

Lecture 13: Genomes

Goal: Model interactions between gene regulatory elements, discuss common motifs in genetic circuits

- Genetic switches
- Genetic oscillators

Reading: PBOC Chapter 19.3.2, 19.3.3

Genomes

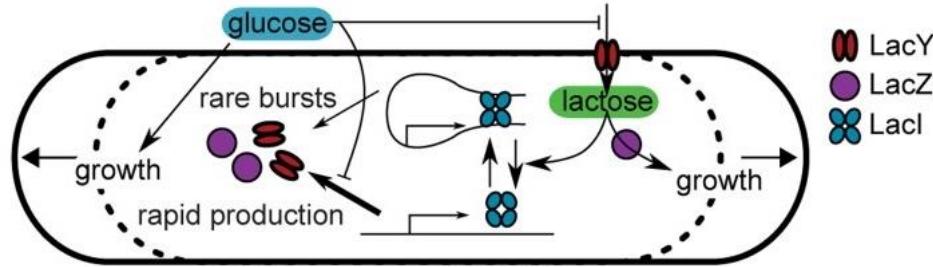
How do cells make decisions?

- Even simple organisms make complex decisions
- Cells respond to stimuli by producing proteins
 - Stimulus: sugar. Response: make proteins to digest sugar. + repress others
 - Stimulus: DNA damage. Response: make DNA repair proteins.
- How much to make, and when to make it?
- Single cells lack an obvious “brain”
- How is the computation achieved?

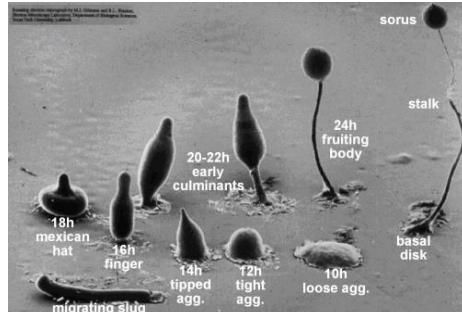
input signal: stimulus

processing: genetic circuits

output: change in protein expression



Escherichia coli



Dictyostelium discoideum

Gene regulation

Elements of genetic circuits

Structural Genes - code for protein and RNA molecules that are required for normal enzymatic or structural functions in the cell.

Regulatory Genes - code for protein and RNA molecules whose function is to regulate the expression of other genes. “Transcription factors”

Numbers: ~1600 transcription factors vs. ~20,000 protein coding genes in human genome

~ 10% of ^{human} genes encode for regulatory function!

Gene regulation

Elements of genetic circuits

Monod (Nobel Laureate 1965)

The biochemical processes that take place within an organism's cells are controlled by the genes found inside DNA molecules. Jacques Monod and François Jacob proved how the genetic information is converted during the formation of proteins by means of a messenger, which proved to be the substance we now know as RNA. Different cells work in different ways at different times, however. This too is regulated by genes. In the early 1960s Monod and Jacob mapped the intricate processes that determine how genes are expressed or suppressed in a self-regulating process.

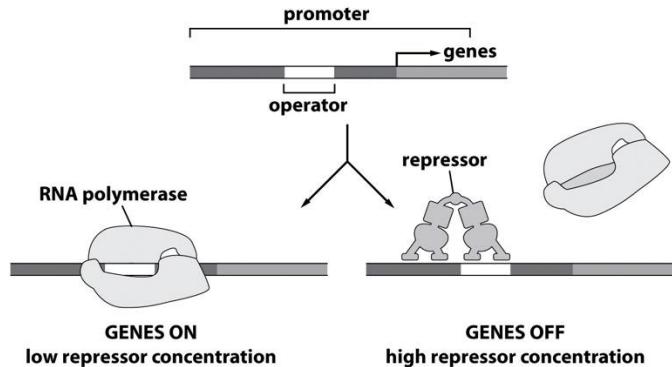
*“Tout ce qui est vrai pour le
Colibacille est vrai pour l'éléphant.”*

Genome regulation

Recall:

Genetic networks: Molecules

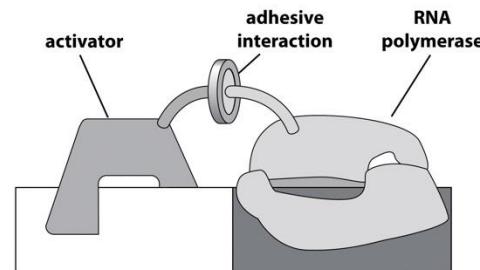
negative regulation



$X \longrightarrow Y$

"simple regulation"

positive regulation



$X \longrightarrow Y$

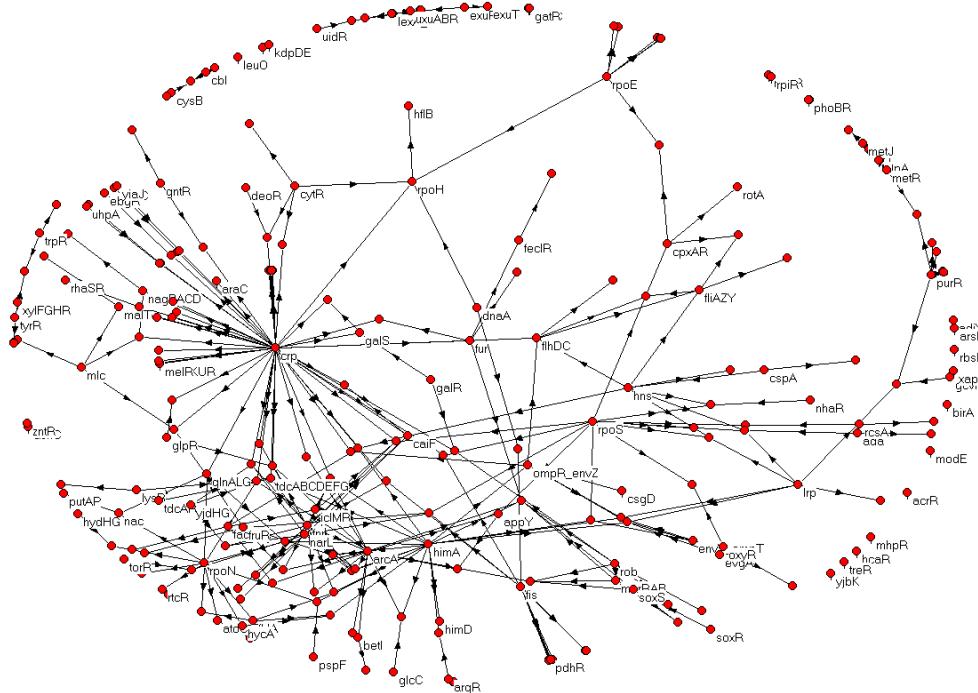
Repressors and activators change the probability of RNA polymerase binding to the promoter of a gene

Genome regulation

Recall:

Genetic networks: *E. coli* transcription

each edge has a direction, a sign, and a numerical value



X V Y

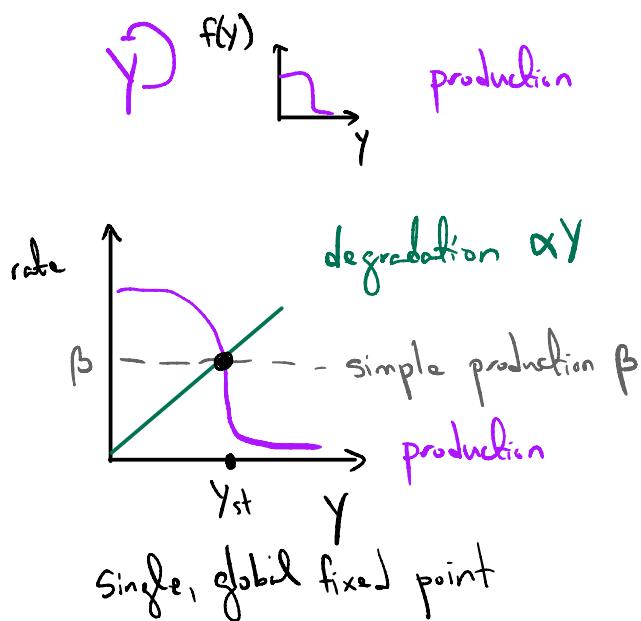
$$V > 0 \quad X \rightarrow Y$$

Genome regulation

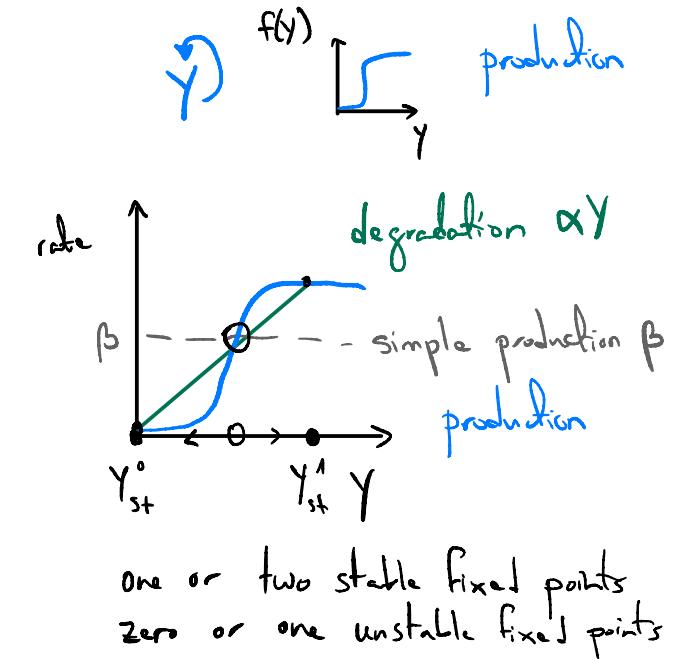
Recall:

Genetic networks: Molecules

negative autoregulation

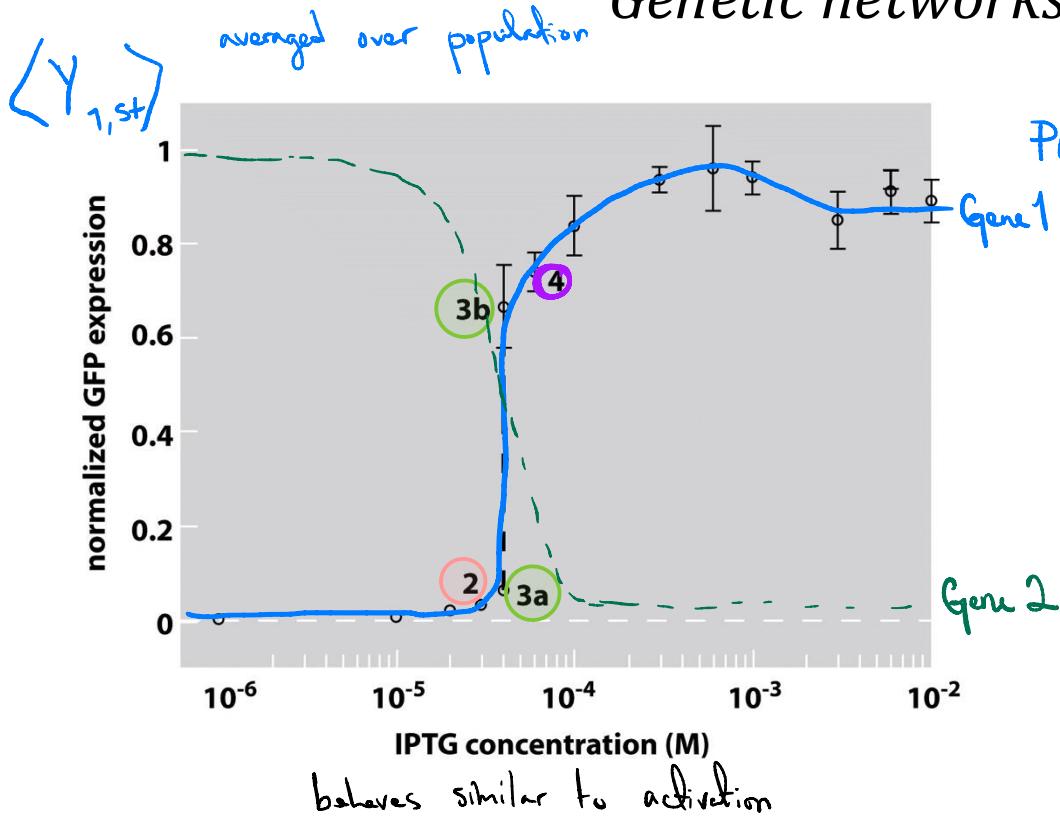
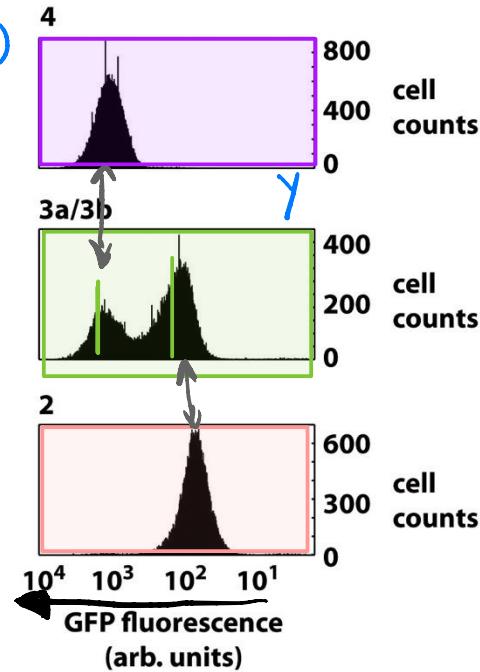


positive autoregulation



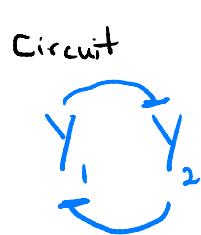
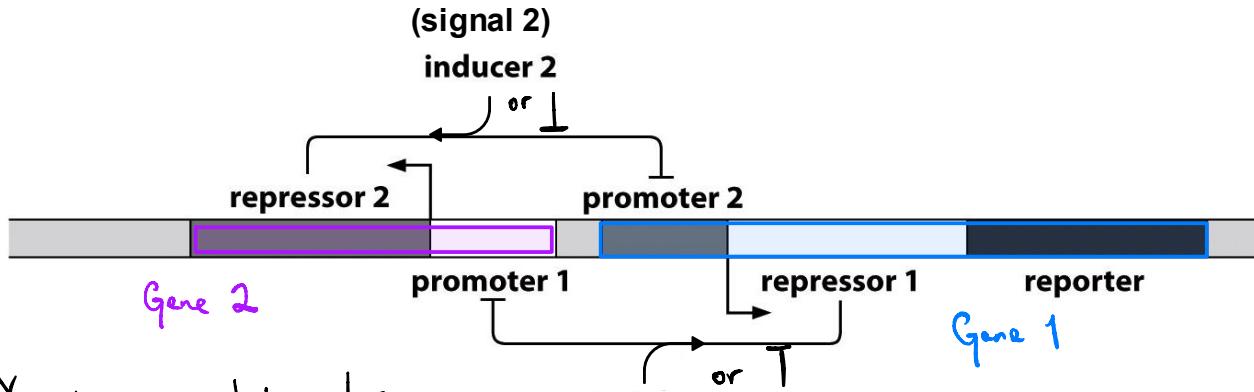
Genome regulation

Genetic networks: Switches



Genome regulation

Genetic networks: Switches



If $S_1 \rightarrow Y_1$ is expressed + reporter

Y_2 is repressed

If $S_2 \rightarrow Y_2$ is expressed

Y_1 is repressed

Exercise: Write down differential

equations governing C_1 and C_2 ,
concentrations of Y_1 and Y_2 .

$$\frac{dc_1}{dt} ; \frac{dc_2}{dt}$$

Goal: Model time dependence of c_1, c_2 .

Processes: degradation, production, and repression.

$$\frac{dc_1}{dt} = \underbrace{\gamma}_{\text{production}} - \underbrace{\gamma \rho_{\text{bound}}(c_2)}_{\text{repression}} - \underbrace{Kc_1}_{\text{degradation}}$$

Note: $\rho_{\text{bound}}(c_2) = \frac{K_b c_2^n}{1 + K_b c_2^n}$

Hill function, coefficient n .

Goal: Model time dependence of c_1, c_2 .

Processes: degradation, production, and repression.

$$\frac{dc_1}{dt} = \gamma \underbrace{- \gamma p_{\text{bound}}(c_2)}_{\substack{\text{basal} \\ \text{production}}} - \underbrace{Kc_1}_{\text{degradation}}$$

repression

$$\text{Note: } p_{\text{bound}}(c_2) = \frac{K_b c_2^n}{1 + K_b c_2^n}$$

Hill function, coefficient n .

$$= \frac{\gamma}{1 + K_b c_2^n} - Kc_1$$

Similarly, $\frac{dc_2}{dt} = \frac{\gamma}{1 + K_b c_1^n} - Kc_2$

Assumption: degradation rate is the same for both proteins.

For proteins with $\frac{1}{K} > t_{\text{cell cycle}}$, dilution is main effect.

Assumption: basal production rate is the same. Not always true.

Goal: Model time dependence of c_1, c_2 .

Processes: degradation, production, and repression.

$$\frac{dc_1}{dt} = \gamma \underbrace{}_{\substack{\text{basal} \\ \text{production}}} - \underbrace{\gamma p_{\text{bound}}(c_2)}_{\text{repression}} - \underbrace{Kc_1}_{\text{degradation}}$$

Note: $p_{\text{bound}}(c_2) = \frac{K_b c_2^n}{1 + K_b c_2^n}$

Hill function, coefficient n .

$$= \frac{\gamma}{1 + K_b c_2^n} - Kc_1$$

Similarly,

$$\frac{dc_2}{dt} = \frac{\gamma}{1 + K_b c_1^n} - Kc_2$$

Assumption: degradation rate is the same for both proteins.

For proteins with $\frac{1}{K} > t_{\text{cell cycle}}$, dilution is main effect.

Assumption: basal production rate is the same. Not always true.

Simplify:

$$\frac{du}{dt} = -u + \frac{\alpha}{1 + v^n}$$

$$\frac{dv}{dt} = -v + \frac{\alpha}{1 + u^n}$$

units of c_1 and c_2 are $K_b^{-1/n}$

units of time are K^{-1}

$$\alpha = \gamma K_b^{1/n} / K$$

Steady state: $\frac{du}{dt} = 0 = -u^* + \frac{\alpha}{1+u^{*n}}$

$$\frac{dv}{dt} = 0 = -v^* + \frac{\alpha}{1+v^{*n}}$$

A solution: $u^* - \frac{\alpha}{1+(u^*)^n} = v^* - \frac{\alpha}{1+(v^*)^n}$
symmetry $u^* = v^*$

This is not a switch, two concentrations are equal.

Steady state: $\frac{du}{dt} = 0 = -u^* + \frac{\alpha}{1+v^n}$ $\frac{dv}{dt} = 0 = -v^* + \frac{\alpha}{1+u^n}$

A solution: $u^* - \frac{\alpha}{1+(u^*)^n} = v^* - \frac{\alpha}{1+(v^*)^n}$
 $u^* = v^*$

This is not a switch, two concentrations are equal.

Other solutions of the form $v^* = f(f(v^*))$ where $f(v^*) = \frac{\alpha}{1+(v^*)^n}$

Demonstration: $-u^* + \frac{\alpha}{1+v^n} = 0 \Rightarrow u^* = \frac{\alpha}{1+(v^*)^n}$ Substitute into $v^* = \frac{\alpha}{1+(u^*)^n}$

Particular case: $n=2$ $u^* = \frac{\alpha}{1+\left(\frac{\alpha}{1+(u^*)^2}\right)^2}$ $v^* = \frac{\alpha}{1+\left(\frac{\alpha}{1+(v^*)^2}\right)^2}$

General expression,
find the roots

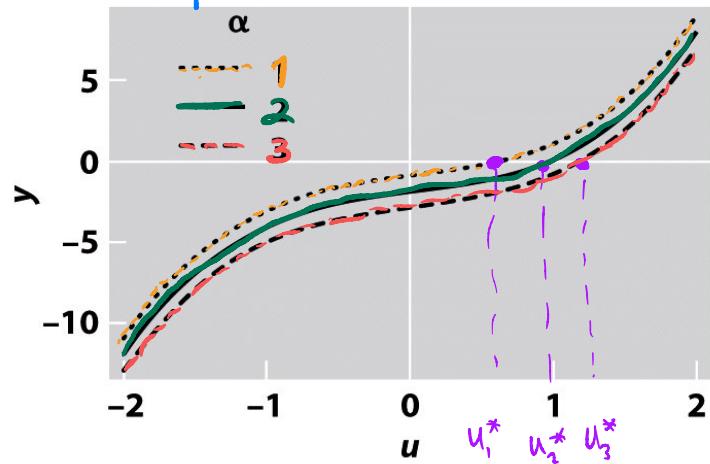
Factor: $\underbrace{\left((u^*)^2 - \alpha u^* + 1\right)}_{\text{parabola}} \underbrace{\left((u^*)^3 + u^* - \alpha\right)}_{\text{cubic}} = 0$

zero, one, two real roots one real root
 $(\alpha < 2)$ $(\alpha = 2)$ $(\alpha > 2)$

Genome regulation

Steady-state
solutions:

cubic
factor

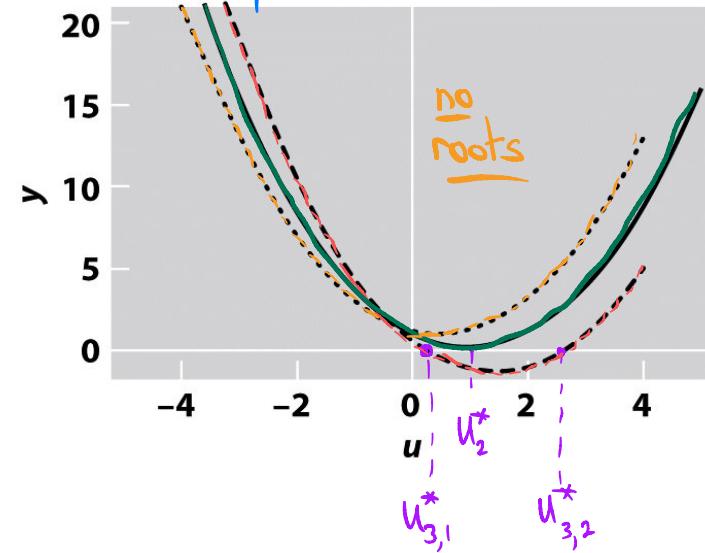


$$\text{Root: } u^* = \frac{\alpha}{1 + (u^*)^2} \stackrel{\text{previous}}{=} v^*$$

two concentrations are equal.

parabolic factor

$$y = (u)^2 - \alpha u + 1$$



For a given solution $u_{3,1}^*$, v^* takes other root, $u_{3,2}^*$
SWITCH!

Genome regulation

Genetic networks: Switches

Stability analysis:

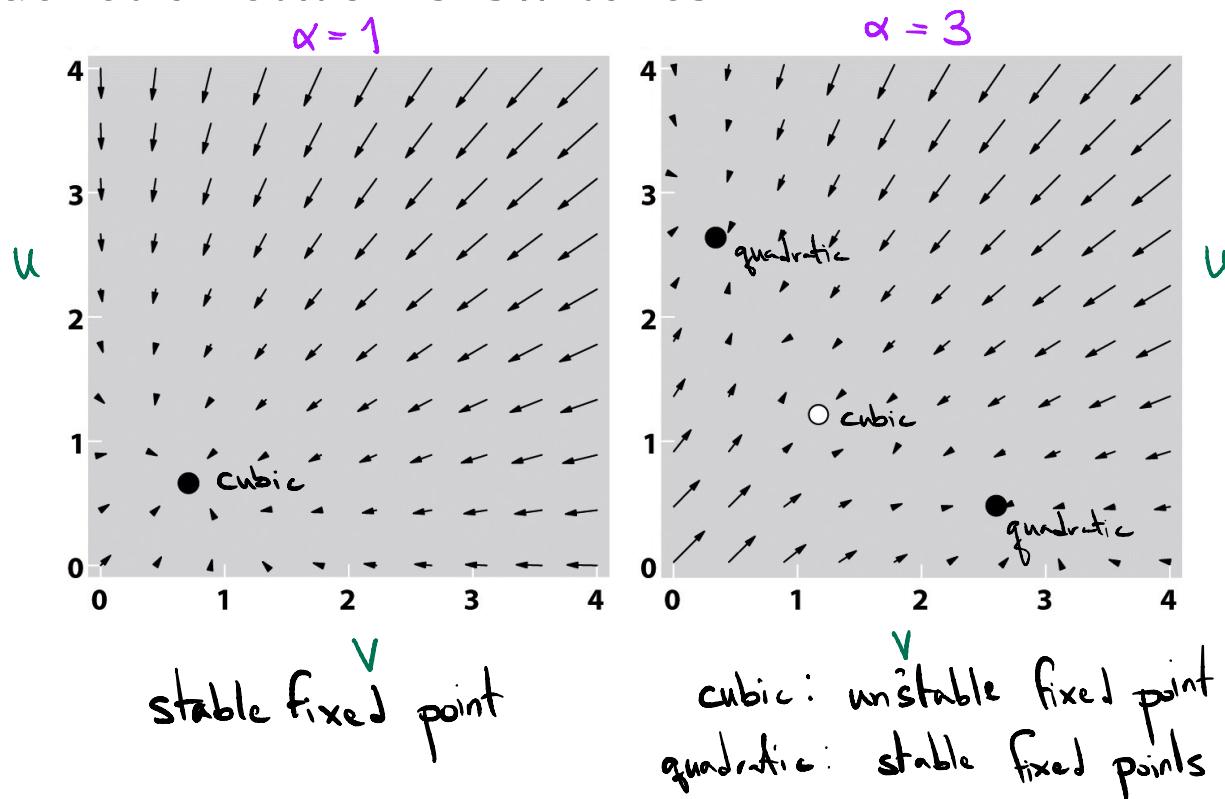
phase portrait

$\frac{du}{dt}$ and $\frac{dv}{dt}$ vector components

steady state, vectors are zero

stable fixed points return from
small perturbations

(vectors point toward)



cubic: unstable fixed point
quadratic: stable fixed points

Genome regulation

PBoC 19.3.3

Example: cell cycle,
circadian rhythm.

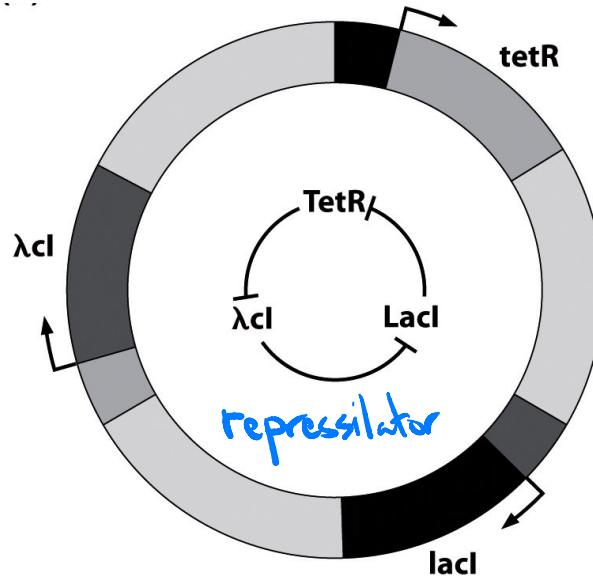
How does one possible
circuit look, for
an oscillator?

Three interacting
promoters.

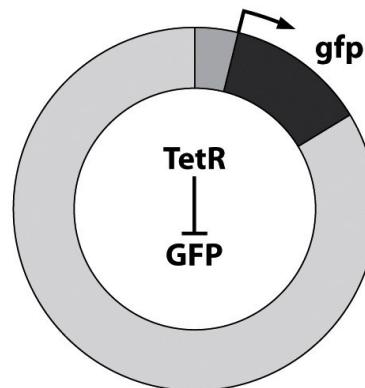
TetR acts on λ cl.

λ cl acts on LacI. LacI acts on TetR.

Genetic networks: Oscillators



reporter, GFP expressed when TetR
is absent.



Genome regulation

Genetic networks: Oscillators

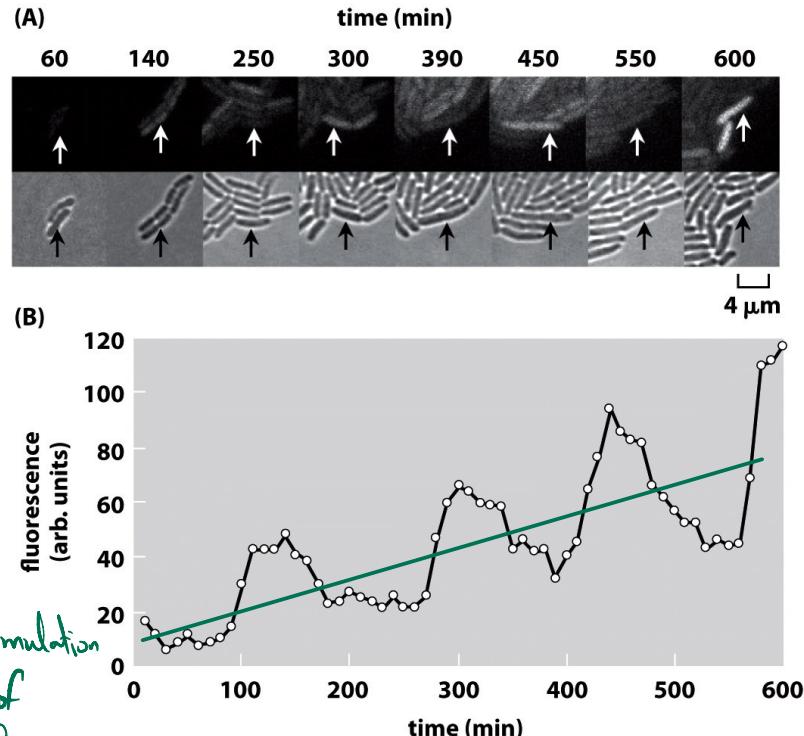
Put into *E. coli*. Take images of cells.

↗ movie

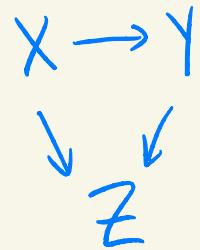
Average fluorescence in a single cell.

Can again write down coupled differential equations for each species.

protein accumulation
poor separation of timescales



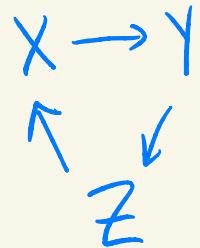
What kinds of simple circuits can you construct from three nodes?



feed forward

loop

42



feedback

loop

0

In E. coli:

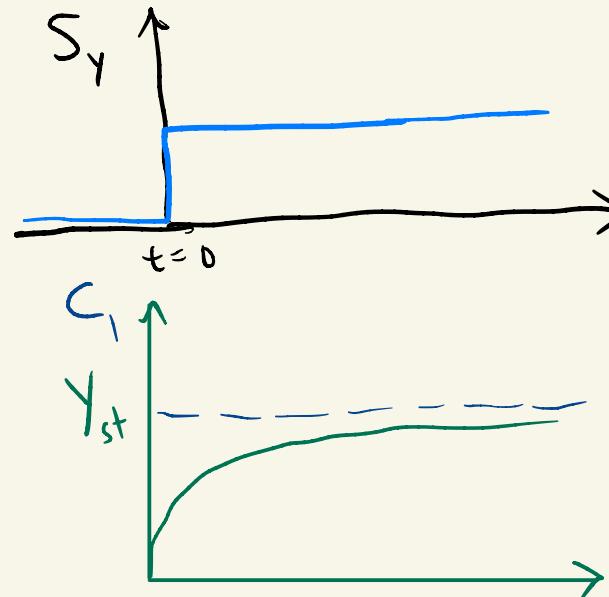
What is the time dependence of concentration of protein Y after induction at time $t = 0$?

Simple regulation:

$$\frac{dy}{dt} = -\alpha y + \beta$$

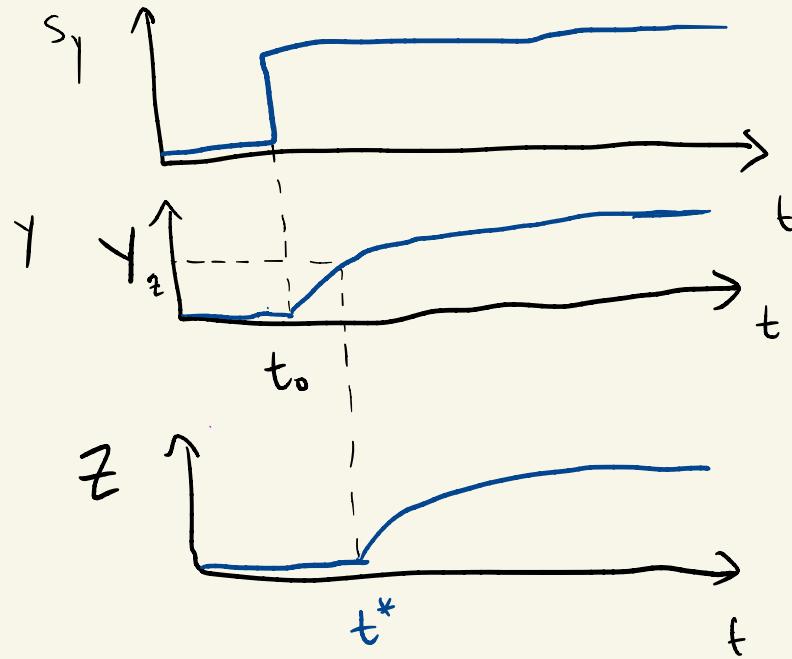
degradation production

$$Y = Y_{st} \left(1 - e^{-\alpha t} \right) ; \quad Y_{st} = \beta / \alpha$$



Suppose gene Z requires a concentration $Y = Y_Z$ to be activated. What is $Z(t)$?

$S_Y \rightarrow Y$
 \downarrow
 Z



"Cascade", delay in protein production

$$Y(t^*) = Y_z$$

$$t^* - t_0 = ?$$

Course overview

I The Facts of Life

1 Why: Biology By the Numbers

2 What and Where: Construction Plans for Cells and Organisms

3 When: Stopwatches at Many Scales

4 Who: "Bless the Little Beasties"

II Life at Rest

5 Mechanical and Chemical Equilibrium in the Living Cell

6 Entropy Rules!

7 Two-State Systems: From Ion Channels to Cooperative Binding

8 Random Walks and the Structure of Macromolecules

9 Electrostatics for Salty Solutions

10 Beam Theory: Architecture for Cells and Skeletons

11 Biological Membranes: Life in Two Dimensions

III Life in Motion

12 The Mathematics of Water

13 A Statistical View of Biological Dynamics

14 Life in Crowded and Disordered Environments

15 Rate Equations and Dynamics in the Cell

16 Dynamics of Molecular Motors

17 Biological Electricity and the Hodgkin-Huxley Model

IV The Meaning of Life

18 Sequences, Specificity and Evolution

19 Network Organization in Space and Time

20 Whither Physical Biology?