Lecture &: Diffusion in the cell

Goal: Role of Brownian motion in living systems.
Compute the time to travel a distance, model diffusion
In gradient.

* Brownian motion m,m/mm MM(
» Concentration fields and diffusive dynamics

PBOC Chapter 13.1, 13.2.1-13.2.3



Diffusion in the cell

Active vs. passive transport
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Diffusion in the cell

Active vs. passive transport
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Diffusion in the cell

Time to diffuse biological distances
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Diffusion in the cell
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Diffusion in the cell

Ew‘\e'. peoke ay '~ Time to diffuse biological distances
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Diffusion in the cell
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Diffusion in the cell
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Concentration fields and diffusion
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Diffusion in the cell

Concentration fields and diffusion
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Diffusion in the cell
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Concentration fields and diffusion
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Diffusion in the cell

WM&RSSPIC  concentration fields and diffusion: Fick’s Law
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Diffusion in the cell

MACROS P C
Concentration fields and diffusion: Fick’s Law

no. of particles = N(x)
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Molecule Diffusion coefficient
Potassium ion in water ~ 2000 umz/s
N GFP in E.coli ~7um2/s
c""":tio,, DNA in yeast 5x 10~%um?2/s




Diffusion in the cell

Wiccsranpie mll Particles in a fluid
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Diffusion in the cell

Wccsrapis Summing over microtrajectories
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Diffusion in the cell

Miccoranpie Summing over microtrajectories
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An ode to E. coli

Previously: Molecular census
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Diffusion in the cell

Diffusion in crowded environments

What is the diffusion coefficient associated with “crowded” random walk?
Assume fraction of occupied lattice sites @ (00\1 one moleelle can ocmm ok e s’r@



Diffusion in the cell

Summing over microtrajectories: Crowding (14.3.2)
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Diffusion in the cell

Summing over microtrajectories: Crowding (14.3.2)
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Transport in cellular systems

AP Diffusion in crowded environments
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Diffusion in the cell

Solutions to the diffusion equation
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Diffusion in the cell
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Diffusion in the cell

Solutions to the diffusion equation
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Diffusion 1n the cell

Complexity: diffusion + binding

Limit case (tgifr << thinding): TWO separable timescales
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Diffusion in the cell

Complexity: diffusion + binding

Case (tqifr ~ thinding): Mixing of dynamic modes
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Anomalous diffusion:

(r’(1))=6Dr1

(r’(1))=6D1" =6D(1)T

Intensity

Diffusion
and
Binding

Time




Lecture &: Diffusion in the cell

Summary:
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