
Chapter 13

A Statistical View of
Biological Dynamics

“All is flux, nothing stays still.” -Heraclitus

Chapter Overview: In Which the Random Walk Model Is Applied to
the Motion of Macromolecules

Dynamics in cells comes in a number of different forms. One of the most
important classes of dynamical process is diffusion, the random jiggling of in-
dividual molecules in solution. When many such molecules are diffusing simul-
taneously, the overall concentration field undergoes changes in space and time
that give the appearance of ordered and directed movements of molecules down
concentration gradients. The goal of this chapter is to illustrate the important
role of diffusion in living systems, to compare and contrast microscopic and
continuum descriptions of diffusion and to apply these ideas to important prob-
lems such as how the method of Fluorescence Recovery After Photobleaching
(FRAP) works and how receptors mediate signaling.

13.1 Diffusion in the Cell

Living systems are subject to incessant and tireless change. In the previous
chapter, we eased gently into the treatment of biological dynamics by consid-
ering directed movements in water, though we relied heavily on the simplifying
assumption that water can be treated as a continuous fluid rather than as a
collection of interacting molecules. We are now ready to take the next step and
consider the individual movements of discrete particles in water ranging from
molecules to organelles to viruses and the cells they attack. Over the next four
chapters, we will develop this theme of biological motions starting with the sim-
plest case applying to nonliving and living systems alike, namely, Brownian or
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670 CHAPTER 13. A STATISTICAL VIEW OF BIOLOGICAL DYNAMICS

diffusive motion. What makes such processes especially intriguing is that de-
spite the stochastic microscopic underpinnings, the conspiracy formed by huge
numbers of diffusing molecules over a large number of time steps can give the
appearance of purposeful dynamics of particles down a concentration gradient.

As discussed in section 3.4.2 (pg. 160), Brownian motion is an inevitable out-
come of the thermal jiggling of water molecules and does not indicate the activi-
ties of a living system. However, diffusive motion is always present at molecular
length scales and biological systems must either tolerate, exploit or inhibit Brow-
nian motion in order to perform directed dynamic processes. A familiar example
of the physical limits put on organisms by the process of diffusion is something
you experience with every breath you take. Human metabolism demands a
constant high concentration of oxygen supplied to mitochondria throughout the
body. Much smaller organisms that are oxygen dependent can rely simply on
diffusion of oxygen as a delivery mechanism, but this is only efficient over dis-
tances of order tens of microns.

In order to grow to sizes exceeding one meter, humans and other large an-
imals have developed elaborate mechanisms to circulate oxygen and effectively
enable its delivery to all tissues. In chap. 7 we examined hemoglobin as a fasci-
nating protein specialized for the sole purpose of carrying oxygen to parts of the
body far from the lungs. Oxygen inhaled in air can diffuse through lung tissue
over an effective distance of roughly 100 microns that is set not only by the free
diffusion of oxygen, but also by its rate of consumption by cells in the tissue.
In the lung, a fine network of capillaries surrounds each air sac and diffusion is
sufficient for oxygen to travel from inhaled air to the hemoglobin filled blood in
the capillaries. Rapid fluid circulation driven by your beating heart, carries the
oxygen around the body much more rapidly than would be possible by simple
diffusion. Reaching the tissues in the capillaries, oxygen molecules are again
able to diffuse on a scale of 100 microns. This sets the constant spacing of the
finest branches of capillaries for all mammals from mice to blue whales.

In this chapter we will make simple estimates about the distances over which
passive transport (i.e. diffusion) is effective and derive and apply the mathe-
matical formalism of diffusion.

13.1.1 Active versus Passive Transport

The cell is teeming with motion. One of the first questions that one might ask
about all of this bustling is to what extent is it random and to what extent
active and directed. As we discussed in detail in chap. 5, the interplay between
thermal and deterministic forces is one of the hallmarks of cellular dynamics.
On the thermal side of the ledger, one of the dominant effects of the thermal
forces is the very existence of diffusive motion itself. An example of the diffusion
of various ion species after the opening of an ion channel is shown in fig. 13.1.

A second example which contrasts the nature of diffusive and active trans-
port is shown in fig. 13.2. This figure shows the motion of an RNA polymerase
molecule during “free” diffusive transport within the cell as well as when it is
engaged in active motion during transcription. The hallmark of directed motion
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Figure 13.1: Schematic of the opening of an ion channel and the diffusion of
the ions as a result. The three snapshots give a qualitative illustration of the
distribution of ions as well as a depiction of the concentration as a function of
position and time.
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Figure 13.2: Comparison of diffusive and directed motions of RNA poly-
merase. (A) Free RNA polymerase molecule diffusing in a bacterial cell, (B)
one-dimensional motion of RNA polymerase along DNA characteristic of active
transport.

is the existence of some energy source. The key point of the figure is to contrast
diffusive and directed motion. Ideas like those to be developed in this chapter
are useful not only for the macromolecules of the cell, but for cells themselves.
As shown in fig. 13.3, a swimming bacterium such as E. coli when viewed at low
resolution over long times looks as though it too is undergoing a random walk
characteristic of diffusive motions. On the other hand, at short time scales, it
is really noticed that the cell undergoes a series of runs and tumbles as was
introduced in our discussion of bacterial chemotaxis in section 4.4.4 (pg. 205).
The language of random walks will be useful for thinking about a variety of
different examples.

13.1.2 Biological Distances Measured in Diffusion Times

One of the simplest and most far reaching results that will emerge from the
present chapter is the derivation of simple estimates for the time it takes for
diffusion to transport molecules to different distances. In particular, we will
show that the typical time it takes for a particle to diffuse a distance L is given
by t ' L2/D, where D is the diffusion constant of the particle. The diffusion
constant has units of length2/time, and it depends on the size of the particle, the
temperature and viscosity of the surrounding fluid. We will discuss this in detail
later in this chapter. For the moment, we examine the numerical consequences
of this simple, but important result.
The Time It Takes a Diffusing Molecule to Travel a Distance L Grows
as the Square of the Distance

Unlike in the case of ballistic motion with constant velocity where the time
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Figure 13.3: Patterns of E. coli swimming at different scales. (A) At low mag-
nification, the swimming movement of a single bacterium appears to be a ran-
dom walk, that is, a series of steps oriented at random angles. Plotting the
x-component of the bacterial position vector as a function of time will show a
chaotic series of back and forth movements. (B) At higher magnification, it is
clear that each step of this random walk is made up of very straight, regular
movements.

to travel a distance L grows linearly with the length scale of interest, diffusive
dynamics implies that the time scale grows quadratically with distance. This
result provides an opportunity for intuition building by converting distances into
the corresponding diffusion time as shown fig. 13.4. In this figure, we plot the
diffusion time as a function of the distance for D = 100 µm2/s, a characteristic
diffusion coefficient for a typical globular protein in water at room temperature.
Note that the time scale associated with diffusion over a distance L ≈ 106µm
(1 m) is 1010 s (≈ 300 years)! This should make it clear that transport in cells
and organisms requires mechanisms other than diffusion. We will come back to
this point when thinking about molecular motors in chap. 16.
Diffusion Is Not Effective Over Large Cellular Distances

Though diffusion is clearly a part of the overall machinery associated with
cellular dynamics, as shown in fig. 13.5, there are also instances where diffusive
motion is too slow to link different regions of the cell. One of the most dramatic
examples of this is illustrated by nerve cells as was already introduced in fig. 3.3
(pg. 127). In fig. 13.5(A), we show the motion of a molecule by random jiggling
along an axon. Using results like those shown in fig. 13.4, it is seen that for
diffusion to be effective over the meter length scale implies a time scale that
is absurdly long. On the other hand, as will be seen more explicitly in coming
chapters, if the molecule of interest is transported in a directed fashion by virtue
of molecular motors, the time scale of the resulting motion is shortened by many
orders of magnitude.
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Figure 13.4: Diffusion time as a function of the distance for a typical value of
the diffusion coefficient (D = 100 µm2/s) of a protein in water. The straight
line on the log-log plot has a slope of two since time and distance are related by
t = x2/D.
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Figure 13.5: Transport within a nerve cell. (A) Passive transport of a molecule
by diffusion. (B) Active transport of a molecule through directed motion of a
molecular motor.
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Figure 13.6: Schematic of the FRAP experiment. A particular region of the cell
is photobleached, effectively destroying the fluorescent molecules in that region
(as shown in the second frame). Recovery of fluorescence in the photobleached
region results from fluorescent molecules from elsewhere in the sample diffusing
into the photobleached region.

To better understand diffusive dynamics (especially in living cells), we need
a sense of what experimental techniques can be used to probe such dynamics.
In this ”Experiments Behind the Facts” section, we examine several especially
useful techniques.

• Experiments Behind the Facts. There are a number of different tech-
niques that permit the investigation of diffusive dynamics within cells. In
this box, we consider three examples of some of the ingenious techniques
that have been introduced to measure diffusion: fluorescence recovery after
photobleaching (FRAP), single-particle tracking and fluorescence correla-
tion spectroscopy (FCS).

FRAP takes advantage of the annoying feature of fluorescently labeled
molecules that when they are exposed to too much light they no longer
fluoresce, since the fluorophores can only emit a limited number of pho-
tons. In this instance, this weakness is turned into a strength by virtue
of the fact that it can be used to measure diffusive dynamics within cells.
The technique is illustrated schematically in fig. 13.6. In particular, a
laser is focused on a certain spot in the cell with characteristic dimensions
of a micron or larger. After the laser pulse, other fluorescently labeled
molecules from elsewhere within the cell diffuse back into the space that
had previously been photobleached by the laser light. By watching the
time course of the recovery of fluorescence, it is possible to extract features
of the diffusive dynamics.

An example of the appearance of cells during the FRAP experiment is
shown in fig. 13.7. In the series of snapshots, the bleached region shows in-
creasing fluorescence over time as new molecules from outside the bleached
region diffuse into that region in a process known as recovery. Section
13.2.3 (pg. 690) explores the mathematical foundations of this technique
and describes the insights it provides.
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Figure 13.7: FRAP experiment showing recovery of a GFP labeled protein
confined to the membrane of the endoplasmic reticulum. The boxed region
is photobleached at time instant, t = 0. In subsequent frames, fluorescent
molecules from elsewhere in the cell diffuse into the bleached region. (Adapted
from J. Ellenberg et al., J. Cell Biol., 138:1193, 1997.)

A more direct technique for monitoring diffusive dynamics is through ex-
plicit particle tracking in which individual trajectories are monitored. This
technique is as old as the subject of Brownian motion itself, and was used
as the basis of measuring atomic dimensions (and Avogadro’s number) in
the classic experiments of Perrin (1990). The notion of trajectory mapping
is of widespread interest and has been used on problems ranging from the
motions of bacteria to the wandering of individual proteins along DNA.
In this case, the idea usually involves video microscopy in which images
of the moving species of interest are captured at a fixed interval and the
corresponding trajectory is constructed. In the bacterial setting, the na-
ture of the trajectories of motile cells reveals that they have preferences
for moving in the direction of certain nutrients, a phenomenon known as
chemotaxis to be taken up in detail in chap. 19.

Another technique of great utility for probing diffusive dynamics within
cells is fluorescence correlation spectroscopy (FCS). The idea of FCS is to
measure the fluorescence intensity in a small region of the cell as a function
of time as shown in fig. 13.8. The intensity fluctuates as the fluorescent
molecules enter and leave the region under observation. By analyzing the
temporal fluctuations of the intensity through the use of time dependent
correlation functions, the diffusion constant and other characteristics of
the molecular motion can be uncovered.

13.1.3 Random Walk Redux

The present chapter is a continuation of the story already begun in chap. 8. One
of the key themes of the book is the idea that certain models have superstar
status because of their ability to shed light on a range of different problems.
Here we take a second look at the random walk model, a model with such hall
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Figure 13.8: Schematic of the FCS technique. The intensity of fluorescent light
coming from illuminated molecules is measured as a function of time. The
intensity varies in time as a result of molecules diffusing in and out of the
observation region, shown in light gray.

of fame status that it gets double billing. Recall that in chap. 8 we invoked
the random walk model as a scheme for examining the structure of long chain
molecules. In this chapter, we examine a second powerful role for random walk
models, namely, as the basis for considering the problem of diffusion. One of the
interesting contrasting perspectives that will be seen to emerge when comparing
the results of chap. 8 and the present chapter is that in the earlier case, we
invoked the random walk model as an equilibrium model. In this chapter, it is
doing double time as a model of nonequilibrium dynamics.

The logic of the remainder of the chapter will be to develop the formalism
of diffusive dynamics from two distinct perspectives. First, we will think in
macroscopic terms by smearing out the collection of diffusing molecules into
a concentration field and then by writing macroscopic evolution equations for
the changes in the concentration over space and time. The second perspective
will be strictly microscopic and will consider the individual hopping events of
single particles as they wander aimlessly through the volume of interest (usually
the cell itself). Interestingly, these two views will be reconciled as it will be
seen that the conspiracy of all of the randomly wandering molecules together
gives the macroscopic appearance of directed motion driven by concentration
gradients. Once we have these diffusive models in hand, we will turn to a range
of interesting biological applications of these ideas.

In section 5.5.2 (pg. 285), we introduced the molecular driving forces which
drive a system towards equilibrium. Our argument was that if we remove some
internal constraint on a system (such as those shown in fig. 5.27 (pg. 286)),
the system will change until it reaches some terminal privileged state known
as the equilibrium state. Prior to reaching the equilibrium state, there is an
imbalance in temperature or pressure or chemical potential. For the case of
mass transport of interest here, we focus on the the fact that for a system that
is not in equilibrium with respect to mass transport, the chemical potential
is not equal across the system and this serves as a driving force for diffusive
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Figure 13.9: Schematic illustrating the definition of a concentration field. The
system is divided up into small boxes of volume ∆V . The overall concentration
field is changing sufficiently slowly that in each small box the “concentration”
is constant.

motion.

13.2 Concentration Fields and Diffusive Dynam-
ics

Our first foray into the world of diffusive dynamics will be founded upon the
idea of macroscopic concentrations and fluxes. The notion of a concentration
has already been used a number of times throughout the book and will con-
tinue to serve as one of the key conceptual tools for much of what happens
in the remainder of the book as well. As a reminder, fig. 13.9 shows that the
concentration field tells us the average number of molecules per unit volume.
More precisely, the conceptual idea is that we divide space up into a bunch of
small boxes (such as shown in fig. 13.9) with the boxes large enough to include
many molecules, but small enough so that the density is nearly uniform over
the scale of the box. We use the notation c(r, t) to signify the concentration in
a box centered at position r in three-dimensional space (with units of number
of particles per unit volume) and c(x, t) to signify the concentration field in
one-dimensional problems (with units of number of particles per unit length).

With the idea of a concentration in hand, we can consider the origins of
diffusive dynamics. In particular, we begin by noting that in this macroscopic
world view, diffusive dynamics is the result of concentration gradients. What we
mean precisely by the term “gradient” is a spatial variation in the concentration
field. Fig. 13.10 shows a simple concentration profile where on the left hand side
of the domain of interest, the concentration of the molecule of interest is high
while on the right hand side of the domain of interest, the concentration is low.
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Figure 13.10: Example of a concentration profile. The plot shows the variation
of the concentration with distance illustrating the idea of a position dependent
concentration.

The other key quantity of interest for our macroscopic description of diffusion
is the flux. Flux can be thought of conceptually as shown in fig. 13.11 where
it is seen that we identify a plane with some area A and then count how many
molecules cross that area per unit time. That is the component of the flux
vector in that direction. In its full generality, the idea is more subtle than this
since in three-dimensions, the flux is actually a vector whose components give
the flux across planes that are perpendicular to the x, y and z directions. The
goal of our thinking is to determine what amounts to an “equation of motion”
which tells how the concentration field changes in both space and time.
Fick’s Law Tells Us How Mass Transport Currents Arise as a Result
of Concentration Gradients

As a first cut, we treat this problem on strictly phenomenological grounds.
Later in the chapter we will show how this phenomenological law can be derived
from microscopic considerations. For the time being, we restrict our attention
to one dimensional concentration profiles so that the resulting mathematics is
simplified. Fick’s first law is the assertion that the flux is linearly related to the
concentration gradient, namely,

j = −D
∂c

∂x
(13.1)

where j is a current density per unit time, which can be thought of as the
number of particles crossing unit area per unit time and where D is the diffusion
coefficient. (For a brief review of partial derivatives we refer the reader to the
Math Behind the Models on pg. 270.) The minus sign in Fick’s law guarantees
that the particle flux is in the right direction. For example, if we consider the
profile shown in fig. 13.10, the concentration profile decreases with increasing
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Figure 13.11: Schematic of the flux concept. In one dimension, space is dis-
cretized into a series of planes separated by a distance ∆x. Particles can hop
left or right and the flux across the plane between two adjacent planes is com-
puted by counting the net number of particles crossing unit area per unit time.

x (i.e. ∂c/∂x < 0). On the other hand, it’s clear that molecules flow from the
region of higher concentration to lower concentration, down the concentration
gradient, in the positive x direction. The units of D can be determined by
examining the units of all of the other quantities in Fick’s law. Note that it is
conventional notation to characterize the units of a quantity D as [D] and the
reader is asked to bear this in mind since the same notation is used to specify
concentrations. Exploiting this scheme for Fick’s law, we have

[j] =
1

L2T
, (13.2)

which signifies number per unit area per unit time. The units of the right side
of the equation are[

∂c

∂x

]
=

Number of particles/L3

L
=

Number of particles
L4

. (13.3)

By rearranging our equation, we are left with the units of the diffusion coefficient
which are L2

T . Note that the units of the diffusion coefficient are independent of
the dimensionality of space. Typical values for the diffusion constant are shown
in table 13.1.

Our goal is to assess the rate at which the concentration in a small region
changes over time. For concreteness, consider the box shown in fig. 13.12 where
we have specialized to the case in which the flux is only in the x-direction.
This means that particles are flowing in and out on the two faces of the cube
that are perpendicular to the x-direction. The basic strategy is to assess how
many particles enter or leave at the face at position x and similarly across the
face at position x + ∆x. We define Nbox(x, y, z, t) as the number of particles
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Molecule Diffusion coefficient
potassium ion in water ≈ 2000 µm2/s

GFP in E.coli ≈ 7 µm2/s
DNA in yeast 5 × 10−4 µm2/s

Table 13.1: Table of diffusion coefficients for different molecules. (Data for
GFP from M. B. Elowitz et al., J. Bacteriol., 181:197, 1999 and yeast data from
W. F. Marshall et al., Curr. Biol., 7:930, 1997.
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Figure 13.12: Mass transport out of a small volume element. The fluxes across
the faces of the box change the number of particles in that volume.

in the box at time t and note that this can be computed as Nbox(x, y, z, t) =
c(x, y, z, t)∆x∆y∆z. Since mass is conserved (i.e. we are not yet thinking about
the case where there are reactions which can alter the number of particles of a
given species), the change in Nbox(x, y, z, t) can only arise from the fluxes across
the faces of the box.
The Diffusion Equation Results From Fick’s Law and Conservation
of Mass

First, note that the change in the number of particles, Nbox, per unit time
is the change in concentration per unit time, times the volume of the box, and
can be written as

∂Nbox

∂t
=

∂c

∂t
∆x∆y ∆z. (13.4)

By mass conservation, this result has to be equal to the number of particles
going into the box per unit time, j(x, y, z)∆y ∆z minus the number of particles
going out of the box per unit time, j(x + ∆x, y, z)∆y ∆z and is reckoned as

∂c

∂t
∆x∆y ∆z = j(x, y, z)∆y ∆z − j(x + ∆x, y, z)∆y ∆z. (13.5)
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We can then Taylor expand j(x+∆x, y, z) to first order in ∆x (see the discussion
of Taylor expansions on pg. 273) to give

∂c

∂t
∆x∆y ∆z ' j(x, y, z)∆y ∆z −

[
j(x, y, z) +

∂j

∂x
∆x

]
∆y ∆z. (13.6)

If we now collect terms, the local statement of conservation of mass can be
written as

∂c

∂t
= − ∂j

∂x
. (13.7)

Note that the significance of this equation is that it is a statement about the
relation between the flux and concentration in every little neighborhood of the
volume of interest.

By combining the statement of mass conservation (eqn. 13.7) and the relation
between flux and concentration gradient (eqn. 13.1), we can generate a very
useful relation, namely,

∂c

∂t
= D

∂2c

∂x2
, (13.8)

which is the classic law of diffusion in one-dimension. Note that to derive this
particular form of the diffusion equation we had to assume that D is independent
of concentration. This single equation embodies two key ideas: i) mass conser-
vation and ii) a material law relating flux and concentration. Note that the first
of these ideas is independent of material particulars while Fick’s law need not
be satisfied in all circumstances since flux might depend on concentration in a
more complicated, non-linear fashion.

13.2.1 Diffusion by Summing Over Microtrajectories

The diffusion equation derived in the previous section can be obtained com-
pletely differently from a microscopic perspective. The key idea in this case is
to consider the motions of individual diffusing molecules (or particles) and to
sum over all of the possible microscopic trajectories of the system. The overall
macroscopic response emerges as the average over all of these underlying micro-
trajectories. An example of one particular microtrajectory for a one-dimensional
diffusion problem is shown in fig. 13.13.

Particles or fluorescently labeled molecules observed in a microscope are seen
to undergo random jiggling, with each particle suffering a different trajectory.
We now place these random trajectories front and center and elaborate on a
quantitative treatment of diffusion that parallels the states and weights approach
to computing equilibrium probabilities already used throughout the book. In
later chapters we will make use of this ”trajectories and weights” approach
to random dynamics of diffusing particles, molecular motors, polymerization
motors, etc. Here we illustrate this procedure on the simple diffusion process.
The key idea is to describe a random trajectory by the probability density for
finding a particle at a particular position at a given instant in time, p(x, t). In
particular, the probability of finding the particle in a box of width ∆x centered
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Figure 13.13: Schematic of a one-dimensional array of random walkers. Space
is discretized into a set of planes.
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Figure 13.14: Trajectories and weights for simple diffusion. A given diffusing
particle can do one of three things at every time step: jump left, jump right or
stay put. Each of these microtrajectories has an associated statistical weight.

at point x at time t is given by p(x, t)∆x. To simplify the math we specialize
to one-dimensional motion, and discretize space and time. In this case, particle
trajectories can be compactly denoted as long lists of integers which specify the
position of the particle in units of a at different instants of time, measured in
units of ∆t. To derive the governing equation for the probability p(x, t) we only
have to specify the weights of all realizations of microtrajectories that can occur
over time ∆t.

Microtrajectories and their corresponding weights are shown in fig. 13.14.
The diffusing particle, over time ∆t, either stays put, or jumps to the left or
right a distance a, where we imagine that the particles can only occupy lattice
sites on a lattice with spacing a. The probability of making a jump in either
direction is k∆t, while the probability of staying put is 1 − 2k∆t, assuring
that the probabilities for all three possible outcomes add up to one. We can
use this model to compute a number of quantities associated with the particle
trajectories. We begin by computing the mean and the variance of the particle
displacement over time t. In time t the particle makes a total of N = t/∆t steps,
each accompanied by a displacement ∆xi, i = 1, 2, · · ·N . The total displacement
∆xtot = ∆x1 + ∆x2 + · · ·∆xN , is a sum of independent identically distributed
random variables. Therefore, as shown in the “Tricks Behind the Math” box at
the end of this section, the mean and the variance of ∆xtot are simply N times
the mean and variance of ∆x, the displacement for one time step. These are
readily calculated from fig. 13.14 by summing over microtrajectories. We obtain
the mean by summing over the three microtrajectories that can occur during a
given time step as

〈∆x〉 = a× k∆t + (−a)× k∆t + (0)× (1− 2k∆t) = 0. (13.9)

We can compute the variance as the average of the square of displacement once
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again by summing over all of the eventualities at a given instant as〈
∆x2

〉
= a2 × k∆t + (−a)2 × k∆t + (0)2 × (1− 2k∆t) = 2a2k∆t. (13.10)

The variance of the total displacement is N = t/∆t times greater resulting in〈
∆x2

tot

〉
= 2(a2k) t (13.11)

which is the result for diffusive spreading if we identify a2k with the diffusion
constant D.

The trajectories and weights approach can also be used to derive the govern-
ing equation for p(x, t), the probability density that the particle is at position
x at time t. The idea is to sum over all the microtrajectories starting at time
instant t that result in the particle being at position x at time t + ∆t. For this
to happen the particle needs to be at position x (if it is to stay put on the next
time step), x − a (if it is to jump to the right at the next time step), or x + a
(if it is to jump to the left at the next time step) at time t, and the associated
probabilities are p(x, t), p(x−a, t), and p(x+a, t), respectively. Using the prob-
abilities in fig.13.14, we can write p(x, t + ∆t) as a sum over microtrajectories,

p(x, t + ∆t) = (1− 2k∆t)× p(x, t)︸ ︷︷ ︸
stay put

+ k∆t× p(x− a, t)︸ ︷︷ ︸
jump right

+ k∆t× p(x + a, t)︸ ︷︷ ︸
jump left

(13.12)
which leads to a discrete differential (or, difference) equation for p(x, t). Also,
in writing the above equation we have used the so-called Markov property of
the process, namely the fact that the probability of a microtrajectory at time t
is independent of the previous history of the particle; this is what allows us to
express the probability of each outcome as a product of probabilities. To arrive
at the more familiar, continuous diffusion equation we once again make use of
the Taylor expansion

p(x, t + ∆t) ≈ p(x, t) + ∆t
∂p(x, t)

∂t

p(x± a, t) ≈ p(x, t)± a
∂p(x, t)

∂x
+

a2

2
∂2p(x, t)

∂x2
. (13.13)

Substituting these formulas into eqn.13.12 gives

∂p(x, t)
∂t

= (a2k)
∂2p(x, t)

∂x2
. (13.14)

This is the diffusion equation derived in the previous section from Fick’s law,
with D = a2k, the same identification we made above.

Like with many fundamental results, there are multiple ways of deriving the
diffusion equation. It is instructive to examine yet another way of deriving this
equation which is another way of summing over all of the microscopic trajectories
available to the system at every instant. The approach adopted here is that
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taken by Einstein in one of his classic 1905 papers. We imagine that time is
sliced up into intervals of length ∆t and that at every time step, particles can
either jump or stay put. Einstein starts by writing the concentration at position
x and time t + ∆t as the following integral

c(x, t + ∆t)︸ ︷︷ ︸
concentration at x now

=
∫ +∞

−∞
c(x + ∆, t)︸ ︷︷ ︸

concentration at x + ∆ earlier

φ(∆)︸ ︷︷ ︸
probability of a jump of length ∆

d∆.

(13.15)
What this integral says precisely is that to find the concentration at position
x at time t + ∆t we need to sum over all of the possible ways that particles
could have gotten there. In particular, at time t, the particle could have been at
position x + ∆ and then jumped to position x during the time step. (Note: we
follow Einstein’s notation precisely, so the reader is warned that what Einstein
calls ∆ is our ∆x in our earlier derivation of the diffusion equation). The
microtrajectory that we described above can be true for any choice of ∆. This
means that in order to obtain the concentration at x we have to sum over all
of the possible jumping events with each one weighted by φ(∆), the probability
of jumping a distance ∆. Effectively, Einstein considers the possibility that
particles can jump any distance, whereas in our earlier derivation, we permitted
jumps only of size a. Einstein makes two further assumptions. First, he posits
a symmetry in the jump probabilities of the form

φ(∆) = φ(−∆), (13.16)

which states that the probability of jumping a certain distance to the right is
the same as the probability of jumping that same distance to the left, i.e. that
there is no bias in the chosen direction. If we included a bias we would get a
driven diffusion equation, which we will encounter in the context of molecular
motors. The other key feature of the distribution φ(∆) is∫ +∞

−∞
φ(∆) d∆ = 1, (13.17)

which guarantees that the molecules do something at every time step. We now
make a familiar refrain by Taylor expanding both terms appearing in eqn. 13.15,
which results in

c(x, t + ∆t) ' c(x, t) +
∂c

∂t
∆t (13.18)

and

c(x + ∆, t) ' c(x, t) +
∂c

∂x
∆ +

1
2

∂2c

∂x2
∆2. (13.19)

If we now substitute these results into eqn. 13.15 we find

c(x, t)+
∂c

∂t
∆t ' c(x, t)

∫ +∞

−∞
φ(∆) d∆+

∂c

∂x

∫ +∞

−∞
∆·φ(∆) d∆+

1
2

∂2c

∂x2

∫ +∞

−∞
∆2φ(∆) d∆.

(13.20)
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The right hand side of this equation can be examined term by term. The integral
in the first term is one by eqn. 13.17. As a result, we have a term of the form
c(x, t) on both sides of the equation that will cancel out of the final result. The
second term is zero because we are integrating an odd function, ∆, times an
even function, φ(∆). If we define the integral in the last term as

D ≡ 1
2∆t

∫ +∞

−∞
∆2φ(∆) d∆ (13.21)

we can write equation 13.21 as

∂c

∂t
= D

∂2c

∂x2
(13.22)

which is precisely the same result for the one-dimensional diffusion equation
that we obtained earlier.

• The Tricks Behind the Math: Averaging Sums of Variables. In-
dependent identically distributed random variables σ1, σ2, . . . , σN all have
the same probability distribution, P (σ), and their joint probability distri-
bution factorizes,

Pjoint(σ1, σ2, . . . , σN ) = P (σ1)× P (σ2)× . . .× P (σN ) . (13.23)

The factorization property simply means that the probability that one of
the random variables takes on a particular value is independent of all the
other random variables in the bunch. If the variables σi take on two values,
say 1 and 0, this mathematical construct could be used, for example, to
describe N non-interacting ion-channels, with 0 and 1 corresponding to
a channel being closed or open. Beyond this example there are many
more that we will encounter so we take a brief interlude here to derive two
useful identities for the sum of independent identically distributed random
variables.
We begin by showing that the average value of the sum, σ1+σ2+ . . .+σN ,
is equal to N times the average of one of the random variables (since they
are identical, it doesn’t matter which one we choose). We start by writing
the average of the sum using the joint probability distribution:〈

N∑
i=1

σi

〉
=
∑
σ1

∑
σ2

· · ·
∑
σN

[
N∑

i=1

σiPjoint(σ1, σ2, . . . , σN )

]
; (13.24)

Then, we make use of the factorization property given in eqn. 13.23, and
the above equation can be written as〈

N∑
i=1

σi

〉
=

∑
σ1

σ1P (σ1)
∑
σ2

P (σ2) . . .
∑
σN

P (σN ) +∑
σ1

P (σ1)
∑
σ2

σ2P (σ2) . . .
∑
σN

P (σN ) + . . .∑
σ1

P (σ1)
∑
σ2

P (σ2) . . .
∑
σN

σNP (σN ) (13.25)
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Finally, using the fact that all the probabilities must add up to one
(
∑

σ P (σ) = 1) and the fact that all the random variables are identical,
we arrive at the desired result, namely,〈

N∑
i=1

σi

〉
= N

∑
σ

σP (σ) = N 〈σ〉 . (13.26)

Next, we compute the variance of the sum of N independent identically
distributed random variables. The variance is the average of the square
of the difference between the random variable and its mean

var

N∑
i=1

σi =

〈[
N∑

i=1

σi −

〈
N∑

i=1

σi

〉]2〉
. (13.27)

Using the average computed above, and expanding the square using the
binomial formula, (a − b)2 = a2 − 2ab + b2, we can simplify the above
equation to read

var

N∑
i=1

σi =

〈[
N∑

i=1

σi

]2〉
−N2 〈σ〉2 . (13.28)

Writing the square in the above equation as a product of two equal terms,
and being mindful of using different summation variables i and j in the
two sums, we arrive at

var

N∑
i=1

σi =

〈
N∑

i,j=1

σiσj

〉
−N2 〈σ〉2 . (13.29)

Now, to compute
〈∑N

i,j=1 σiσj

〉
we break up the double sum into two

pieces, one with N terms where i = j, and the other with the remaining
N2 −N terms where i 6= j:〈

N∑
i,j=1

σiσj

〉
=

〈
N∑

i=1

σ2
i

〉
+

〈
N∑

i 6=j;i,j=1

σiσj

〉
(13.30)

Since all the σi’s are independent, for i 6= j we have < σiσj >=< σi ><
σj >=< σ >2. Putting all this back into eqn.(13.29), we arrive at the
result

var

N∑
i=1

σi = N
〈
σ2
〉
+(N2−N) 〈σ〉2−N2 〈σ〉2 = N

[〈
σ2
〉
− 〈σ〉2

]
= N var(σ).

(13.31)
In other words, the variance of the sum of N independent identically
distributed random variables is equal to N times the variance of one.



13.2. CONCENTRATION FIELDS AND DIFFUSIVE DYNAMICS 689

position (x)

c(
x
,t

)

Figure 13.15: Time evolution of the concentration field. The plot shows the
solution for the diffusion equation at different times for an initial concentration
profile that is a spike at x = 0.

13.2.2 Solutions and properties of the diffusion equation

Concentration Profiles Broaden Over Time in a Very Precise Way

Now that we have the diffusion equation in hand, it is of great interest to
examine its biological consequences. One of the most useful tools corresponds
to knowing how to solve this equation for a spike of concentration at the origin
at time t = 0. In particular, if at time t = 0 we start with N molecules in an
infinitesimally small region around x = 0, the concentration profile will evolve
in the following way

c(x, t) =
N√
4πDt

e−
x2
4Dt . (13.32)

The solution itself is left to the problems at the end of the chapter. Further, by
dividing by c0, this equation can then be interpreted as giving the probability
density for finding a particle between x and x+dx. The solution quoted above is
often denoted as the Green’s function of the diffusion equation and its evolution
can be seen in fig. 13.15. This equation for the concentration tells us that the
profile has the form of a Gaussian. The width of the Gaussian is 4Dt and hence,
it increases linearly with time. One of the most beautiful features of a solution
like this is that once it is known, by exploiting the linearity of the diffusion
equation itself, we are then free to write the solution for an arbitrary initial
distribution of diffusing molecules. This idea will be taken up in the problems
at the end of the chapter.

Note in fig. 13.15 that the mean position of the concentration distribution
does not change with time. This corresponds to the absence of a drift term,
though drift terms will form a centerpiece of our discussion in chap. 16 when
we turn to the dynamics of molecular motors. On the other hand, even in
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the absence of drift, the diffusive dynamics are rich and interesting. One of
the most interesting quantities to feature is the width of the distribution, 〈x2〉,
which broadens over time. Since the distribution is Gaussian, we can essentially
read off the dynamics of the width, but we take this opportunity to compute it
explicitly since it is instructive both physically and mathematically. To compute
this broadening, we need to evaluate 〈x2〉 as

〈x2〉 =

∫ +∞
−∞ x2 N√

4πDt
e−

x2
4Dt dx

N
=

1√
4πDt

∫ +∞

−∞
x2e−

x2
4Dt dx, (13.33)

where we made use of the probability distribution for finding a particle at posi-
tion x at time t, which is related to the concentration distribution, eqn. 13.32,
by c(x, t)/N . Using the trick introduced in the “Tricks Behind the Math” box
below, we can evaluate this integral straightaway to find

〈x2〉 =
1√

4πDt

∫ +∞

−∞
x2e−

x2
4Dt dx =

1√
4πDt

√
π

2
(4Dt)3/2 = 2Dt. (13.34)

Note that this is the key result that we have already invoked a number of times
(for example, see section 13.1.2 on pg. 672) throughout the book as the basis
of intuition about diffusive processes. In particular, this is the result that we
have argued reveals how diffusion times scale with the square of the distance
over which diffusion must act.

• The Tricks Behind the Math: Differentiating With Respect to
a Parameter. Sometimes the knowledge of one integral in terms of a
parameter appearing in the integrand can be used to compute a number of
related integrals obtained by differentiating with respect to the parameter
in question. Indeed, we already invoked this trick in our discussion of the
partition function (pg. 307. In the case of the Gaussian integral (discussed
on pg. 334), ∫ ∞

−∞
e−αx2

dx =
√

π

α
, (13.35)

we can differentiate both sides of the equation with respect to the param-
eter α to obtain∫ +∞

−∞
x2e−αx2

dx = − ∂

∂α

∫ +∞

−∞
e−αx2

dx = − ∂

∂α

√
π

α
=

√
π

2α3/2
. (13.36)

Further differentiation with respect to α leads to result for integrals with
x to any even power in the integrand.

13.2.3 FRAP and FCS

One of the merits of the techniques described earlier in the chapter (pg. 675) for
measuring diffusion is that they can be readily applied to living cells. The dif-
fusive behavior of a molecule in the environment of a cell will depend upon the
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Figure 13.16: FRAP data from a bacterium labeled with green fluorescent pro-
tein. (A) The images show an elongated bacterium with the prebleach image on
the left and subsequent images taken at different times (reported in seconds) af-
ter photobleaching. The arrow shows the photobleached region. (B) The curves
shows the difference in intensity before and after photbleaching, along the long
axis of the bacterium. The black curve is measured right after photobleaching
while the gray curve was obtained from an image acquired four seconds later.
(Adapted from C. W. Mullineaux et al., J. Bacteriol., 188:3442, 2006.)

physical structure of the molecule itself and also on the structure of its environ-
ment as well as its interactions with other molecules. In the following chapter
we will explore some specific cases of how information can be gleaned about
cell structure by examining deviations from the diffusive behavior expected in
dilute solutions. Here we start with a simple experimental case examining the
motion of tracer molecules such as the green fluorescent protein (GFP) within
living cells where the tracer molecule does not form any specific binding reac-
tions with cellular constituents. An example of this sort of experiment is shown
in fig. 13.16 for an experiment in which elongated E. coli cells are photobleached
and the resulting fluorescence intensity is measured over time.

To calculate the expected time evolution of GFP following photobleaching,
consider a one-dimensional E. coli such as might be found in the gut of a spher-
ical cow (see fig. 20.2 (pg. 1083)). We leave the more realistic two-dimensional
problem to the end of the chapter, though we note that the key features of the
problem are already revealed in the one-dimensional case. We consider a one-
dimensional model of a FRAP experiment. The fluorescent molecules diffuse in
a box of length 2L, which for convenience we place between −L and L along the
x-axis. The initial concentration is equal to c0 on the intervals −L < x < −a
and a < x < L and is zero on the interval −a < x < a as is shown in fig. 13.17.
In other words we imagine that we start with a uniform concentration c0 of fluo-
rescent molecules in the width-2L box and then we photobleach all the molecules
in a smaller box of size 2a by exposing them to intense laser light. If we were to
look under a microscope we would observe the recovery of fluorescence as the
non-bleached molecules made their way into the box of size 2a. Based on the
speed of fluorescence recovery the diffusion constant of the fluorescent molecules
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Figure 13.17: One-dimensional model of Fluorescence Recovery After Photo-
bleaching (FRAP). (A) Concentration profile for different times after photo-
bleaching. The bleached region is half the size of the confining region, 2L. (B)
Fluorescence recovery as a function of time for different sizes of bleached regions.
Recovery is fastest when the bleached region is half the size of the confining re-
gion. In both graphs, time is measured in units of L2/D and length in units of
L.

can be measured.
We can use the simple one-dimensional model to gain quantitative insight

into the recovery process. To compute the recovery curves we first solve the
diffusion equation,

∂c

∂t
= D

∂2c

∂x2
(13.37)

for the concentration of fluorescent molecules c(x, t), with the initial concentra-
tion after photobleaching given by

c(x, 0) =

 c0 for − L < x < −a
0 for − a < x < a
c0 for a < x < L

(13.38)

We also impose the boundary condition ∂c/∂x = 0 for x = ±L which says
that the flux of fluorescent molecules vanishes at the boundaries of the one-
dimensional cell (no material flows in or out). This mimics the real-life situation
with fluorescent proteins confined to the volume of the cell, to the cell membrane,
or some other sub-cellular structure.

To solve the diffusion equation with the prescribed initial and boundary
conditions we begin by expanding the concentration profile, c(x, t), in terms of
cosine functions (introduced in the “Math Behind the Models” on pg. 420),

c(x, t) = A0(t) +
∞∑

n=1

An(t) cos
( x

L
nπ
)

. (13.39)

This expansion guarantees that the boundary conditions are met, namely each
of the functions An(t) cos(xnπ/L) has vanishing first derivatives at x = ±L.
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Furthermore, since the initial concentration profile takes the same values for
positive and negative x, it is readily expanded in cosine functions. The solution
of the diffusion equation now boils down to finding the functions An(t) such
that both eqn. 13.37 and the initial condition, eqn. 13.38 are satisfied.

To proceed, we substitute the series expansion of c(x, t) into the diffusion
equation. This yields,

∂A0

∂t
+

∞∑
n=1

∂An(t)
∂t

cos
( x

L
nπ
)

= D

∞∑
n=1

(
−An(t)

n2π2

L2

)
cos
( x

L
nπ
)

(13.40)

which due to the orthogonality property of the cosine functions for different n
(see eqn. 13.44 below) turns into a set of independent differential equations

∂A0

∂t
= 0

∂An

∂t
= −Dn2π2

L2
An(t) (n ≥ 1) . (13.41)

The solution to each one of these (infinite in number) equations is an exponential
function

An(t) = An(0)e−
Dn2π2

L2 t (13.42)

which when substituted into eqn.(13.39) gives

c(x, t) = A0(0) +
∞∑

n=1

An(0)e−
Dn2π2

L2 t cos
( x

L
nπ
)

. (13.43)

The final piece of the puzzle is the determination of the constants An(0).
To compute the initial amplitudes of the cosine functions we once again

resort to the orthogonality property of these functions∫ L

−L

cos
( x

L
nπ
)

cos
( x

L
mπ
)

dx = Lδn,m . (13.44)

In particular we multiply both sides of eqn. 13.43 with cos
(

x
Lnπ

)
, for different

values of n, and then integrate over x, which provides us with the equations

A0(0) =
1

2L

∫ L

−L

c(x, 0)dx

An(0) =
1
L

∫ L

−L

c(x, 0) cos
( x

L
nπ
)

dx (n ≥ 1) , (13.45)

for the initial amplitudes. Substituting the initial concentration profile, c(x, 0),
into these equations, and after performing the integrals, we arrive at

A0(0) = c0
L− a

L

An(0) = −2c0
sin(nπa/L)

nπ
(n ≥ 1) . (13.46)
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Putting these results back into the derived formula for c(x, t), eqn. 13.43 gives
us the solution for the concentration profile as a function of time,

c(x, t) = c0

[
1− a

L
−

∞∑
n=1

2 sin(nπa/L)
nπ

e−
Dn2π2

L2 t cos
( x

L
nπ
)]

, (13.47)

which is plotted as a function of x for different times (and setting a = L/2) in
fig. 13.17(A). Note that at long times, such that t is much greater than L2/D,
which is the diffusion time for a box of length L, the concentration profile tends
to a constant value equal to c∞ = c0(1 − a/L). This can be understood in
a very simple way. Namely, at long times we expect diffusion to make the
concentration profile uniform over the 2L interval. Then, the fact that the
number of fluorescent molecules does not change in time leads to the equation,

c∞(2L) = c0[2(L− a)] (13.48)

which gives the computed value of the concentration at long times.
Given the concentration profile as a function of time we are now in the

position to compute a FRAP recovery curve within our simple one-dimensional
model. We ask, how many fluorescent molecules are there in the bleached region
as a function of time? In our simple model the bleached region is a box that
spans from −a to a on the x-axis. We already know that at t = 0, the number
of fluorescent molecules in the bleached region is Nf = 0 while at times much
longer than the diffusion time this number will tend to c∞(2a). For intermediate
times we need to compute

Nf (t) =
∫ a

−a

c(x, t)dx . (13.49)

Substituting our result for the concentration profile given in eqn. 13.47 into the
integral leads to an expression for the recovery curve:

Nf (t) = 2c0a(1− a

L
)

[
1− 1

a/L(1− a/L)

∞∑
n=1

2
n2π2

sin2(nπa/L)e−
Dn2π2

L2 t

]
.

(13.50)
Note that at very long times Nf approaches c∞(2a) = 2c0a(1 − a/L), as ex-
pected.

In fig. 13.17(B) we plot a FRAP recovery curve normalized by 2c0a(1−a/L),
the total number of fluorescent molecules in the bleached region in the long time
limit. The model makes an interesting prediction that the recovery is fastest
when the size of the bleached region is equal to half the size of the confining
region. Furthermore, the recovery curves are identical for bleached regions of
fractional size a/L and 1 − a/L, which follows directly from eqn. 13.50. In
particular, the right hand side of this equation is invariant under exchange
a/L ↔ 1− a/L.
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13.2.4 Drunks on a Hill: The Smoluchowski Equation

Thus far, our treatment of diffusion has been based upon those problems in
which there are no external forces acting on the particle of interest. On the
other hand, there are a number of diffusive processes in which the diffusing
species is subjected to a force. For example, we can imagine ion diffusion in
the presence of an electric field. In the trajectories and weights treatments
of diffusion we assumed that the probability of jumping in any of the allowed
directions is equal. This is not the case if an external applied force biases the
motion of the particle in some particular direction. In this case we expect the
rates to be asymmetrical since a jump in the direction of the force will be more
probable than a jump against the direction of the force. To see the effect of
this asymmetry we can repeat the analysis which led to the derivation of the
diffusion equation, but now with the force-induced asymmetry in jump rates.

First we compute the mean and the variance of the particle displacement
after time t. Once again, both the mean and variance of the total displacement
are N = t/∆t times greater than the mean and variance of the displacement
∆x resulting from a single time step. These in turn are readily computed from
the trajectories and weights as shown in fig. 13.18, resulting in

〈∆x〉 = a× k+∆t + (−a)× k−∆t = a(k+ − k−)∆t

var(∆x) = a2 × k+∆t + (a)2 × k−∆t− 〈∆x〉2 = a2(k+ + k−)∆t(13.51)

where in obtaining the final result for the variance we have dropped the 〈∆x〉2
term on account of it being much smaller than the first one; this is because the
term that is omitted is quadratic in ∆t, or, more precisely, because k±∆t � 1.

We see that the variance of the displacement is same as for unbiased diffusion,
with the diffusion constant now being given by D = (k++k−)a2/2. On the other
hand, the mean is now non-zero, and it increases linearly with time. Therefore,
the overall motion of the particle can be described as diffusion with drift, with
a drift velocity

v =
〈∆x〉
∆t

= a(k+ − k−) . (13.52)

Note that for a particle moving through a fluid, and in the limit of low-Reynolds
number, the drift velocity is related to the applied force on the particle, F = γv,
with γ the friction coefficient. This idea was already discussed in section 12.4.1
(pg. 648).

Just as we did for the unbiased diffusion case, we can use the trajectories and
weights approach to derive the governing equation for p(x, t), the probability
density of finding a particle at position x at time t. Again, we consider all the
microtrajectories that in time ∆t end up at position x. There are three such
trajectories, with the particle being initially at x and staying put, the particle
starting at x − a and jumping to the right, and finally, the particle starting at
x + a and jumping to the left. The probability p(x, t + ∆t) is given by the sum
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Figure 13.18: Trajectories and weights for driven diffusion. The probability of
jumping to the left and right are unequal since jumping in the direction of the
force is more likely than jumping opposite the direction of the applied force.

over these trajectories,

p(x, t+∆t) = [1−(k++k−)∆t]×p(x, t)+k+∆t×p(x−a, t)+k−∆t×p(x+a, t) .
(13.53)

We can turn this difference equation into the more familiar continuum form by
Taylor expanding, p(x, t + ∆t) and p(x ± a, t), as was done in eqn. 13.13. We
arrive at

∂p(x, t)
∂t

= −v
∂p(x, t)

∂x
+ D

∂2p(x, t)
∂x2

. (13.54)

with the drift velocity v = a(k+ − k−) and diffusion coefficient D = (k+ +
k−)a2/2, as stated above.

13.2.5 The Einstein Relation

The microscopic derivation of diffusion with drift given above can be comple-
mented by a macroscopic derivation. As we will see below, this leads to an
important relation between diffusion and friction first derived by Einstein. We
consider a generalization of Fick’s law to account for the bias that will arise
in the presence of driving forces. In particular, a force F exerted on a particle
results in a drift velocity v = F/γ, where γ is the friction coefficient. For a
spherical particle of radius a moving through a fluid of viscosity η, γ = 6πηa.
(See eqn. 12.32 and accompanying discussion on pg. 652.) The presence of a
net drift of a collection of particles all moving with the same mean velocity v,
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area A

no. of particles = N(x)

x direction

Figure 13.19: Flux due to an applied force. All the particles are moving with
a drift velocity v to the right, resulting in ∆N = cv∆tA particles crossing the
surface of area A in time ∆t. The flux through the surface is ∆N/∆tA = cv.

illustrated in fig. 13.19, results in a flux of the form

JF =
(v∆t)c

∆t
=

F

γ
c. (13.55)

We are now in the position to write the total flux as a sum of those parts
due to random hopping and those parts due to the applied force. In particular,
the total flux takes the form

J(x) = −D
dc

dx
+

F

γ
c. (13.56)

Note that in equilibrium, the net flux vanishes, J(x) = 0, resulting in

D
dc

dx
=

F

γ
c. (13.57)

This differential equation describes the way in which a nonuniform concentration
distribution can be set up by the presence of a force and will be used, for
example, to characterize the distribution of ions near a membrane. To explore
the consequences of this result, we must first solve this simple linear differential
equation which we can do using the separation of variables technique. Indeed,
separation of variables results in

γD
dc

c
= Fdx. (13.58)
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It is convenient at this point to restrict our attention to those forces that can
be derived from a potential energy as F = −dU/dx. As a result, we have

γD
dc

c
= −dU. (13.59)

This equation can be integrated to yield,

c(x)
c(0)

=
e−U(x)/γD

e−U(0)/γD
. (13.60)

This is exactly what we would expect from the Boltzmann distribution provided
we set

D = kBT/γ, (13.61)

which is precisely the Einstein relation!
The Einstein relation is remarkable. It relates two quantities, diffusion and

friction, which at first glance might seem worlds apart. The diffusion constant
surmises the random motion of a microscopic particle through a fluid due to
thermal agitation by the surrounding molecules. The friction coefficient on the
other hand talks about the macroscopic effect of resistance to motion through
a fluid experienced by objects large and small. Still, since both of these effects
depend on the interaction of the particle with the molecules of the surrounding
fluid, one might expect that there would be a relation between the two. In fact
the experiments of Jean Perrin, inspired by Einstein’s and Langevin’s work on
diffusion, ushered in the modern atomic view of diffusion.

The case of diffusion with drift also has important consequences out of equi-
librium. Like before, mass conservation tells us that

∂c

∂t
= −∂J

∂x
. (13.62)

On the other hand, since the flux has an extra term, the resulting governing
equation itself has a new term and is given by

∂c

∂t
= D

∂2c

∂x2
− F

γ

∂c

∂x
. (13.63)

As will be shown in the remainder of the book, this governing equation is im-
portant for describing a range of processes involving both external forcing and
diffusion simultaneously.

13.3 Diffusion to capture

Another interesting class of problems associated with diffusion which show up
in a number of different settings are those in which we are interested in the
rate at which some diffusing species arrive at a given point. For example, the
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Figure 13.20: Monomer diffusion to the tip of a growing cytoskeletal filament.
The figure illustrates that there is a depletion of monomers in the immediate
vicinity of the growing tip. The schematic of the concentration profile around
the filament ignores any disturbance to the distribution of monomers caused by
the filament itself.

polymerization of cytoskeletal filaments such as actin require the arrival of un-
encumbered actin monomers at the tip of the growing filament as indicated
schematically in fig. 13.20.

Similarly, a host of signaling processes depend upon the arrival of some mo-
bile species of interest at the cell surface where they attach to some receptor and
induce the resulting signal cascade. A generic representation of chemoreceptors
on the cell surface is shown in fig. 13.21, though the idealization of uniform
receptors shown in the schematic is a vast oversimplification (for example, see
Kentner and Sourijk, 2006). The mathematical problem we are interested in
solving in this case is illustrated schematically in fig. 13.22 in which we idealize
a cell as a sphere and imagine a uniform distribution of receptor molecules that
decorate the cell surface. In particular, we consider the case where there is a
radial distribution of molecules centered around the cell and with a far field con-
centration c0. The question we then pose is what is the rate at which molecules
find their way to the surface receptors.

13.3.1 Modeling the cell signaling problem

We now make a concrete and mathematical description of the diffusion to cap-
ture process in the setting of the highly idealized geometry shown in fig. 13.22.
As we have already mentioned, the goal of our calculation will be to compute
the number of signaling molecules that bind to the receptors per unit time and
represented mathematically as dn

dt . We assume the cell is a sphere of radius a
which has M receptors on its surface. Further, we assume that the concentra-
tion profile has spherical symmetry (c(~r) = c(r)) and that there is a far field
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E. colireceptor
model cell

R

Figure 13.21: Cartoon representing the chemoreception process. The cell surface
is peppered with receptors. For the purposes of simple analytical calculation,
we idealize a bacterium as a sphere with a uniform density of receptors.

receptor
signaling
molecule

cell

c(r)

r

c(a)

c0

Figure 13.22: Concentration profile in the neighborhood of a spherical cell.
The concentration profile c(r) is spherically symmetric and characterizes the
concentration of ligands as a function of distance from the cell surface.
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concentration of signaling molecules c0 = c(∞).
Perfect Receptors Result in a Rate of Uptake 4πDc0a

In order to solve the problem using the diffusion equation we interest our-
selves in the steady state condition characterized by ∂c

∂t = 0. In this case, the
diffusion equation given in eqn. 13.8 reduces to

D∇2c = 0. (13.64)

For the special case of spherical symmetry, the Laplacian can be written only
in terms of the radial variables and results in a simplification of the diffusion
equation to the form

∇2c =
1
r2

∂

∂r

(
r2 ∂c

∂r

)
= 0. (13.65)

Since if the derivative of something is zero this implies that the something itself
is a constant, we may rewrite this equation as

r2 ∂c

∂r
= A (13.66)

where A is a constant to be determined by the two boundary conditions: c(a) =
0 and c(∞) = c0. The condition c(a) = 0 amounts to asserting that the receptors
on the cell surface are perfect absorbers. That is, all molecules that arrive at
the surface are swallowed up by the receptors. Our strategy unfolds as follows.
First, we use the diffusion equation to determine the concentration profile c(r).
This can be worked out explicitly by recognizing that the solution to eqn. 13.66
is given by

c(r) = −A

r
+ B, (13.67)

which is obtained by integrating eqn. 13.66. By imposing the conditions that
c(a) = 0 (perfect receptors) and c(∞) = c0, we can rewrite the concentration
profile as

c(r) = c0(1−
a

r
). (13.68)

Once the concentration is in hand, we can then use Fick’s law to relate it to
a current density. In particular, the flux at the surface of the cell is j(a) =
−D∂c/∂r|a, which is given by

j(a) = −Dac0

r2
. (13.69)

If we take this current density and multiply by the area of the sphere, what
results is the total number of particles arriving per unit time and given by

dn

dt
= −j(a)4πa2 = 4πDac0. (13.70)

This simple result, namely, dn/dt = 4πDac0 is one of the most useful interpre-
tative tools for examining the rates of reactions ranging from receptor mediated
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signaling to polymerization at the tip of a growing cytoskeletal filament. In par-
ticular, it is the basis of our ability to distinguish diffusion-limited and reaction
rate limited reactions.
A Distribution of Receptors Is Almost as Good as a Perfectly Ab-
sorbing Sphere

In essence, the previous calculation assumed that no matter how fast dif-
fusion delivers fresh ligands to the surface-bound receptors, they are prepared
to take up those ligands. What happens in the case where the rate of uptake
at the receptors is not fast enough to keep up with diffusion? To explore this,
we assume that the cell has finite rate of signaling molecule adsorption, kon.
Note that we will recover our previous result in the limit that kon is sufficiently
large. The number of molecules adsorbed per unit time will be given by the
rate equation

dn

dt
= Mkonc(a), (13.71)

where M is the number of surface-bound receptors. The essence of the argu-
ment we pursue is that in steady-state a concentration profile will be established
which guarantees that the diffusive flux is just large enough to feed the receptor
adsorption process. Note that using mass conservation, the flux across an imag-
inary sphere at any radius is given by −j(r)4πr2. The minus sign is present
because the current density is defined to be positive when it points outward. If
we use Fick’s law together with eqn. 13.71 we get

−j(r)4πr2 = D
∂c

∂r
4πr2 = Mkonc(a) (13.72)

which can be written in integrated form as∫ c(r)

c(a)

dc =
∫ r

a

Mkonc(a)
4πD r2

dr. (13.73)

After integrating both sides we obtain

c(r)− c(a) =
Mkonc(a)

4πDa
− Mkonc(a)

4πDr
. (13.74)

Finally, if we use the condition c(∞) = c0 the concentration at the cell’s surface
can be written as

c(a) =
c0

1 + Mkon

4πDa

. (13.75)

There are two interesting limits to this expression and each one implies some-
thing different about c(a). The first limit of interest corresponds to

Mkon

4πDa
� 1 ⇒ c(a) = 0. (13.76)

Note that we have recovered the limit of perfect absorbers considered earlier
in this section. This result implies that the receptors will be able to adsorb
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signaling molecules as fast as diffusive processes can deliver them. The other
limit corresponds to

Mkon

4πD a
� 1 ⇒ c(a) = c0, (13.77)

and implies that the on rate is so slow that the background concentration is not
depleted at all.

The condition in eqn. 13.76 means that there is a maximum on rate even
for a surface which is a perfect adsorber. This is precisely the on rate found
in the previous discussion. However, this raises an interesting biological design
question. What it says, more precisely, is that decorating a cell surface with
too many receptors adds nothing further to the ability of that surface to take
on board further ligands. To state this issue more precisely, we ask: how many
receptors do we need before we have a situation almost as good as a fully
adsorbing surface? Plugging in the result from eqn. 13.75 and assuming we
have M receptors on the cell’s surface

dn

dt
= Mkonc(a) = M

konc0

1 + Mkon

4πD a

=
4πD aMkon

4πD ac0

1 + Mkon

4πD a

(13.78)

This result can be used to ask how many receptors we need on the surface in
order to get an absorption rate which is half that of the diffusive speed limit
given by 4πDac0, for example. This condition amounts to solving the equation

dn

dt
=

4πD a c0

2
=

Mkon

4πD a4πD a c0

1 + Mkon

4πD a

, (13.79)

for the parameter M . More precisely, this amounts to solving the equation

1
2

=
β

1 + β
, (13.80)

where β = Mkon

4πD a . The solution to the equation is β = 1 which implies

M =
4πD a

kon
. (13.81)

To see what this solution really means, we now resort to particular numer-
ical examples. We consider a ’typical’ eukaryotic cell which we idealize as a
sphere of radius a ' 10 µm. Further, we assume a diffusion coefficient for the
ligand species of 100 µm2/s and a kon ' 10 µM−1s−1, which is the typical on
rate for actin or parM polymerization. Before we proceed we have to turn the
concentration in kon into useful units, namely,

1µM =
6 · 1023 · 10−6

L
= 600/µm3. (13.82)

Using eqn. 13.81, we can now compute M ≈ 105 receptors.
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It is interesting to consider whether or not 105 receptors on the surface of
a cell with radius 10 µm is large or not. One measure of how crowded this
distribution of receptors is can be garnered by computing the mean spacing,
d, and the fraction of the surface that will be covered by these receptors. The
surface area of the sphere (i.e. the cell) is Asphere = 4π(10 µm)2 ≈ 12 ·100 µm2.
The mean spacing can then be estimated as

d2 =
12 · 100 µm2

105
= 12 · 103 nm2 ' 100 nm · 100 nm, (13.83)

which says that the average spacing between receptors will be 100 nm. We can
also ask what fraction of the area of the membrane is actually taken up by these
receptors. If we consider a receptor with an area b = 10 nm2 = 10−5 µm2, the
fraction of the membrane area taken up by receptors is

Covered membrane fraction =
105 · 10−5 µm2

1200 µm2
=

1
1200

. (13.84)

Interestingly, these simple estimates demonstrate that even a relatively sparse
distribution of membrane-bound receptors can rival a perfectly absorbing sphere.
Further, this estimate also reveals that many different species of receptor can
decorate the cell surface simultaneously while leaving room for the others and
with all receptors operating nearly as perfect absorbers.

13.3.2 A “Universal” Rate for Diffusion-Limited Chemi-
cal Reactions

The ideas about diffusion to capture introduced in the previous section have a
very interesting application to the analysis of the rates of chemical reactions.
We focus on a simple bimolecular reaction of the form A+B 
 AB. We imagine
that the overall reaction rate is a conspiracy of two distinct factors. First, the
overall rate of reaction clearly depends upon how often reactants arrive in each
others vicinity as a result of diffusion. However, proximity is not necessarily a
guarantee of reactivity. Once A and B have found each other, it may take many
tries for them to join up to form AB. The argument we make here is that these
two effects can result in limiting scenarios known as ’diffusion-limited reaction’
and ’rate-limited reaction’. For the moment, we examine the case in which once
the reactants are nearby, they react. The point of the exercise is to compute
the universal speed limit for such diffusion-limited reactions.

One of the schemes we will return to for determining the rates of biological
processes is to bound the rate of a given process on the assumption that its
rate is dictated entirely by diffusion. For example, we can estimate the time
it takes for capsid proteins to form a viral capsid by working out the diffusion
time for individual proteins to be captured by the growing capsid. Of course,
in reality many of the processes of interest involve several steps including that
i) the relevant molecular participants find each other (both in terms of spatial
position and orientation) and ii) once they do find each other, there is still some
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energy barrier to traverse which slows down the rate. The idea advanced here
is that the diffusive rate provides a maximum rate speed limit. Examples of
interest include: the reaction H+ + OH− → H2O, the binding of oxygen to
hemoglobin, the binding of lac repressor to DNA and the assembly of individual
monomeric units to form viral capsids. The outcome of the most naive diffusive
arguments (and in the case where the two diffusing particles are treated as being
of the same size) is that the rate constant for molecular association is given by

kdiffusive =
8kBT

3η
, (13.85)

where η is the viscosity of the medium. This is simply obtained from eqn. 13.70
by replacing D with 2D and a with 2a, to account for the mutual diffusion of two
particles with equal diffusion constants, D = kBT/6πηa, and the fact that they
need to be within distance 2a to interact. If we use the numbers for water at
room temperature to determine the viscosity (η ≈ 10−3 Pa s), this results in the
value kdiffusive ≈ 7×109 M−1 s−1, a value which is helpful for estimating rates for
point-like particles, but overestimates the rates associated with protein-ligand
interactions, a shortcoming that can be amended by acknowledging that a ligand
can only interact correctly with its receptor in certain precise orientations. In
this case the rotational diffusion of the ligand and the protein receptor must
also be taken into account.

13.4 Summary and Conclusions

Because so many of life’s processes occur at the molecular scale, the thermally
driven diffusion of molecules is a major influence governing how rapidly and at
what location biochemical reactions can occur. In this chapter we have exam-
ined several of the interesting dynamic consequences of the diffusive behavior
of molecules. Diffusion as a transport mechanism is efficient over short, but not
over long distances. As a mechanism for delivering ligands to receptors, the
dynamics of diffusion generates a built in limit such that sparsely distributed
receptors on a cell surface are nearly as efficient at receiving signals as a surface
completely covered with receptors would be. We have also considered the con-
sequences of allowing other processes to influence diffusive behaviors such as in
the case of an external applied force or in the context of diffusion to capture.
A remarkable number of cases in biological dynamics are well approximated by
one of these simple scenarios. Reconciling the diffusive behavior of individual
molecules with the macroscopic evolution of concentration gradients reveals one
of the many fascinating ways that apparently directed behaviors at a macro-
scopic scale can arise from individually random and uncoupled behaviors of
molecules. Diffusion is a fact of life at molecular scales; all molecular processes
must either exploit diffusion or overcome it.
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13.5 Problems

1. Biological distances and diffusion times.

Generate a series of plots like that shown in fig. 13.4 for all three choices of diffu-
sion constant shown in table 13.1. Justify these choices of diffusion coefficients
by using the Stokes relation D = kBT/6πηa.

2. Diffusion from a point source.

The idea in this problem is to derive the solution to the one-dimensional
diffusion equation for a point source, given by eqn. 13.32. The tools we invoke
in this problem may seem heavy handed on the first try, but illustrate a bevy
of important ideas from mathematical physics.

(a) Take the Fourier transform of the diffusion equation by transforming in the
spatial variables to obtain a new differential equation for c̃(k, t).
(b) Solve the resulting differential equation for c̃(k, t). Then compute the inverse
Fourier transform to arrive at the solution in real space c(x, t).
(c) Show that the solution for an arbitrary initial concentration distribution
c(x, t = 0) can be written as an integral over the solution for a point source.
In particular, consider the case of a half space and find the resulting diffusive
profile.
(d) Formally derive the relation 〈x2〉 = 2Dt.

3. FRAP of one-dimensional E. coli revisited.

Fig. 13.16(A) shows different snapshots of an E. coli cell after it has been
subjected to photobleaching. Use the solution for the FRAP problem of a
one-dimensional bacterium (i.e. eqn. 13.47) to produce a plot of the difference
between the initial concentration (i.e. before photobleaching) and the concen-
tration at time t as shown in fig. 13.16(B). Make a series of plots for different
time points using a diffusion constant for GFP in E. coli of D = 7 µm2/s.

4. Two-Dimensional FRAP Analysis

The goal of this problem is to generalize the one-dimensional treatment of
FRAP given in the chapter. Consider a cell as a planar circle of radius R
uniformly covered with freely diffusing fluorescent proteins. Imagine that the
laser photo-bleaches a hole of radius a in the middle of the cell. Work out the
concentration of fluorescent proteins in the cell as a function of position and
time in analogy with the one-dimensional treatment of the problem done in the
chapter. Compute the number of molecules in the hole after photobleaching as a
function of time and compare it to the result obtained from the one-dimensional
model.

5. Rotational diffusion
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(a) Consider a sphere of radius R in water. Due to random collisions with the
water molecules the sphere will rotationally diffuse. The diffusion law in this
case is analogous to the one obtained for translational motion,〈

∆θ2
〉

= 2Drt. (13.86)

What are the units of the rotational diffusion coefficient Dr? Write down the
formula for Dr using the Einstein relation and the rotational friction coefficient
obtained in problem 10. 3, and convince yourself that the units are correct.
(b) Estimate how long it takes for an E. coli to diffuse over an angle equal to 1
radian. What is the distance traveled by the bacterium during that time?

6. Diffusion to capture and the diffusive speed limit.
In the chapter, we solved the problem of diffusion to capture using physical

arguments to bypass explicitly solving the diffusion equation. In this problem
we do the math.
(a) Write the diffusion equation for the perfect absorber case in spherical coor-
dinates. Use the method of separation of variables and reproduce the solution
given in the chapter.
(b) Use the flux to compute the number of molecules absorbed per unit time
and find the corresponding kon implied by this solution. Plug in reasonable
numbers to compute the diffusive speed limit for the case of oxygen binding to
hemoglobin.

7. Chemoreceptor clustering.
There is strong evidence that chemoreceptors in E. coli tend to cluster near

one pole (see Kentner and Sourijk, 2006). One hypothesis about the role of such
clustering is that it might increase the ability of a bacterium to better detect
molecules in its environment. Determine if this is the most efficient strategy
for counting (adsorbing) molecules of chemoattractant. Approximate E. coli
as a sphere a = 1 µm in radius and neglect its motion. Then compare the
diffusive current to N = 1000 receptors (adsorbing patches of radius s = 10 Å)
scattered over the surface of the cell to the diffusive current to the same receptors
incorporated into a single patch with the same total area. Make use of the result
that the diffusive current onto a sphere of radius a with N absorbing patches of
radius s spread uniformly over its surface is

I =
4πDc∞

1 + πa/Ns

where D is the diffusion constant of the molecules, while c∞ is their concentra-
tion far from the cell. (Adapted from a problem courtesy of Howard C. Berg.)

13.6 Further Reading

D. Bray, Cell Movements: From Molecules to Motility, Garland Pub-
lishing, New York: New York, 2001. Bray’s book is a beautiful description of a
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host of dynamical processes associated with cells.

H. Berg, Random Walks in Biology, Princeton University Press, Princeton:
New Jersey, 1993. Berg’s book is a classic, but not in the sense of Mark Twain
who quipped that a classic is something that is talked about by all and read by
none. Berg’s book is widely read and deservedly so.

H. Berg, E. coli in Motion, Springer, New York: New York, 2003. Another
Berg classic!

G. B. Benedek and F. M. H. Villars, Physics With Illustrative Examples
from Medicine and Biology: Statistical Physics, Springer-Verlag, Inc.,
New York: New York, 2000. Benedek and Villars have made their way to our
“Further Reading” list in many chapters because they have interesting things
to say on many topics.

J. Perrin, Atoms, Ox Bow Press, Woodbridge: Connecticut, 1990. This book
is full of interesting insights to reward the curious reader.

A. Einstein, Investigations on the Theory of the Brownian Movement,
Dover Publications Inc., New York: New York, 1956. Einstein’s treatment of
diffusion still serves as a fine introduction.

S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy”, Rev. Mod.
Phys. 15, 1 (1943). Chandrasekhar’s amazing article is a compendium of ele-
gant and useful results pertaining to random walks and more general ideas on
stochastic processes.

D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson and W. Webb, “Mobility
Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics”,
Biophys. J., 16, 1055 (1976). This paper describes the theoretical underpin-
nings of the use of photobleaching as a tool to study dynamics within cells.

J. Lippincott-Schwartz, E. Snapp and A. Kenworthy, “Studying Protein Dy-
namics in Living Cells”, Nat. Rev. Mol. Cell Biol. 2, 444 (2001). An excellent
account of the use of techniques such as FRAP for studying dynamics within
cells.

A. S. Verkman, “Solute and macromolecule diffusion in cellular aqueous com-
partments”, Trends in Biochem. Sci., 27, 27 (2002). This article describes the
use of photobleaching as a tool to study dynamics in living cells.

H. C. Berg and E. M. Purcell, “Physics of chemoreception”, Biophys. J., 20,
193 (1977). One of the classic papers in physical biology illustrating how ideas
about diffusion to capture can be used to think about cell signaling.
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