edge of an intestinal epithelial cell reveals
tightly packed bundles of actin in the microvilli and a less organized but still
dense actin meshwork just below the membrane. (B) Within the axon of a
nerve aligned and tightly packed bundles of neurofilaments and microtubules
allow the axon to grow very long and serve as tracks for transporting organelles
such as mitochondria. (C) In animal ligaments such as this one from a rat,
aligned collagen bundles resist shear stresses. (D) The cell wall of plants is
made of aligned bundles of cellulose for organisms ranging from this tiny weed
Arabidopsis to the mighty Redwood. (E) At the leading edge of a moving cell,
actin filaments in webs and bundles grow to push the membrane forward. (F)
Animal tissues made of epithelial cells usually include a basement membrane
lining underneath the cells to improve the mechanical strength of the tissue.
The basement membrane is not a phospholipid membrane but rather a felt-
like mat of collagen, proteoglycans and other filamentous molecules. (G) Cells
such as the fibroblast shown here navigate through densely packed extracellular
matrix. In this thin section, collagen fibrils have been sliced in several different
orientations revealing their regular packing. (H) The cell wall of gram-positive
bacteria is constructed of filamentous strands of sugars crosslinked by unusual
peptides. This atomic model shows one possible orientation of the filaments.
(A, F, courtesy of John Heuser; B, adapted from N. Hirokawa, J. Cell Biol.,
94:129, 1982; C, adapted from P. P. Provenzano et al., J. Orthop. Res., 20:975,
2002; D, adapted from D. H. Burk and Z. H. Ye, Plant Cell, 14:2145, 2002; E,
adapted from T. M. Svitkina et al., J. Cell Biol., 160:409, 2003; G, adapted
from P. C. Cross and K. L. Mercer, Cell and Tissue Ultrastructure, New York:
W. H. Freeman and Company, 1993; H, adapted from S. O. Meroueh et al.,
Proc. Nat. Acad. Sci., 103:4404, 2006.)
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coming of this organizational motif is that it is extremely anisotropic. In many
cases cells must be able to resist mechanical insults coming from all directions,
not just those conveniently aligned with the bundle axis. To build mechanically
strong three-dimensional structures, cells often crosslink their filaments into
networks where the angle of intersection between neighboring filaments may be
quite large. Again, network organizations are found throughout nature made of
many types of filaments. In fig. 14.1(E), we see the branched network of actin
filaments at the leading edge of a crawling cell. Extracellular connective tissue
such as the basement membrane shown in fig. 14.1(F) and the collagen rich
tissue shown in fig. 14.1(G) can also be arranged to resist shear and stretching
forces at multiple orientations. The rigid cell walls of bacterial cells also follow
this structural theme where long, fibrils made of chains of sugars are crosslinked
by small peptides creating a three-dimensional structure that resists external
stresses. An example is shown in fig. 14.1(H).

Cells not only allow filament bundling and superstructural organization to
happen but encourage it with crosslinking proteins that tie filaments together.
Spontaneous alignment alone will give a mixed orientation of polar filaments,
but in many of the examples seen in cells the filaments are all pointing in the
same direction. This cannot arise from entropy alone, but rather emerges from
local nucleating sites to make sure everything grows in the same direction or
exploitation of motor proteins to sort out filaments based on their orientations.
This will be further discussed in chap. 16. A higher resolution image of fila-
mentous organization at the leading edge of a motile cell is shown in fig. 14.2.
One of the intriguing features of this organization is that it varies as a function
of distance from the leading edge itself. In chap. 15, we will explore how the
time-dependent growth of actin filaments can lead to this organization.

14.1.3 Crowding on Membranes

In addition to the important role of crowding in the three-dimensional setting
of the cellular interior, crowding is also a fact of life in the cell membrane.
The existence of such crowding in cell membranes was already illustrated in
fig. 11.10 (pg. 573) which illustrates how membrane proteins in mitochondria
can be manipulated by the application of an electric field. The result of the
application of a field is to segregate the membrane proteins to one side of the
membrane as shown in the electron micrograph of freeze-fractured membranes.
This image and others demonstrate the large fraction of membrane devoted
to membrane proteins. Indeed, in the case of the mitochondria, more than 50
percent of the membrane mass is donated by proteins. Interesting measurements
of the relative mass of phospholipids and membrane proteins are reported in
Mitra et al. (2004).

Just as simple estimates on protein concentrations in the cytoplasm reveal
a mean spacing comparable to protein size, similar estimates can be carried out
for the cell membrane as well. To see this, we recall that the membrane area
for a bacterium like E. coli is roughly 6 pum? and that both the inner and outer
membranes are home to roughly 500,000 proteins. This tells us that the area
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Figure 14.2: Organization of actin filaments at the leading edge of a crawling
cell. This fish skin keratocyte was moving upward at the time that it was
fixed. Its membrane was stripped off and the filamentous structures imaged after
being coated with a very thin layer of platinum. The large white blob towards
the bottom of the cell shows the location of the nucleus and the membranous
organelles. The area within the white box is blown up below. Essentially all
of the filaments are actin. Two regions are shown at still higher magnification
on the right. At the top, near the front edge of the cell, the actin filaments
are short and frequently branched. Further back, individual actin filaments are
longer and overlaid at nearly random angles. (Adapted from T. M. Svitkina et
al., J. Cell Biol., 139:397, 1997.)
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per protein is roughly 10 nm?, or that the typical distance between two proteins
is of order 3 nm. The cell membrane is tightly packed indeed.

14.1.4 Consequences of Crowding

So far, we have examined the structural features of the crowded environment of
cells. We have seen that this crowded structure which serves as the backdrop
for the bustling biochemical metropolis of the cell is quite different from the
dilute and homogeneous environments of solution biochemistry. What are the
consequences of this crowding for cells? We explore two broad classes of conse-
quence arising from this crowding, namely, how equilibrium binding is modified
by crowding and how diffusive processes are altered as a result of the tight
packing of cells.

Crowding Alters Biochemical Equilibria

The first broad category of effects that can be blamed on crowding are the
modifications that take place in equilibria. For example, crowding can alter
the equilibrium state of a system relative to the dilute limit of solution bio-
chemistry. In chap. 6, we illustrated how statistical mechanics can be used to
compute binding curves which tell us the occupancy of a receptor, for exam-
ple, as a function of the concentration of ligands. However, such results are
modified in various ways by the presence of “passive” crowding agents. What
this means concretely is that the binding probability for some substrate as a
function of the substrate concentration will be enhanced relative to the case
in which there are no crowding agents. A second intriguing outcome of the
existence of crowding is the onset of new types of entropic forces which have
nothing to do with van der Waals forces or charges. These entropic forces are
known alternately as “excluded-volume forces” or “depletion interactions” and
can have the counterintuitive effect of apparently introducing “order”.

An example of how binding may be altered by crowding effects is shown in
fig. 14.3. In this case the measurement examines accessory protein complexes
associated with DNA replication in bacteriophage. In particular, this data shows
the effect of crowding molecules on the likelihood of binding of gene products
45 (sliding clamp) and 44/62 (clamp-loader) which then themselves bind to the
DNA polymerase and enhance its activity. These four molecules together suffice
to produce leading-strand synthesis in DNA replication. The crowding agent
used in this case is polyethylene glycol with an average mass of 12 kDa. When
they are bound in the replication complex, these two phage proteins have the
effect of increasing the activity of the T4 DNA polymerase. The rate of ATP
hydrolysis by the clamp loader (gp44/62) is used as a readout of the extent of
binding of these accessory proteins and this is what is plotted in the figure for
the case in which the concentration of gp44/62 is titrated at fixed concentration
of gp45. As a control, it was demonstrated that changing the concentration of
crowding molecules did not by itself change the catalytic activity of the DNA
polymerase. The data presented in this figure is but one example of a widespread
phenomenon in which the addition of inert crowding molecules shifts biochemical
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Figure 14.3: ATPase rate associated with T4 DNA replication. The different
curves measure the ATPase rate as a function of the g44/62 protein concentra-
tion as measured using different concentrations of polyethylene glycol (PEG)
as a crowding agent. The concentration of PEG in going from the bottom
to the top curve are 0%, 2.5%, 5% and 7.5% weight percent. (Adapted from
T. C. Jarvis et al., J. Biol. Chem., 265:15160, 1990.)

equilibria.
Crowding Alters the Kinetics Within Cells

Not only does crowding alter equilibrium properties, it also can significantly
impact a variety of dynamical processes within cells. A simple starting point
is the question of how diffusion is altered in cells relative to in dilute solutions.
One way to examine this question is to use fluorescence recovery after photo-
bleaching (FRAP) as introduced in section 13.1.2 (pg. 675). The idea is to
fluorescently label some macromolecule of interest within the cell and to mea-
sure the diffusive dynamics of these proteins after some region within the cell
has been photobleached. An example of such an experiment is shown in fig. 13.7
(pg. 676). The outcome of FRAP experiments is a measure of the slowing down
of diffusion relative to its dilute-solution values as shown in fig. 14.4, where the
relative diffusion coefficient in the cell interior with respect to water is plotted
as a function of the size of the diffusing particle. These curves show a four-
fold decrease in the diffusion constant with an even stronger effect for larger
molecules.

A second interesting way in which diffusive dynamics is altered is revealed
by examining the dynamics of membrane proteins at the cell surface. Video
microscopy in which individual membrane proteins are followed reveals that
the diffusive trajectories suffered by these molecules are quite distinct from
the traditional two-dimensional random walk that would be expected of free
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Figure 14.4: Diffusion constants in cells. The plot shows the ratio of the mea-
sured cellular diffusion constant to that for the same molecule in water for
several different molecules including a series of DNA molecules of different size.
(Adapted from A. S. Verkman, Trends Biochem. Sci., 27:27, 2002.)

diffusion. In particular, what is observed are several different categories of
phenomena. One class of motions illustrated in fig. 14.5 is episodes of free
diffusion punctuated by transient association with other membrane proteins.
A related class of diffusive motions reveals free diffusion within what appear
to be two-dimensional cages followed by escape to some adjacent cage followed
by more localized diffusion. The same phenomenon has been observed in three-
dimensional diffusion both for labeled RN As inside of living cells and for various
kinds of tracer particles in three-dimensional filamentous networks constructed
in vitro. Asin the two-dimensional case, individual trajectories are characterized
by rapid diffusion within apparent cages, interspersed by rare jumps from one
cage to another. In both cases, the observed dynamics may be complicated by
the fact that the cages themselves are undergoing dynamic remodeling.

The key point of this section has been to use a few examples of real world
data to illustrate how both binding and kinetics are modified by crowding. In
the remainder of the chapter, we explore a variety of highly simplified models
which illustrate mechanisms where crowding agents have the effect of: altering
equilibrium binding curves, inducing entropic forces between particles that are
indifferent to each other in dilute solution and slowing down diffusion.
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Figure 14.5: Single-molecule measurements for diffusion of membrane-associated
proteins. (A) Cells were transfected with a construct encoding GFP fused to a
membrane protein Lck. In the fluorescence microscope, the cells appear to be
covered with randomly distributed spots. (B) In a magnified view of the region
bounded by the box in (A), individual molecules can be clearly seen (circles).
Their movement can be tracked over time by video microscopy. (C) A series
of tracks measured for individual molecules ranging over total times of about
1 to 3.5 seconds show very heterogenous individual behavior. Some molecules
appear to be trapped and nearly stationary, while others travel long distances.
(Adapted from A. D. Douglass and R. Vale, Cell, 121:937, 2005.)
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14.2 Equilibria in Crowded Environments

14.2.1 Crowding and binding

In chap. 6, we considered the statistical mechanics of binding of a ligand to
a protein using a lattice model. This approach can be extended to the case
when the solution contains crowding agents, molecules that do not interact
with the ligand or the protein but simply take up space. We consider the
effect of crowding molecules on the probability that the receptor’s binding site
is occupied by the ligand.

Lattice Models of Solution Provide a Simple Picture of the Role of
Crowding in Biochemical Equilibria

To simplify matters we once again assume that the reaction volume is divided
up into 2 cells of volume v as shown in fig. 14.6. Each of the elementary cells in
the lattice model of the solution is either empty (which really means occupied by
a solvent molecule), occupied by a ligand or occupied by one of the “crowding”
molecules. The total number of ligands and crowding molecules in the reaction
volume Qv are L and C, respectively, as shown in fig. 14.6. If we consider
the situation where in solution there are only ligand and crowding molecules
present, then in this simple lattice model of the solution, the partition function
is

Q! sol sol

Zl(L,C) = [0 L~ C)!e—ﬂLsL e Pl (14.1)
where €°! and €' are the energies of the ligand and crowding molecules in
solution. The combinatorial factor in eqn. 14.1 simply counts the number of
ways of distributing L ligands and C' crowding molecules among the Q cells
that make up the reaction volume.

Given this model of the solution, we now ask about the probability that the
receptor in solution will be bound by a ligand and how this probability depends
upon the concentration of both ligand and crowding molecules. The receptor
can be in one of two states: either it has the ligand bound, or not. The weights
of these two states are Zgo1(L — 1,C) exp(—B¢€?) and Zs1 (L, C), respectively;
€2 is the energy of the ligand bound to the protein. The probability that the
ligand will be bound to the protein is therefore,

Zeol(L — 1,C)e=BL
Zsol(L —1,0)e L + Zy(L,C)

Pbound = (142)

If we divide the numerator and denominator of the above equation by Zg, (L —
1,C) exp(—B3¢?) and make the additional assumption that  — L — C > 1, the
equation takes on a simple form,

1

Pbound = 1+ infceﬁAﬁL 5 (143)

where Aer, = €? — € is the change in the energy of the ligand in going from

solution to the receptor.
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Figure 14.6: Lattice model of crowding and its effect on ligand-protein binding.
The reaction volume is occupied by solvent molecules, crowding molecules and
ligands. A single ligand can bind to the protein.

From eqn. 14.3 we conclude that the crowding molecules will have an ap-
preciable effect on the probability that a ligand is bound to the protein only in
the limit when C is comparable to § (we assume that the number of ligands is
small, L < ). Since the effect of C'is to effectively reduce the volume in which
the ligands can distribute themselves, we see that an increase in C' leads to an
increase in Phound- This is illustrated in fig. 14.7 where pyhounq is plotted for a
number of different concentrations of the crowding molecules.

A more sophisticated lattice model treatment of crowding and binding al-
lows us to reflect concretely on the data already introduced in fig. 14.3. The
theoretical curves shown in that figure are fits to binding curves like those used
throughout the book and they yield the dissociation constant as a function of
PEG concentration. The resulting dissocation constants are plotted in fig. 14.8.
Qualitatively, what this data shows is that as the concentration of crowding
agent is increased, the dissocation constant decreases meaning that the binding
reaction is more favorable. Our interest is in exploiting simple models to give
an intuitive sense of the origins of such data.

To model the PEG dependence of the dissociation constant we make use of
the lattice model of crowding described above. The new twist to the story is
that the depletant molecules (PEG) are considerably smaller (12 kDa) than the
protein complex (gene product 44/62 with a mass of 164 kDa) whose binding
is being affected. To account for the size difference, in the lattice model of
the solutions we assume that the protein takes up r boxes, where a box can
accommodate a single PEG molecule. To further simplify the combinatorics we
assume that the reaction volume is broken up into 2 large boxes, each consisting
of r smaller boxes, as shown in fig. 14.9. The proteins take up the larger boxes
while the PEG takes up unoccupied smaller boxes. A more detailed calculation
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Figure 14.7: Probability of protein binding site occupied by a ligand for a num-
ber of different concentrations of the crowding molecules. The reaction volume
is © = 1000 and Aer, = —5 kgT.

would allow the protein to take up any available square region r boxes in size.
For this situation the partition function of the solution of L proteins and C'
crowding molecules is given by

Q! (rQ —rL)!

ZalllO) = ("0 (=L = O)iC

e L o= PO (14.4)

which reduces to eqn. 14.1 when r = 1. The probability of the protein bound to
its receptor can now be computed just as we did for the case when the crowding
molecules and the ligands were assumed to be of the same size. In particular, we
construct a ratio in which the numerator is the statistical weight of the bound
states and the denominator sums over the statistical weights of all states just
as we did in eqn. 14.3. This results in a probability of binding of the form

1 1
Dbound = = (14.5)
o 1+ % exp(BAer) 1+ %(1 — ¢c)" exp(BAer)

where ¢po = % is the volume fraction of the crowding molecules in solution.

To obtain the last equality we assumed that L < 2, i.e. the volume fraction of
the binding proteins is much less than one, and we repeatedly made use of the
formula (N + 7)!/N! ~ N” which holds for N > r.

By comparing eqn. 14.5 to eqn. 6.110 (pg. 346) we can read off the volume-
fraction dependent dissociation constant and we find that

Kai(¢c)

Koo —0) 7% o
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Figure 14.8: Dissociation constant as a function of crowding. Comparison of
theory (full line) and experiment (filled circles) for binding in the presence of
crowding agents. Measured values of the dissociation constant for gp44/62 and
gp4b components of T4 DNA replication complex as a function of PEG concen-
tration measured in percent volume fraction. The theoretical curve is obtained
by fitting eqn. 14.6 for the effective size ratio r of the protein components to
the PEG 12000 molecules. (Adapted from T. C. Jarvis et al., J. Biol. Chem.,
265:15160, 1990.)
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Figure 14.9: Lattice model for large ligands. This lattice model describes bind-
ing in the presence of crowding agents where the size of the crowder is different
from that of the ligands. This is represented using different size boxes for the
crowder and the ligand.

In fig. 14.8 we compare this formula to the data for the gp44/62 protein complex
from the T4 bacteriophage. The theoretical curve in the figure results from a
best fit to the data using the parameter r which is a measure of the relative
“size” of the ligands and the crowder. From a priori knowledge of the masses
of both the ligands and the crowders, a first guess is that r =~ 15, while a best
fit yields the value r = 45.

The treatment given here only scratches the surface of the way in which
crowding agents alter biochemical equilibria. The model introduced here is a
caricature of crowding effects and neglects a variety of important features, one
of which is indicated schematically in fig. 14.10. More generally, as written
the models presented in this section ignore the real “excluded volume” effect
in which particles effectively take up more space than their physical volume,
and the amount of space they occupy depends upon their overall concentra-
tion! The implications of this idea for particle interactions will be taken up in
section 14.2.3.

14.2.2 Osmotic Pressures in Crowded Solutions

Osmotic Pressure Reveals Crowding Effects

One interesting outcome of the presence of proteins and ions in the cellular
interior is that they induce an osmotic pressure. Experiments on concentrated
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Figure 14.10: Limitations of the lattice model of crowding. This figure shows
an allowed configuration for a ligand that is artificially forbidden in the lattice
model.

solutions of proteins such as hemoglobin can shed light on this phenomenon.
An example of such data that reveals the nonlinear dependence of the os-
motic pressure on the protein concentration is shown in fig. 14.11. We can
think about these data using the lattice model of a crowded solution introduced
above. At low concentrations the pressure depends linearly on the amount of
hemoglobin present as described by the van’t Hoff formula discussed in section
6.2.3 (pg. 337). As the hemoglobin solution becomes concentrated the interac-
tions between the molecules become important and lead to deviations from the
simple law.

For the case of a concentrated solution of hemoglobin we employ a lattice
model which consists of two species of molecules: filled boxes correspond to
hemoglobin molecules and the empty boxes represent the solvent. The partition
function for this model is

Q' _ 6:;ol
ZSOI(H7 Q) = me BH H 5 (147)

This is nothing but eqn. 14.1, where now H, the number of hemoglobin molecules,
takes the place of the crowding agent C', and L = 0.

The osmotic pressure p in the lattice model can be computed by considering
the change in free energy, G = —kpT In Zg,), of the system when its total volume
decreases by a single cell of volume v. Setting the work equal to the change in
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Figure 14.11: Osmotic pressure of a concentrated solution of hemoglobin at 0°C.
Full circles are the experimental data points. The dashed lines are predictions
of the lattice gas, while the full line is the pressure of a gas of hard spheres, each
sphere having volume V corresponding to a diameter of 5.8 nm. The labels on
the curves indicate the volume of a single box in the lattice model. (Adapted
from P. D. Ross and A. P. Minton, J. Mol. Biol., 112:437, 1977.)
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free energy,

Zsol(Hv Q- ]-)
v=G(Q-1)-GQ)=—-kgTlh———= | 14.8
pr=G(Q-1) = G(0) = ~kpTln =2 (145)

leads to an expression for the pressure
kT Q
= 1 14.
v "o H (14.9)

where we have made use of eqn. 14.7. We can rewrite this equation in terms of
the concentration of the hemoglobin molecules, [H] = %, as

p=———In(l - [Hv) . (14.10)

In fig. 14.11 we compare the pressure predicted by the lattice model with
experimental data. Note that the only free parameter in the model is the volume
of a single box on the lattice, namely the parameter v. To make the comparison
concrete, we convert the experimentally determined concentration, which has
units g/l, to a molar concentration. To do so, we divide by the mass of a single
hemoglobin molecule, Miemoglobin ~ 68 kDa. We see that the lattice model
reproduces the non-linearity and the right scale of the pressure when we use v
which is comparable to the size of a hemoglobin molecule as determined from
X-ray scattering.

Despite the favorable qualitative features of the lattice model, it still does
not give an entirely satisfactory description of the observed osmotic pressure.
Happily, there is a long tradition in statistical physics of exploring the so-called
“hard-sphere gas”, a model system in which spheres interact only by mutual re-
pulsion which forbids them from ever having a center-to-center distance smaller
than twice their radius. These models are an ideal setting within which to ex-
plore excluded volume effects and do not suffer from the artificial constraint
present in lattice models that force particles to only occupy a restricted set of
points in space. We argue that the shortcomings in the model presented thus far
are an artifact of the lattice model which result from the extremely approximate
treatment of the volume exclusion. Studies of the hard-sphere gas have resulted
in more sophisticated partition functions than that derived using a lattice model
and result in the pressure of a hard sphere gas as a function of its concentration
of the form

p = kpT[H](1 + z + 0.6252% + 0.2872> + 0.1102%). (14.11)

This formula was first obtained by Boltzmann in 1899. The variable x is defined
as x = 4V[H], where V is the volume of a single hard sphere. This result of
using the hard-sphere analysis is shown in fig. 14.11 and gives a much better
result as the reader is asked to work out in the problems at the end of the
chapter. The simple hard sphere gas description of a concentrated hemoglobin
solution gives a quantitative explanation of the observed osmotic pressure.
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Figure 14.12: Schematic of the forces resulting from volume exclusion. In each
of the schematics we show a two-dimensional idealization of the configuration of
interest. (A) Large particle near a surface, (B) two large particles in solution,
(C) two rod-like molecules in solution. As the two large objects come closer
together, the total volume they exclude for the small disks decreases, resulting
in an effective attractive force between the large particle and the surface, the
two large particles, and the two rod-like molecules, respectively.

14.2.3 Depletion Forces: Order from Disorder

The Close Approach of Large Particles Excludes Smaller Particles
Between Them, Resulting in an Entropic Force

One of the most intriguing and counterintuitive results of crowding is the way
in which entropy can induce forces and structural ordering. A beautiful effect
that arises on strictly entropic grounds is that of depletion forces, illustrated in
fig. 14.12. The idea is that in a solution consisting of some large molecules (or
particles) in the presence of some much smaller particles, as the large particles
approach one another with a distance comparable to the size of the smaller par-
ticles, they will exclude the smaller particles from the volume between them. As
they get even closer, the volume available to the smaller particles will increase.
This has the effect of inducing an entropic force of attraction between the large
particles. Macromolecules and macromolecular complexes in the cell are typi-
cally separated by distances that are comparable to their size. As a result, this
kind of force should enter into the discussion of how macromolecules in the cell
interact.

To see how depletion forces arise, we begin with the case of a two-dimensional
system of large and small disks in the presence of a surface as shown in fig. 14.13.
The large disk has radius R while the smaller disks have a radius r. In this
idealized two-dimensional geometry, our interest is in computing the total area
available to the small disks as a function of the distance z between the large disk
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Figure 14.13: Geometry of excluded-volume interactions. A large disk of radius
R in the presence of a surface and multiple small disks of radius . The dotted
lines depict the volume excluded to the small disks. As the large disk approaches
the surface, the total excluded volume for the small disks decreases due to the
overlap of the volumes excluded by the large disk and the surface (depicted by
dashed lines). This overlapping excluded volume is shown as the grey shaded
region in the right figure. Because of the increase in the area available to the
disks, there is an increase in their entropy and an effective attraction between
the large disk and the surface.

and the surface. When the disk is far from the surface the total excluded area is
the sum of the areas excluded by the disk and the surface. As the disk gets closer
to the surface, there is a decrease in the area which is inaccessible to the small
disks (shown as the shaded fragment of a circle) and this increases their entropy.
The strategy of our calculations is then to compute the entropy of the small
particles as a function of the distance between the large disk and the surface (or
other interesting examples). This entropy will permit us to compute the free
energy itself and once we have this free energy, we can compute F' = —9G/dz
to obtain the effective depletion force between the disk and the surface. This
calculation itself is given in the problems at the end of the chapter. At this
point, we show how to consider these problems in general terms and then use
the general formalism for a particular case study.

In the previous section we considered the crowding effect of one molecular
species on the binding of another. We can use the same lattice model to build
intuition about excluded-volume interactions. Formally, we consider a solution
filled with two species, two large molecules in the presence of a large number
of smaller crowding agents. We consider the situation in which there are no
conventional forces (van der Waals, electrostatics, etc.) between the various
molecules. Rather, the forces that arise do so strictly on the basis of the en-
tropy changes incurred by close proximity of the two large molecules. In this
situation the free energy of the small molecules will depend on the positions and
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orientations (if the molecules have some structure to them) of the large ones.
That is, the large molecules reduce the volume of space available to the small
ones from Vj,x, the volume of the box, to Viox — Vex, where Vi is the excluded
volume. Concretely, the free energy change induced by this excluded volume is
given by

Vox_VYex Vox
Gw:—N@Tm<b>+N@Tm(b) (14.12)
v

v

where N is the number of small molecules and v is a constant with units of vol-
ume (e.g., for a lattice model this would be the volume of a unit cell). This effect
was already introduced in fig. 14.13 and is shown more precisely in fig. 14.14.
Combining the two logarithms and assuming that the excluded volume Vi is
much less than the overall volume of the box we can use the approximation
In(1 + x) = x, to obtain a simpler expression for this free energy as

Gex = NkBT“//eX : (14.13)

box

Note that the parameter Vo, depends upon the distance between the two large
molecules and hence that there will be a distant-dependent force. In particular,
once the excluded volume regions of the two large particles begin to overlap
this reduces V., and increases the entropy of the small particles. In addition
to its simplicity, eqn. 14.13 also has an appealing physical interpretation. We
can identify % with the ideal-gas (osmotic) pressure of the small particles in
the box, and therefore the excluded volume free energy is equal to the pressure-
volume work done on the small-molecule gas in reducing the volume it occupies
by Vex.

To see how the calculations we have done thus far lead to depletion forces,
consider a small change in the distance between the two large molecules. If
this leads to a change in the free energy of the small molecules via eqn. 14.13
then we can interpret this as a depletion force between the two large molecules
mediated by the small ones. The magnitude of this depletion force is simply the
absolute value of the derivative of G¢x with respect to the distance. The sign of
the derivative indicates the direction of the force: if it is negative, Gy decreases
with distance and the depletion force is repulsive, while a positive derivative
indicates an attractive force.

To build quantitative intuition about the depletion interaction we consider
the case of two large spherical particles in a sea of smaller spherical particles.
As discussed in the previous paragraphs, the calculation of the depletion force
boils down to determining the excluded volume V... We first examine the case
of two spheres of radius R surrounded by smaller molecules of radius 7.

The volume excluded by a single large sphere is a sphere of radius R + r.
That is, the centers of the small spheres are unable to occupy any point within
a distance of R+ of the centers of the large spheres. If two spheres are present
then the total volume excluded for occupancy by the small spheres is twice
as large unless the distance between the spheres is such that their excluded
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Figure 14.14: Depletion interaction between two spheres. (A) The depletion
force is non-zero when two spheres come within a distance D < 2(R + r), and
is determined by the overlap volume which is twice the volume of a spherical
cap. (B) The volume of a spherical cap is equal to the difference between the
volume of a spherical cone and a cone.
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volumes overlap. From the discussion above it should be clear that only in
this case, when the distance between the two spheres, D, is less than 2(R + r),
will there be an attractive depletion force between them. In this case the total
excluded volume from both spheres is less than twice the excluded volume of
each sphere individually and is given by

4
Vi = 2 x %(R 1) = Viverlap - (14.14)
The overlap volume, shown in fig. 14.14(A), consists of two spherical caps whose
volume can be computed by subtracting the volume of the spherical cone and

that of the cone, as shown in fig. 14.14(B).
The volume of the spherical cone is given by the integral

27 6 R+r ) )
Vspherical cone — / d¢/ sin 6 d@/ 7"2 dr = gﬂ'(R + T)3(1 — COS 9)
0 0 0

(14.15)
Since 6 is also the angle subtended by the cone we can replace its cosine by
cosf = Igﬁ to give
27 9
‘/Spherical cone — ?(R + T') (R +r— D/Z) (1416)

The volume of the cone is 1/3 of the volume of a cylinder with the same radius
and height. The radius of the cone in fig. 14.14(B) is \/(R +r)2 — (D/2)2 and
its height is D/2, therefore,

Veone = 5(D/2) [(R+1)* = (D/2)°] . (14.17)

Finally we obtain the overlap volume as twice the difference between the volume
of the spherical cone and the cone,

2
Viwerlap = g(R 47— D/2)*2R+2r+D/2) . (14.18)

To estimate the depletion force between the two large spheres we are left
with taking the derivative of the free energy Gy in eqn. 14.13 with respect to
the distance D which yields

G
oD

Fdepletion =

= —pm [(R +7)? — D:} : (14.19)

Here p = nkpT is the osmotic pressure of the small molecules (n = N/Vpox
is the concentration), and the distance between the two large spheres satisfies
2R < D < 2(R + r); for larger distances the overlap volume and the force are
both zero. To get a feeling for the numbers, we take R > r and D ~ 2R + r,
in which case Fyepletion = mnkpTrR. For a bead whose radius is R = 1 pum
surrounded by small molecules with » = 2 nm at a concentration n = 1 mM,
the size of the depletion force is Fycpletion ~ 15 pN.
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Figure 14.15: Measured free energies due to excluded volume. The free energy of
interaction of two 1.25 pm diameter beads as a function of the concentration of
the depleting agent (labeled in each panel). The depleting agent is mondisperse
DNA from A-phage with a radius of gyration of approximately 500 nm as
measured using light scattering. (Adapted from A. G. Yodh et al., Phil. Trans.
R. Soc. Lond., A359:921, 2001.)

Depletion forces have been explored experimentally as shown in fig. 14.15.
In the case shown in the figure, two beads of 1.25 um diameter were confined to
move along the line joining their centers. This confinement to one dimension was
effected using an optical trapping system in which the laser is scanned so as to
make a linear region in which the beads are trapped, but at constant potential.
The depleting agent in the experiment is A-phage DNA, 16 um in length, which
at concentrations shown in the figure forms spherical globules with a radius of
roughly r ~ 500 nm. Polymer entropy in this case prevents overlap of different
DNA molecules, so they effectively behave as hard spheres.

The experiment measures the distance between the beads using light mi-
croscopy. Repeated measurements of the distance lead to a determination of
the probability distribution of distances, p(D). Since in equilibrium p(D) is
proportional to the Boltzmann factor exp(—fGex(D)) then the logarithm of
the measured distribution yields the free energy Gex(D). This is the quantity
plotted in fig. 14.15, for different DNA concentrations. (The free energy is de-
termined up to a constant, which in the experiment was chosen so that Gex (D)
goes to zero at large D.)

The lines in fig. 14.15 are fits to the formula Gex(D) = pVoverlap, Where
Voverlap 15 given by eqn. 14.18. The fitting parameters used were the effective
radius of the DNA molecules (r in eqn. 14.18) and the osmotic pressure (p).
The effective radius of DNA was found to be concentration independent and
its value consistent with independent measurements of the same quantity. The
osmotic pressure, p/kpT, was found to be proportional to the concentration of
DNA, n, as van’t Hoff’s formula says, but with a coefficient of 0.5 instead of
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Figure 14.16: Entropic ordering of mixtures of hard rods and spheres. A solution
of hard rods and spheres has a rich phase diagram that depends on the volume
fractions of the two components, and it includes layered structures such as the
one shown here. The left panel is a micrograph along the z axis, while the one on
the right was taken in the y direction. The schematic in the middle depicts the
proposed layered structure. The scale bars are 3 um. (Adapted from M. Adams
et al., Nature, 393:349, 1998.)

1. The origins of this discrepancy are unclear and could be a source of further
inquiry.

Depletion Forces Can Induce Entropic Ordering!

So far we have shown how excluded volume effects can lead to short-ranged,
attractive depletion forces between two macromolecules. Beside the effect on
bimolecular interactions, depletion forces can also produce ordered structures
of surprising complexity. This is clearly seen in multicomponent systems such
as the one made of filamentous viruses serving as hard rods and spheres, which
produces the layered structures shown in fig. 14.16. The surprising thing about
these structures is that entropy alone leads to microphase separation where
layers of balls are interspersed with layers of rods. Macrophase separation,
where the spheres and balls take up residence in different parts of the reaction
volume, is the expected outcome, but experiments have shown that there are
regions of phase space (determined by volume fractions of rods and spheres)
where layered structures are preferred.

In light of these findings on model systems of rods and spheres, it is intriguing
to consider whether depletion forces might be contributing to the organization
of macromolecules and macromolecular complexes inside cells. As more quanti-
tative data is obtained on the spatial arrangement of macromolecular complexes
within cells, these questions might very well come to the forefront of physical
biology.
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14.2.4 Excluded Volume and Polymers

Excluded Volume Leads to an Effective Repulsion Between Molecules

Above we showed that the presence of small molecules in the solution can
lead to an effective attraction between two larger molecules, by considering the
volume that the large molecules exclude for the smaller ones. Here we take up
the issue of the mutual exclusion of a collection of N macromolecules confined
to the interior of a cell, and each occupying a volume v. The excluded volume
interaction refers to the effect that two molecules are not allowed to occupy the
same location in the cell.

We adopt the lattice model used in section 14.2.2, where N macromolecules
are distributed among 2 boxes each of volume v. The excluded volume interac-
tion manifests itself in the property that every box can be occupied by at most
one macromolecule. To obtain an estimate of the effective repulsion between
molecules due to the excluded volume interaction, we compute the free energy
difference between the state where excluded volume is enforced and one in which
it is not.

For the situation when the excluded volume is enforced the partition function
is simply the number of ways of choosing N boxes from the total number of boxes
) in which to place the macromolecules. This is given by

Q!

Zex(N) = S =y -

(14.20)

On the other hand, if we do not enforce the excluded volume condition the
partition function is

QN
TN

This amounts to saying that each of the N macromolecules has ) boxes to
choose from regardless of whether the box is occupied or not. The N! takes care
of the fact that the macromolecules are regarded as identical.

Znex(N) (14.21)

Using the canonical relation between free energy and the partition function,

G = —kpTInZ, we can compute the free energy difference between the two
states as
Zex
AGox = Gox — Gpex = —kpT'In 7 - (14.22)
nex

To make further progress we make use of the Stirling approximation, n! =
(n/e)™, which is valid for n > 1 (described in “The Math Behind the Models” on
pg. 280 and in the problems at the end of chap. 5). Within this approximation,
the ratio of partition functions appearing in the above formula can be expressed
as:

N

*

2
10

|
Q
| [®

)Q e N\
Znex B QN(Q_N)' QN (Q N)Q_N - %)Q (1_ Q) ; (1423)

€
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The reader is asked to explore the validity of the approximations we make in the
problems at the end of the chapter. Assuming €2 > N, we can use the formula
(1 - N/Q) ~ eV to simplify the above equation to

N
Zox N
e (1 - Q) : (14.24)

Finally, if we plug this into eqn. 14.22 for the free energy difference due to the
excluded volume effect, we find

N
AGex = —NkpTn (1 - Q) ~kpT o (14.25)

where we have used the Taylor expansion for the logarithm (In (1 — z) = —x).
Note that we can interpret the last formula by saying that the excluded volume
interaction raises the free energy of the system of macromolecules by kgT'¢ per
molecule, where ¢ = N/€ is the volume fraction occupied by the macromolecules
in the cell.

Self-Avoidance Between the Monomers of a Polymer Leads to Poly-
mer Swelling

This chapter has argued that crowding reveals itself in many different ways.
These effects can be observed experimentally, and also force us to reconsider
many of the powerful theoretical tools developed so far in the book. In chap. 8
we developed the random walk model of polymers and have shown its utility
in describing macromolecules such as DNA. One feature of the random walk
model that is disturbing, however, is that it permits polymer configurations
in which the monomers occupy the same position in space and the chain is
allowed to self-intersect. Clearly these conformations are unphysical and one
would be tempted to discard the random walk model on these grounds. Still we
should remember that the random walk model is probabilistic in nature, and
therefore, if the offending states are practically never realized (i.e. they have
a vanishingly small probability), the model will provide reliable results for the
average properties of flexible macromolecules. For example, if we are dealing
with DNA whose length is only a few persistence lengths, then the energetic cost
of making bends that would lead to self-intersections is too costly and will never
happen. This observation begs the question, how long must a DNA molecule be
before the self-avoidance effect starts rearing its head? For example, we have
repeatedly used the formula v/ Na? for the size of a macromolecule such as DNA,
which was derived based on the random walk model with no self-avoidance. We
will demonstrate shortly that taking self-avoidance into account produces a very
different result.

When can we ignore the self-avoiding property of polymers? To answer
this question we make use of an estimate first suggested by Flory. The idea
is to consider the competing effects of polymer chain entropy, which has the
tendency to make the chain compact, and that of self-avoidance that tends to
swell the chain up. To account for these two effects we start by writing down an
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approximate expression for the free energy of the polymer chain as a function
of its size R as
G(R) = —T'Siw(R) + Gex(R) (14.26)

where Sy (R) is the random-walk entropy for a chain of size R and Gex(R) is
the excluded-volume interaction discussed above .

To estimate the entropy of the polymer chain we make use of the end-to-end
distribution for a random walk, P(R; N), given by eqn. 8.23 on page 401. In
this case, we can write that result as

2

Siw(R) = kpln P(R; N) + const = —kp 3R

NG + const (14.27)
a

where the constant term does not depend on the size (R) of the polymer chain.

For the excluded volume interaction (Gex) we approximate the polymer chain
with a gas of hard cylinders of length a (a ~ 100 nm is the Kuhn length for DNA)
and diameter d (d =~ 2nm for DNA). Unlike the example treated previously,
where we considered the excluded volume interaction for a gas of hard spheres,
here we have to take into account that the volume that one cylinder excludes
for the center of mass of another depends on their mutual orientation. As
shown in fig. 14.17, for fixed orientation the excluded volume is estimated to
be v = 2da’sin 6, where € is the angle between the long axes of the cylinders.
(The exact result for v obtained by Onsager reduces to this formula for the case
a > d.) Averaging of sin 6 over all possible orientation gives

1 2m ™ T

(sinf) = — / do / sin? 0df = — (14.28)
ar Jo 0 4

to yield a final estimate for the excluded volume, ma®d/2. With this result in

hand, we can adapt eqn. 14.25 to this situation. In order to use eqn. 14.25 in

the form Gox = kT N ¢, we need to determine the volume fraction ¢. N is the

number of hard cylinders (i.e. the number of Kuhn segments that make up the

polymer chain) and permits us to write the total volume fraction occupied by

the cylinders making up the polymer chain as

Za?d 3a?d

=N—.
4 R3 8R3

#(R) = N (14.29)

Eqn. 14.25 tells us how to construct the contribution of excluded volume to the
free energy and results in

3a%d
8R3 "
Putting the excluded-volume interaction term and the entropy term to-

gether, we arrive at the Flory estimate for the free energy of a polymer chain of
size R, namely,

Gex(R) = kpTN? (14.30)

2

3R 3a2d
GFlory(R) = kBTi + kBTNQL

14.31
2Na? SR3 "’ ( )
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Figure 14.17: The excluded volume for two cylinders. (A) The volume that one
cylinder excludes for another depends on their mutual orientation characterized
by the angle 6 between their long axes. (B) For the situation when the length
of the cylinder is much greater than its diameter the excluded volume is well
approximated by the shaded parallelepiped.
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where we have dropped the unimportant constant term from the entropy esti-
mate. To obtain the size of the polymer chain at equilibrium, all that remains
is to determine that value of R that minimizes the Flory free energy. This is
accomplished by taking the derivative of eqn. 14.31 and setting it to zero, which
yields
3 4\ o

RFlory = (8a d) N5 . (1432)
Most notably, the size of the polymer with self-avoidance scales with the number
of segments N to the power 3/5. The fact that this number is greater than 1/2,
the exponent associated with simple random walks, attests to the swelling of
the chain induced by the excluded-volume interaction.

Given the radically different prediction for the size of a chain that inclusion
of the self-avoidance term leads to, we might be tempted to discard all the esti-
mates made previously based on the random walk model. This is not warranted,
since for short enough polymers the self-avoidance can be ignored. To see this,
lets compare the size of the self-avoidance interaction term, Gex(R), and the
entropy term, S,y (R), in Griory assuming that the size of the polymer is given
by the random walk result R = v/ Na?2. In this case,

G = k!

a

Nz (14.33)

and 5
Srw = ikBT , (14.34)

follow from eqn. 14.30 and eqn. 14.27, respectively. We see that for N large
enough the self-avoidance interaction term will always dominate. Still, taking
the parameter values appropriate for DNA, d = 2 nm and a = 100 nm, we can
conclude that for N < 16(a/d)? = 40,000 the self-avoidance term will be much
less than the random-walk entropy term and it can be safely ignored. This
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many Kuhn segments of DNA corresponds to a molecule which is L = Na =
40,000 x 100 nm, or 4 mm, in length. This is much larger than the length of the
A-phage genome L ~ 16um, for example, indicating that for this long a strand
of DNA self-avoidance can be safely ignored.

14.3 Crowded Dynamics

So far, we have examined how equilibrium properties are altered by the presence
of crowding. However, as mentioned at the beginning of the chapter, a second
way in which crowding is revealed is through changes in the dynamics within
cells. In light of the observation of the possible importance of macromolecular
crowding in producing new physical effects, we now return to some of the ques-
tions presented earlier in the present chapter concerning the nature of diffusion,
but now from the point of view of the nature of the dynamics when the diffusive
medium is dense and complex.

14.3.1 Crowding and Reaction Rates

Enzymatic Reactions in Cells Can Proceed Faster Than the Diffusion
Limit Using Substrate Channeling

In dilute, in vitro biochemical experiments, the reaction rate for an enzymatic
conversion of a substrate into a product depends upon the concentration of
the enzyme, the concentration of the substrate and the intrinsic turnover rate
of the enzyme. It is generally accepted that the concentration dependence of
these rates describes the time it takes for an enzyme diffusing freely in solution
to randomly encounter one another. At higher concentrations of either, these
random collisions become more frequent.

Inside of cells, enzymes are rarely free to diffuse as they would in dilute solu-
tion since proteins tend to form large complexes or associate with membranes or
cytoskeletal elements. One example of this effect can be seen in fig. 14.4 where
it is shown that the glycolytic enzyme, phosphoglycerate kinase has an effective
diffusion coefficient in cells that is roughly five times lower than GFP despite
the fact that the two molecules are nearly the same size. We might expect then
that reaction rates inside cells would be largely dominated by substrate concen-
tration, however, in many critical metabolic pathways such as the Krebs cycle
operating inside of mitochondria, the concentration of small molecule substrates
such as the intermediate oxaloacetate is much too low to account for the overall
flux through the metabolic pathway.

How can a cell drive an enzymatic transformation more rapidly than the
physical law of diffusion should allow? One common solution, which may prove
to be nearly universal, is that cells simply do not allow substrate molecules
that are intermediates in metabolic pathways to diffuse from the active site of
one enzyme in the pathway to the next. Instead, specific, though low-affinity,
protein-protein interactions among all the enzymes in the pathway are used to
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Figure 14.18: Protein folding and aggregation. A protein folded in its native
state sequesters hydrophobic domains on the inside to hide the hydrophobic
core. Denaturation disrupts the native structure exposing these hydrophobic
patches. (A) When the protein is allowed to refold in very dilute solution,
the hydrophobic patches within a single molecule self-associate to reform the
native, hydrophobic core. (B) At high concentration, the hydrophobic patch
of one protein molecule may associate with the hydrophobic patch of another
triggering protein aggregation rather than native refolding.

assemble a giant, multi-enzyme complex in which the substrate can travel di-
rectly from the active site of one enzyme to another without ever freely diffusing.
This behavior is known as substrate channeling.

Because of this effect, it is extremely challenging to predict the actual rate of
a biochemical transformation in vivo, even if the concentration of both substrate
and enzyme are known and the turnover rate of the enzyme has been accurately
measured.
Protein Folding Is Facilitated by Chaperones

Another case where dilute, in vitro biochemical experiments fail to accurately
represent the complexities of protein behavior inside of cells is in the study of
protein folding. For many small proteins of relatively simple structure, they can
be purified and denatured with harsh chemical agents such as urea or guani-
dinium hydrochloride. When the denaturing agents are removed, the proteins
will refold in vitro to their original native structure. These kinds of experiments
are successful only when the protein concentration is several orders of magnitude
lower than the actual concentrations of protein inside of cells. In more crowded
solutions, denatured proteins tend to aggregate by intermolecular association
of their hydrophobic patches or domains preventing proper intramolecular as-
sociation of these domains to form the protein’s hydrophobic core as shown in
fig. 14.18.

How do cells prevent aggregation of proteins as they are synthesized from
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ribosomes in the highly crowded cytoplasmic environment? Specialized proteins
called chaperones facilitate protein folding both by increasing its rate and by
preventing aggregation of partially folded protein intermediates. These chap-
erones come in two flavors. Chambered chaperones such as GroEL in bacteria
and TRiC in eukaryotic cells actually form a tiny private room in which an indi-
vidual polypeptide chain is free to fold with no danger of random collision with
the hydrophobic patches of others. These chambered chaperones consume ATP
in the process of opening and closing the door to the room. The second class of
chaperone exemplified by small heat-shock proteins such as HSP70 tend not to
require ATP for their action. These bind to the hydrophobic domains of nascent
proteins as they emerge from the ribosome and prevent their aggregation until
the entire protein domain has been translated and is ready to fold.

14.3.2 Diffusion in Crowded Environments

As was already illustrated in figs. 14.4 and 14.5, diffusion in crowded envi-
ronments is more subtle than its dilution-solution counterpart. Theoretical
responses to this challenging question are usually all built around the same
fundamental and intuitive idea: for a particle to hop to a new position, that
new position cannot already be occupied. A simple random walk model can
be used to illustrate the effect of crowding on molecular diffusion, though we
note that like with the treatments earlier in the chapter, this is only a modest
attempt to come to terms with the problem. To make the model concrete, as-
sume that the volume fraction occupied by the molecules is ¢ and that no two
molecules can occupy the same site. In this case the probability that a chosen
site is occupied by a molecule is ¢. Further, for simplicity, we consider only a
one-dimensional walker.

The random walk now proceeds in the usual way: at every time instant 7
the particle makes a jump to the left or to the right with equal probability. The
jump is successful only if there is no particle at the new location. Therefore the
particle jumps to the right, or to the left, with probability

L -9 (14.35)

Pright = Pleft = 2

where 1/2 is the probability for attempting the jump, while 1 — ¢ is the proba-
bility that the new site is unoccupied, thus allowing for a successful completion
of the jump. If the neighboring site is occupied the attempted jump will be
unsuccessful and the particle will stay put. The probability of that outcome is
equal to the probability that a neighboring site is occupied which results in

DPstay = 0] (1436)

which is also equal to 1 — pjump. These three possible outcomes are illustrated
in fig. 14.19

To compute the diffusion constant associated with this random walk we
evaluate the mean square displacement <a:2> as a function of time ¢. For t = 7
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Figure 14.19: Trajectories and weights for a one-dimensional random walk which
takes into account the effect of crowding.

the trajectory consists of a single step and
2 _ 2 2 _ 2
<az > (T) = a® X Dright + a” X Diegt + 0 X Pstay = a“(1 — @) . (14.37)

After time ¢ the molecule makes N = t/7 steps and the mean square displace-
ment is IV times larger than that in eqn. 14.37,

2

t
(2?) (1) = = x (a2) (1) = “7(1 — Pt . (14.38)
As we did in Chapter 13, we read off the diffusion constant from eqn. 14.38, and

D = Dy(1— ¢) (14.39)

where Dy = a?/27 is the result we obtained for the diffusion constant of a
random walker when no other molecules are present.

We see that the effect of crowding is to reduce the diffusion constant by an
amount proportional to the volume fraction occupied by the molecules. This will
in turn affect the diffusion limited on-rate. Several examples of measurements
on diffusion both of tracer molecules and of self-diffusion are shown in fig. 14.20.
Qualitatively, it is seen that the model results are consistent with the trends
revealed by the data. On the other hand, the precise functional form yielded
by the model is based upon a coarse, “mean field” description and a more
sophisticated treatment based on excluded volume of hard spheres provides a
semiquantitative explanation of the data (see Muramatsu and Minton, 1988 for
details).
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Figure 14.20: Diffusion and crowding. (A) Tracer diffusion as a function of
protein concentration. FITC-aldolase diffusing in background of aldolase (open
circles), BSA (filled circles), ovalbumin (open squares) and ribonuclease (filled
squares). (B) Self-diffusion of globular proteins as a function of the protein
concentration. Myoglobin (open circles), hemoglobin (filled circles), ovalbu-
min (open triangles), invertebrate hemoglobin (filled triangles). (A, adapted
from N. Muramatsu and A. P. Minton, Proc. Nat. Acad. Sci., 85:2984, 1988;
B, adapted from S. B. Zimmerman and A. P. Minton, Annu. Rev. Biophys.
Biomol. Struct., 22:27, 1993.)
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14.4 Summary and Conclusions

This chapter has explored one of the exciting frontiers at the interface between
cell biology and physical theory, namely, how the properties of living matter
differ from conventional solutions as a result of their extreme crowding. We
have examined two broad classes of consequences: i) how equilibrium reactions
are altered, ii) how dynamics of diffusion and biochemical rates are altered.
Though this chapter appears in the part of the book entitled “Life in Motion”,
the alert reader will notice that the majority of our calculations have centered
on equilibrium phenomena. This is a reflection of our inability to put together a
compelling set of simple models that respond to the interesting data on crowd-
ing.

14.5 Problems

. A Feeling for the Numbers: Comparing in vitro and in vivo concentra-
tions.

In the chapter, we argued that the mean spacing between molecules in an in
vitro biochemical experiment is roughly 100 nm at mM concentrations while in
the cell the spacings are a factor of ten smaller. Justify these statements with
simple estimates. The biochemical “standard state” is often taken as 1 M. Work
out the mean spacing between molecules at this concentration.

2. Effective concentrations and activity.
The effect of crowding on the chemical potential of a molecular species in
solution can be captured by the equation pu = pg + kg7 In (i—"’), where the

subscripts zero are for a reference state. The effective concentration is given by
¢, where c is the actual concentration that is present in the solution and ~ is
called the activity coefficient. The simple toy model of binding in the presence
of crowders introduced in the chapter implies a corresponding model for the
activity coefficient. Work out this activity coefficient and compare your formula
to the experimental results shown in fig. 14.21.

3. Osmotic pressure of hemoglobin

Use the approximate formula for the pressure of a gas of hard spheres, eqn. 14.11,
to extract an effective hard sphere radius for hemoglobin from the data given
in fig. 14.11. How does this effective radius compare to the dimensions of the
molecule obtained by X-ray scattering?

Relevant data for this problem is provided on the book website.

4. Depletion force between a sphere and a surface.

Compute the depletion force between a sphere of radius R and a planar
surface by carrying out the calculation indicated schematically in fig. 14.13.
The radius of the small spheres is 7.
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Figure 14.21: Crowding and the activity coefficient. Effect of hemoglobin con-
centration on its effective concentration. (Adapted from A. P. Minton,J. Biol.
Chem. 275:10577, 2001.)

5. Excluded Volume Interactions In the chapter we worked out a general

statement of the free energy for two large objects in solution and in the presence
of small depletant molecules, which was based upon the osmotic pressure of the
molecules and the volume excluded by the objects when at distance D. Repeat
that derivation leading up to the formula

G(D) = oVex (D), (14.40)

where II, = NkgT/V is the osmotic pressure of the depletant molecules. Then,
make an estimate of what this osmotic pressure is by using the concentration of
proteins inside of a cell like F. coli. To figure that out, use the fact that such a
cell has a volume of about 1 um? and roughly 2 x 10° proteins in its cytoplasm.
Using this value for II, and the excluded volume between two spheres of radius
1pum, work out the force as a function of distance and make a plot using pN
as your unit of force and nm as your unit of distance. Assume that the small
depletant molecules have a radius of 3 nm.

6. Self-avoidance in flatland. Repeat the Flory calculation from the chap-

ter (sec. 14.2.4) for DNA confined to a two-dimensional surface.

(a) Find the scaling of the size of the polymer as a function of its length incor-
porating self-avoidance.

(b) Estimate the DNA length for which self-avoidance becomes important. How
does this compare to the length of genomic DNA from a A-phage?

7. Diffusion and crowding.

In this problem we extend the one-dimensional model of diffusion in the
presence of crowding molecules (see pg. ??) to account for the difference in size
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Figure 14.22: Lattice model of tracer particles of size b diffusing in the presence
of crowding molecules of size a. The tracer particle can hop to the neighboring
tracer site only if there are no crowding molecules present in the » = b/a adjacent
crowding molecule sites. The fraction of sites occupied by crowding molecules

is ¢.

between a tracer particle (considered to be present at low concentration) and
the crowders. This situation is relevant for the data shown in fig. 14.20(A). The
tracer particles are assumed to be undergoing random walk motion on the larger
tracer lattice with lattice constant b, while the crowders are hopping between
adjacent sites of the smaller lattice, with lattice constant a (see fig. 14.22). The
two lattices are introduced to account for the difference in size between the two
molecular species.

(a) Calculate the diffusion coefficient by considering the possible trajectories,
and their probabilities, of the tracer particle. Note that the tracer can hop to an
adjacent site of the tracer lattice only if there are no crowders present. Express
your answer in terms of the diffusion coefficient Dy of the tracer particles in the
absence of crowders, the volume fraction of the crowders ¢, and the ratio of the
tracer and crowder sizes r = b/a.

(b) Plot In D/Dy as a function of the volume fraction for different values of r.
How well does this model explain the data shown in fig. 14.20(A)? To make
this comparison you will need to estimate the sizes of the molecules used in the
experiment from their molecular masses and a typical protein density which is
1.3 times that of water. The data is provided on the book Web site.

14.6 Further Reading

D. S. Goodsell, Our Molecular Nature, Springer-Verlag, New York: New
York, 1996. Goodsell’s illustrations provide a compelling, visual demonstration
of the extent of crowding in cells.

S. B. Zimmerman and A. P. Minton, “Macromolecular Crowding: Biochemical,
Biophysical and Physiological Consequences”, Annu. Rev. Biophys. Biomol.
Struct. 22, 27 (1993). Classic article that raises many of the important issues
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associated with “crowding”.

K. Luby-Phelps, “Cytoarchitecture and Physical Properties of Cytoplasm: Vol-
ume, Viscosity, Diffusion, Intracellular Surface Area”, Int. Rev. Cytology 192,
189 (2000). This article spells out the key hidden assumptions in biochemistry.

A. P. Minton, “The Influence of Macromolecular Crowding and Macromolecular
Confinement on Biochemical Reactions in Physiological Media”, J. Biol. Chem.
276, 10577 (2001). This paper lays out many of the interesting issues that arise
as a result of the crowded environment in cells.

R. J. Ellis, “Macromolecular crowding: obvious but underappreciated”, Trends
in Biochem. Sci. 26, 597 (2001). A very useful introduction to the subject of
crowding and its relevance to both equilibrium phenomena and kinetics.

D. Bray, Cell Movements: From Molecules to Motility, Garland Publish-
ing, New York: New York, 2001.

S. Asakura and F. Oosawa, “Interaction between Particles Suspended in Solu-
tions of Macromolecules”, J. Polymer Sci. 33, 183 (1958). A beautiful example
of theoretical reasoning to predict new phenomena. The authors note that “ex-
perimental proof of the reality of force derived here has not yet been obtained”,
a reminder that theoretical ideas can be useful even without the so-called “sup-
porting data”.

P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University
Press, Ithaca: New York, 1979. de Gennes gives a clear derivation of the role of
excluded volume effects in polymers.
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