

Lecture 8: Diffusion in the cell

Goal: Role of Brownian motion in living systems.

Compute the time to travel a distance, model diffusion in gradient.

- Brownian motion
- Concentration fields and diffusive dynamics

macro / micro models

PBOC Chapter 13.1, 13.2.1-13.2.3

Diffusion in the cell

Active vs. passive transport

directed motion

passive random walk

something does work

Brownian motion = diffusion (thermal)

energy is consumed

this week

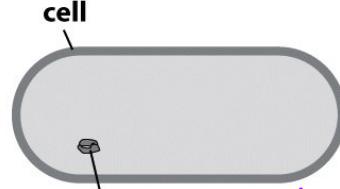
next lecture

Diffusion in the cell

Active vs. passive transport

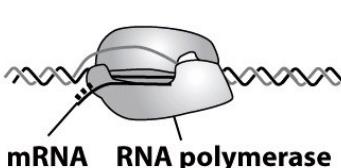
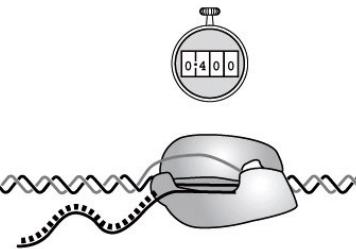
(A) seconds

passive,
diffusive

 seconds

(B)

active,
directed

 seconds seconds

How long to get from one place to another?

$$\langle x^2 \rangle = CD\tau_{\text{diff}}$$

where C depends on dimension

time $\tau_{\text{diff}} \propto \frac{\langle x^2 \rangle}{D}$ mean squared displacement
diffusion coefficient

$$D = \frac{k_B T}{6\pi \eta a}$$
 thermal energy $\approx 100 \mu\text{m}^2/\text{s}$ for a 5 nm protein in H_2O
size
viscosity

Numerical estimates: $\tau_{\text{diff}}^{\text{E. coli}} \approx ?$ $L_{\text{E. coli}} = 1 \mu\text{m}$

$$\tau_{\text{diff}}^{\text{squid axon}} \approx ?$$
 $L_{\text{squid}} = 50 \text{ cm}$

How long to get from one place to another?

$$\langle x^2 \rangle \propto D T_{\text{diff}}$$

time $T_{\text{diff}} = \frac{\langle x^2 \rangle}{D}$ mean squared displacement
diffusion coefficient

$$D = \frac{k_B T}{6\pi \eta a}$$
 thermal energy $\approx 100 \text{ } \mu\text{m}^2/\text{s}$ for a 5 nm protein in H_2O
size
viscosity

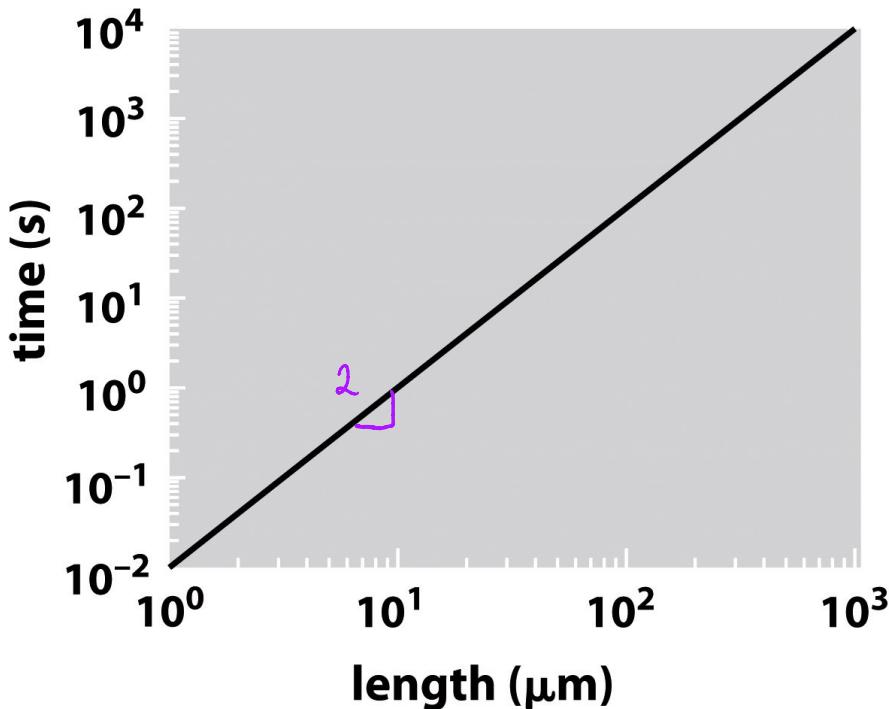
Numerical estimates: $T_{\text{diff}}^{\text{E. coli}} \approx \frac{L_{\text{E. coli}}^2}{D} \approx \frac{1 \text{ } \mu\text{m}^2}{100 \text{ } \mu\text{m}^2/\text{s}} = 0.01 \text{ s}$

$$T_{\text{diff}}^{\text{squid axon}} \approx \frac{5^2 \cdot (10 \text{ cm})^2}{100 \text{ } \mu\text{m}^2/\text{s}} = \frac{25 \cdot 10^{10} \text{ } \mu\text{m}^2}{100 \text{ } \mu\text{m}^2/\text{s}} = 3 \times 10^9 \text{ s} \approx 100 \text{ years}$$

$$1 \text{ cm} = 10^4 \text{ } \mu\text{m}$$

Diffusion in the cell

Time to diffuse biological distances



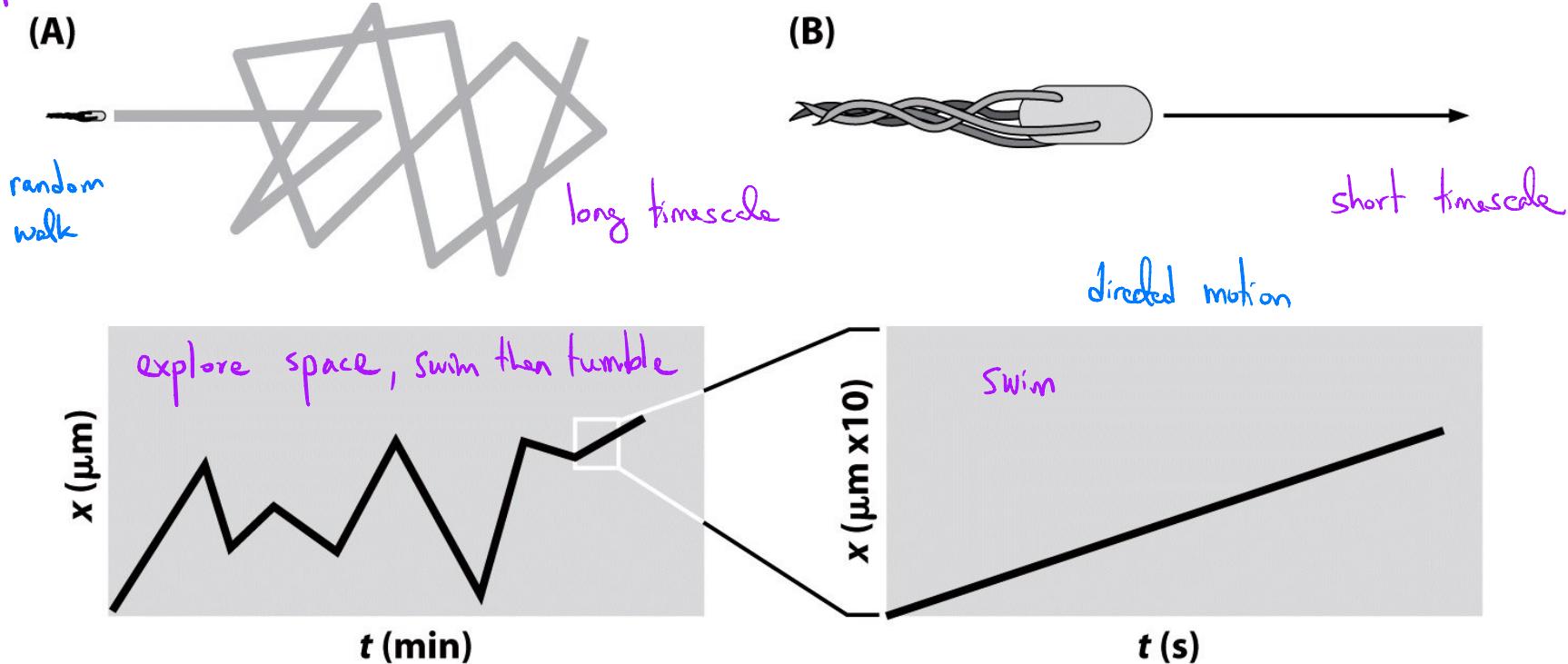
$$T_{\text{diff}} = \frac{\langle x^2 \rangle}{D}$$

$$\log(T) = 2 \log(\langle x^2 \rangle) - \log D$$

Diffusion in the cell

Example: Bacterial motion

Active vs. passive transport



Diffusion in the cell

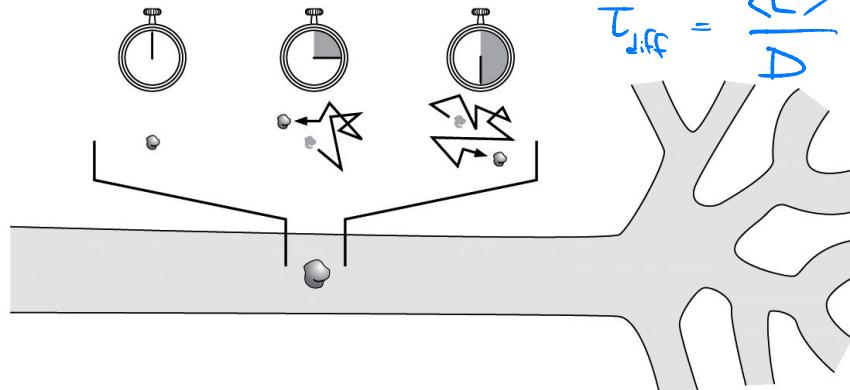
Example: protein cargo in neuron

diffusion is efficient over short distances.

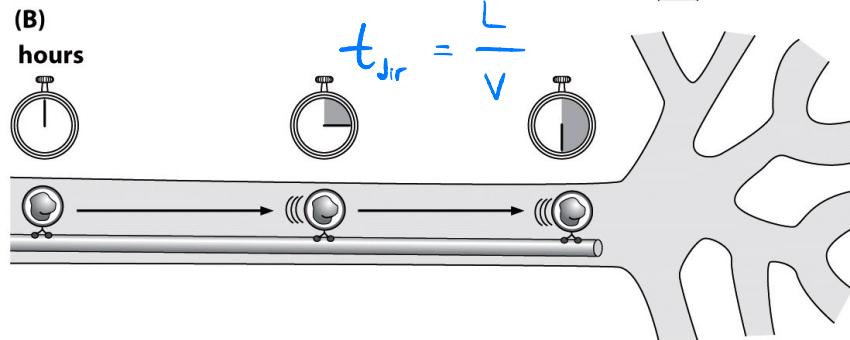
directed transport is efficient over long distances.

Time to diffuse biological distances

(A) seconds



(B) hours



$$T_{\text{diff}}^* = T_{\text{dir}}^*$$

crossover distance:

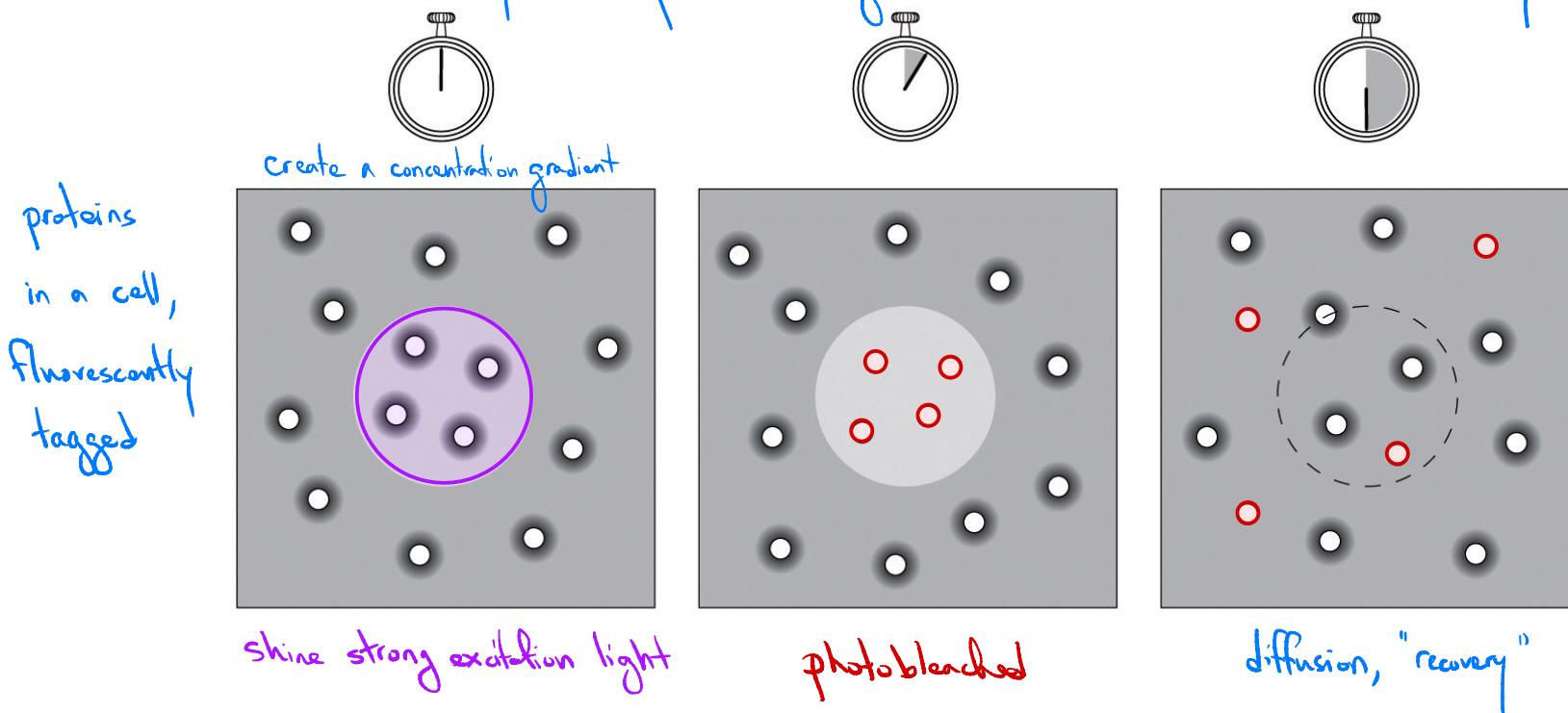
$$\frac{L^*^2}{D} = \frac{L^*}{V} \Rightarrow L^* = \frac{D}{V}$$

Diffusion in the cell

How to measure?

Time to diffuse biological distances

Fluorescence recovery after photobleaching (FRAP) can measure diffusive dynamics



Diffusion in the cell

How to model?

Concentration fields and diffusion

Models that govern diffusive dynamics

- macroscopic:

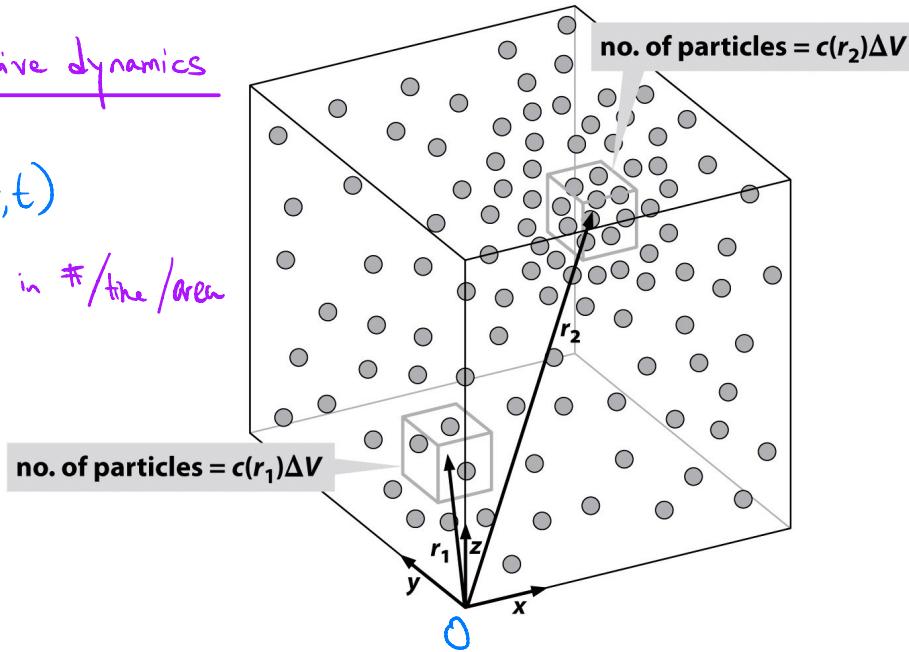
concentration field, $c(\vec{r}, t)$

flux $j(\vec{r}, t)$ change in #/time/area

- microscopic:

particle trajectories,

probability of hopping

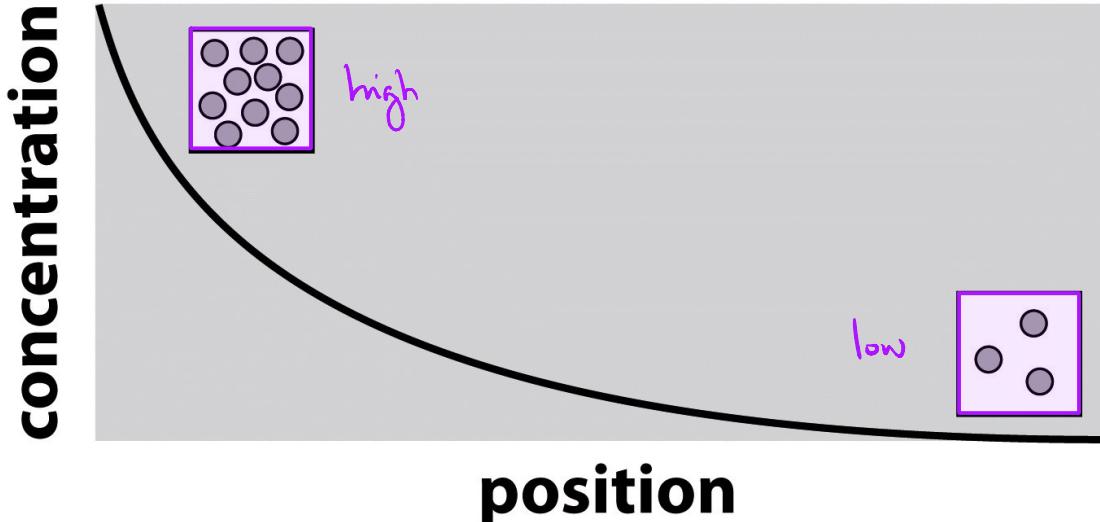


Two models, one process

Diffusion in the cell

Concentration fields and diffusion

macroscopic
diffusion is
a consequence
of concentration
gradients.
+
microscopic
random walks



Diffusion in the cell

How to model?

Concentration fields and diffusion

Models that govern diffusive dynamics

- macroscopic:
concentration field, $c(\vec{r}, t)$
flux $j(\vec{r}, t)$ change in #/time/vol

- microscopic:
particle trajectories,
probability of hopping

Two models, one process



MACROSCOPIC

Concentration varies with position, $c(\vec{r})$

Discretize: divide system into small boxes, volume $ΔV$

$$c(\vec{r}_i) = \frac{N_i}{\Delta V} \quad \frac{\# \text{ particles}}{\text{Volume}}$$

Boxes large enough to contain many particles,
small enough that concentration is \sim constant

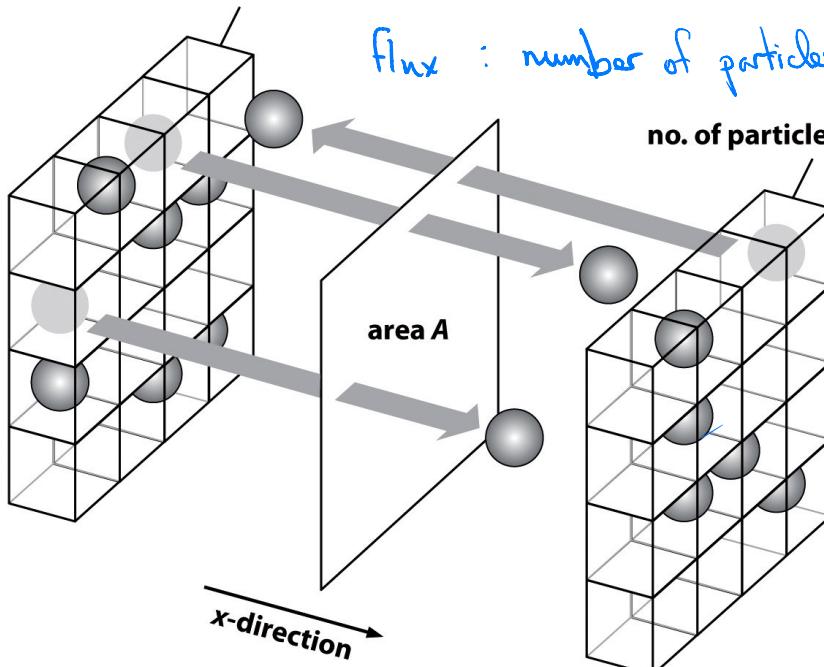
Diffusion in the cell

MACROSCOPIC

Concentration fields and diffusion: Fick's Law

no. of particles = $N(x)$

1D flow



flux : number of particles crossing per area per unit time

Units: $\frac{1}{[\text{length}^2][\text{time}]}$

Assertion for diffusing particles :

$$j = -D \frac{\partial c}{\partial x} \quad \text{Fick's Law}$$

If $\frac{\partial c}{\partial x}$ is negative, particles will flow toward $+x$.

Units of D : $\frac{[\text{length}^2]}{[\text{time}]}$

MACROSCOPIC

Diffusion equation, change in concentration with time:

change in # of particles in a box of volume ΔV per time:

$$\frac{\partial N_i}{\partial t} = \frac{\partial c(r_i)}{\partial t} \Delta V$$

Conservation of mass: change = number entering - number leaving

$$\frac{\partial c}{\partial t} \Delta V = j(x) \Delta A - j(x + \Delta x) \Delta A$$

Taylor expansion:

$$\frac{\partial c}{\partial t} \Delta V = j(x) \Delta A - \left[j(x) + \frac{\partial j}{\partial x} \Delta x \right] \Delta A$$

$$\Rightarrow \frac{\partial c}{\partial t} = - \frac{\partial j}{\partial x} \quad \text{universal as long as mass conserved}$$

Previously:

$$j = -D \frac{\partial c}{\partial x} \quad \text{Fick's Law}$$

substitute \Rightarrow

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \quad \begin{array}{l} \text{1 dimensional diffusion equation} \\ \text{constant } D \end{array}$$

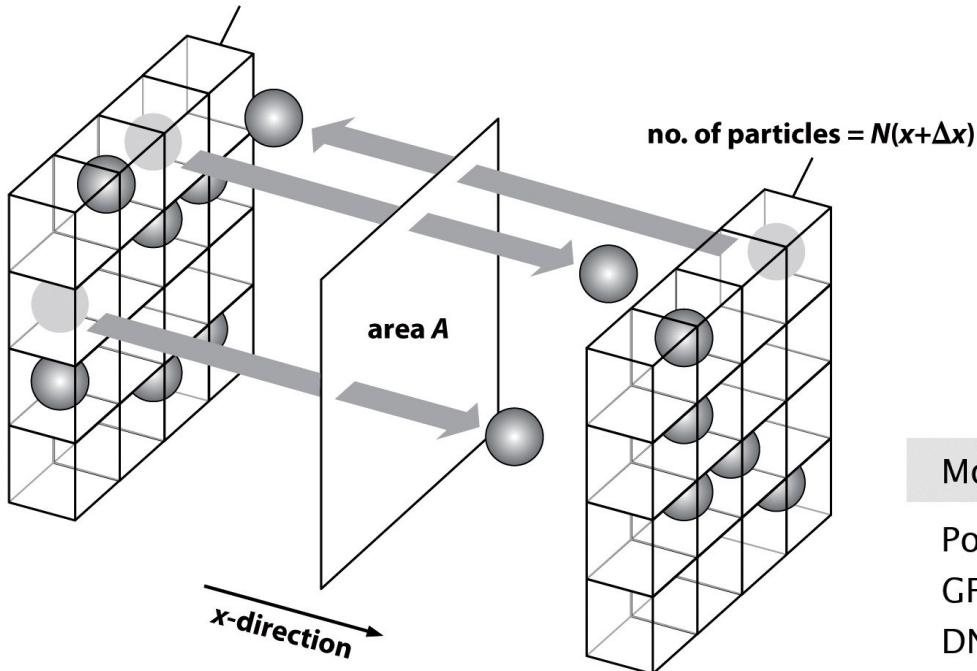
may differ if other constraints hold

Diffusion in the cell

MACROSCOPIC

Concentration fields and diffusion: Fick's Law

no. of particles = $N(x)$



$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \quad \text{1D diffusion equation}$$

$$\frac{\partial c}{\partial t} = D \nabla^2 c \quad \text{3D}$$

Typical values of $D \sim \frac{1}{a}$

Molecule

Potassium ion in water

GFP in *E.coli*

DNA in yeast

Diffusion coefficient

$\approx 2000 \mu\text{m}^2/\text{s}$

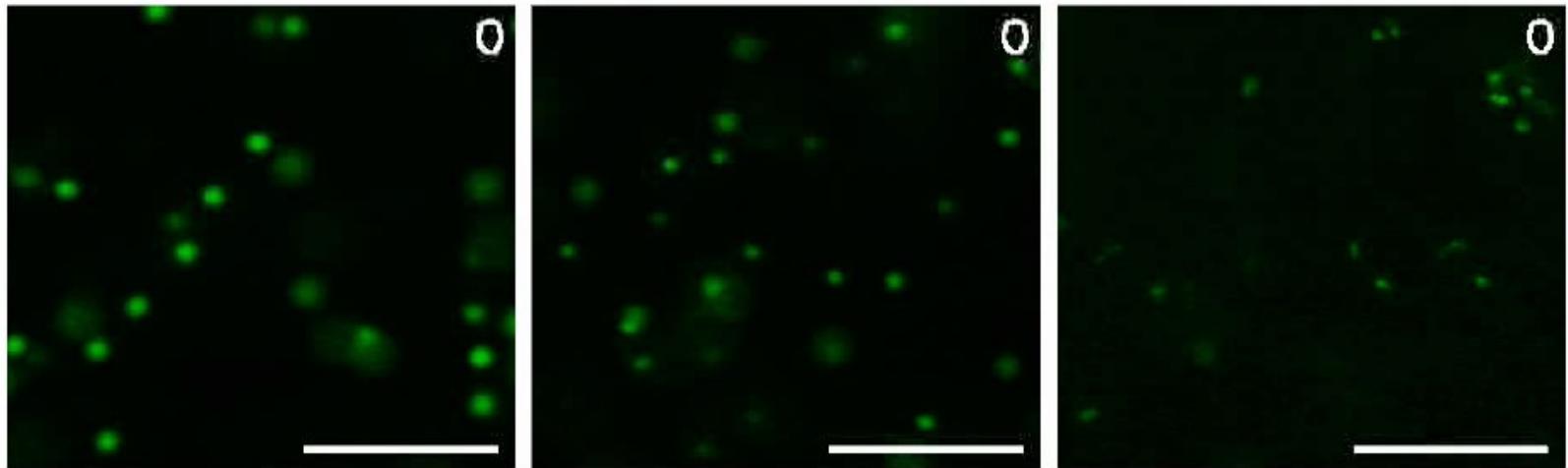
$\approx 7 \mu\text{m}^2/\text{s}$

$5 \times 10^{-4} \mu\text{m}^2/\text{s}$

Diffusion in the cell

Microscopic model:

Particles in a fluid



random trajectories

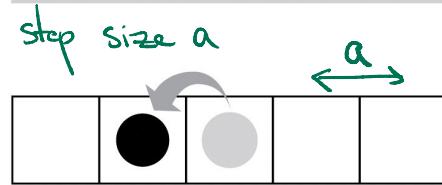
Sum over microtrajectories \rightarrow macroscopic response

Diffusion in the cell

Microscopic

Summing over microtrajectories

(micro) TRAJECTORY



WEIGHT

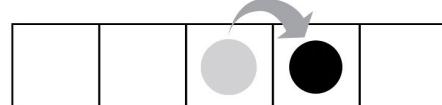
probability of
trajectory in time Δt

$k\Delta t$

or
rate of steps

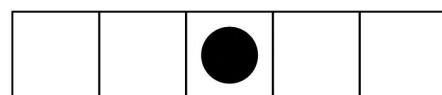
DISPLACEMENT

$-a$



$k\Delta t$

$+a$



$1-2k\Delta t$

*ensures total
probability is 1*

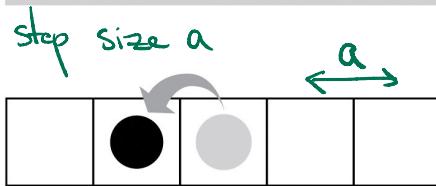
0

Diffusion in the cell

Microscopic

Summing over microtrajectories

(micro) TRAJECTORY



WEIGHT

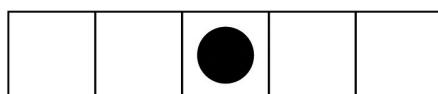
probability of trajectory in time Δt

$k\Delta t$
rate of steps

DISPLACEMENT

- a

+ a



0

ensures total probability is 1

Observables:

$$\langle \Delta x \rangle = a \cdot k\Delta t + (-a) \cdot k\Delta t + (0) \cdot (1-2k\Delta t) = 0$$

$$\langle \Delta x^2 \rangle = a^2 \cdot k\Delta t + (-a)^2 \cdot k\Delta t + 0 = 2a^2 k\Delta t$$

Over time interval t : $\langle \Delta x^2 \rangle = 2a^2 k t$

\underbrace{D}

Microscopic

MACRO $c(x,t) \leftrightarrow p(x,t)$ MICRO

What is the governing equation for $p(x,t)$, probability density that the particle is at position x at time t ?

Given $p(x,t)$, (Markov process, probabilities are history independent)

$$p(x,t+\Delta t) = \underbrace{(1-2k\Delta t) \cdot p(x,t)}_{\text{stays at } x} + \underbrace{k\Delta t \cdot p(x-a,t)}_{\text{was at } x-a, \text{ moves right}} + \underbrace{k\Delta t \cdot p(x+a,t)}_{\text{was at } x+a, \text{ moves left}} \quad *$$

Microscopic

What is the governing equation for $p(x, t)$, probability density that the particle is at position x at time t ?

Given $p(x, t)$, (Markov process, probabilities are history independent)

$$p(x, t + \Delta t) = \underbrace{(1 - 2k\Delta t) \cdot p(x, t)}_{\text{stays at } x} + \underbrace{k\Delta t \cdot p(x-a, t)}_{\text{was at } x-a, \text{ moves right}} + \underbrace{k\Delta t \cdot p(x+a, t)}_{\text{was at } x+a, \text{ moves left}}$$

Taylor expansion:

$$p(x, t + \Delta t) \approx p(x, t) + \Delta t \frac{\partial p(x, t)}{\partial t}$$

$$p(x \pm a, t) \approx p(x, t) \pm a \frac{\partial p(x, t)}{\partial x} + \frac{a^2}{2} \frac{\partial^2 p(x, t)}{\partial x^2}$$

Microscopic

What is the governing equation for $p(x, t)$, probability density that the particle is at position x at time t ?

Given $p(x, t)$, (Markov process, probabilities are history independent)

$$p(x, t + \Delta t) = \underbrace{(1 - 2k\Delta t) \cdot p(x, t)}_{\text{stays at } x} + \underbrace{k\Delta t \cdot p(x-a, t)}_{\text{was at } x-a, \text{ moves right}} + \underbrace{k\Delta t \cdot p(x+a, t)}_{\text{was at } x+a, \text{ moves left}}$$

Taylor expansion: $p(x, t + \Delta t) \approx p(x, t) + \Delta t \frac{\partial p(x, t)}{\partial t}$

$$p(x \pm a, t) \approx p(x, t) \pm a \frac{\partial p(x, t)}{\partial x} + \frac{a^2}{2} \frac{\partial^2 p(x, t)}{\partial x^2}$$

Substitute into \star

$$\begin{aligned} p(x, t) + \Delta t \frac{\partial p(x, t)}{\partial t} &= (1 - 2k\Delta t) \cdot p(x, t) + k\Delta t \cdot \left[p(x, t) - a \frac{\partial p(x, t)}{\partial x} + \frac{a^2}{2} \frac{\partial^2 p(x, t)}{\partial x^2} \right] \\ &\quad + k\Delta t \cdot \left[p(x, t) + a \frac{\partial p(x, t)}{\partial x} + \frac{a^2}{2} \frac{\partial^2 p(x, t)}{\partial x^2} \right] \\ &= p(x, t) + a^2 k \Delta t \frac{\partial^2 p(x, t)}{\partial x^2} \end{aligned}$$

Microscopic

What is the governing equation for $p(x, t)$, probability density that the particle is at position x at time t ?

Given $p(x, t)$, (Markov process, probabilities are history independent)

$$p(x, t + \Delta t) = \underbrace{(1 - 2k\Delta t) \cdot p(x, t)}_{\text{stays at } x} + \underbrace{k\Delta t \cdot p(x-a, t)}_{\text{was at } x-a, \text{ moves right}} + \underbrace{k\Delta t \cdot p(x+a, t)}_{\text{was at } x+a, \text{ moves left}}$$

Taylor expansion: $p(x, t + \Delta t) \approx p(x, t) + \Delta t \frac{\partial p(x, t)}{\partial t}$

$$p(x \pm a, t) \approx p(x, t) \pm a \frac{\partial p(x, t)}{\partial x} + \frac{a^2}{2} \frac{\partial^2 p(x, t)}{\partial x^2}$$

Substitute into \star

$$\begin{aligned} p(x, t) + \Delta t \frac{\partial p(x, t)}{\partial t} &= (1 - 2k\Delta t) \cdot p(x, t) + k\Delta t \cdot \left[p(x, t) - a \frac{\partial p(x, t)}{\partial x} + \frac{a^2}{2} \frac{\partial^2 p(x, t)}{\partial x^2} \right] \\ &\quad + k\Delta t \cdot \left[p(x, t) + a \frac{\partial p(x, t)}{\partial x} + \frac{a^2}{2} \frac{\partial^2 p(x, t)}{\partial x^2} \right] \\ &= p(x, t) + a^2 k \Delta t \frac{\partial^2 p(x, t)}{\partial x^2} \end{aligned}$$

$$\Rightarrow \frac{\partial p(x, t)}{\partial t} = a^2 k \frac{\partial^2 p(x, t)}{\partial x^2}$$

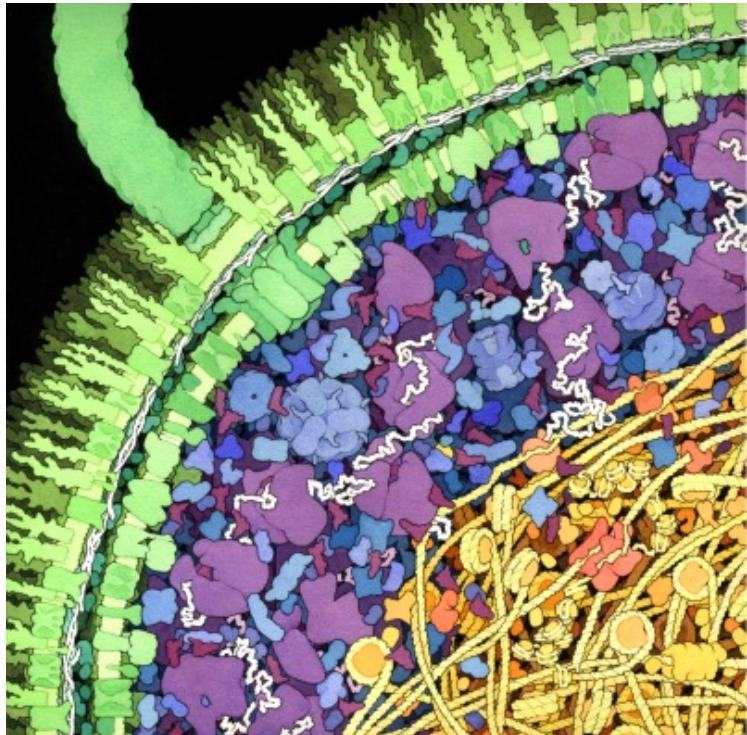
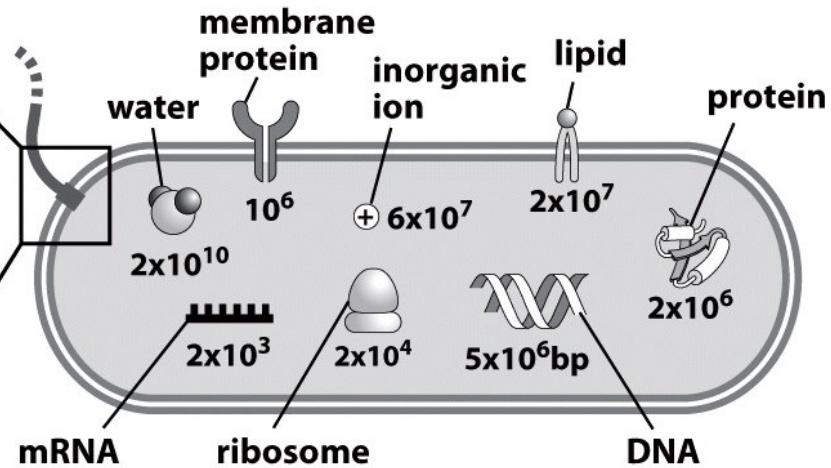
1 dimensional diffusion eqn,
constant $D = a^2 k$

Also, (13.15) - (13.22),
develop by summing over all
microtrajectories

An ode to E. coli

Previously:

Molecular census



cells are crowded

Diffusion in the cell

Diffusion in crowded environments

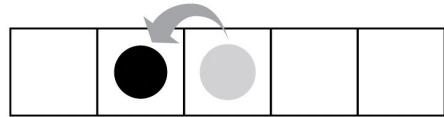
What is the diffusion coefficient associated with “crowded” random walk?

Assume fraction of occupied lattice sites φ (only one molecule can occupy lattice site)

Diffusion in the cell

Summing over microtrajectories: Crowding (14.3.2)

TRAJECTORY WEIGHT DISPLACEMENT



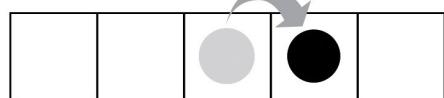
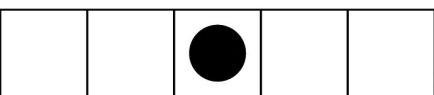
$$k\Delta t (1-\varphi)$$

$-a$

probability site is
unoccupied

$$k\Delta t (1-\varphi)$$

$+a$



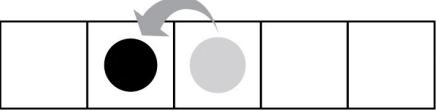
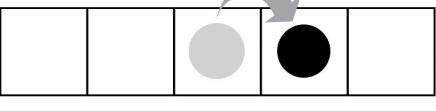
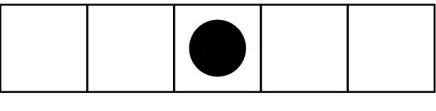
$$1 - 2k\Delta t (1-\varphi)$$

0

ensures total
probability is 1

Diffusion in the cell

Summing over microtrajectories: Crowding (14.3.2)

TRAJECTORY	WEIGHT	DISPLACEMENT
	$k\Delta t (1-\varphi)$	$-a$
	$k\Delta t (1-\varphi)$	$+a$
	$1 - 2k\Delta t (1-\varphi)$	0

ensures total probability is 1

Observables:

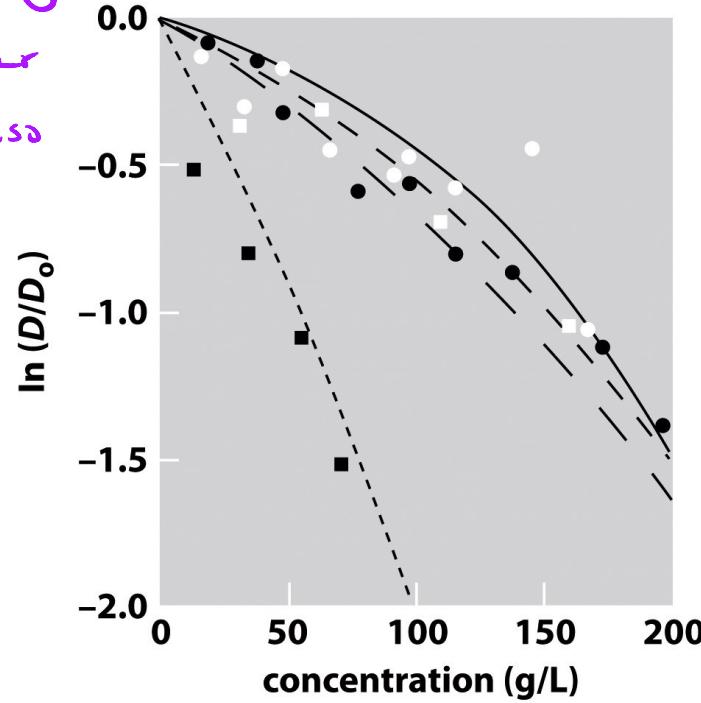
$$\langle \Delta x \rangle = a \cdot k\Delta t (1-\varphi) + (-a) \cdot k\Delta t (1-\varphi) + 0 = 0$$

$$\begin{aligned} \langle \Delta x^2 \rangle &= a^2 \cdot k\Delta t (1-\varphi) + (-a)^2 \cdot k\Delta t (1-\varphi) + 0 \\ &= 2a^2 k\Delta t (1-\varphi) \end{aligned}$$

$$\begin{aligned} \text{Over time interval } t: \langle \Delta x^2 \rangle &= 2 \underbrace{a^2 k (1-\varphi)}_{D^*} t \\ &= D_0 \cdot (1-\varphi) \end{aligned}$$

Transport in cellular systems

φ is a good start,
next order
model also
considers
excluded
volume

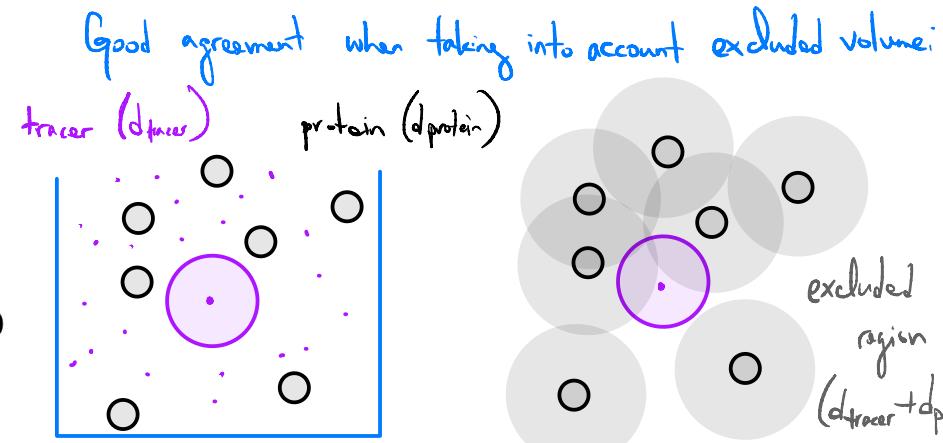


Diffusion in crowded environments

aldolase

tracer diffusion in protein solution

Molecular species	M_W [Da]	r	size ratio
ribonuclease	12,400	2.3	$\frac{d_{\text{tracer}}}{d_{\text{protein}}}$
ovalbumin	43,500	1.5	
BSA	70,000	1.3	
aldolase	150,000	1	



Diffusion in the cell

Solutions to the diffusion equation

Suppose $c(x, t=0)$ is a spike at $x=0$.

$$c(x, t=0) = \delta(x)$$

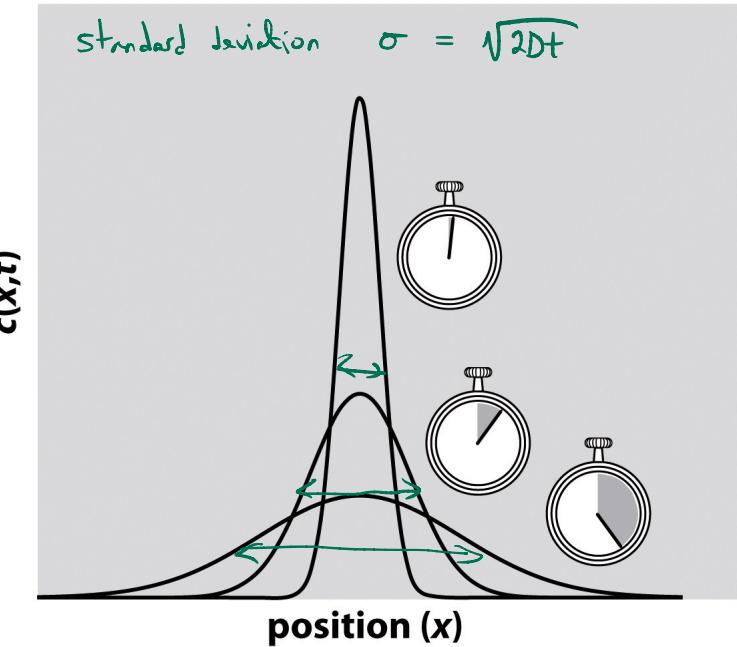
Solution to the diffusion equation:

$$c(x, t) = \frac{N}{\sqrt{4\pi Dt}} e^{-x^2/4Dt} \quad (\text{Green's function})$$

Note:

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 P(x) dx = 2Dt \quad (13.33-34)$$

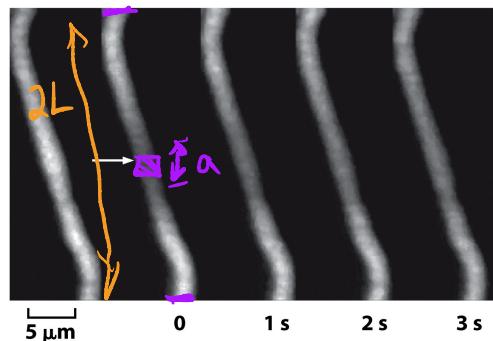
$$c(x, t)/N$$



Diffusion in the cell

Macroscopic

photobleach



time →

FRAP of elongated bacterium

1D diffusion, box of length $2L$

Solutions to the diffusion equation

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} \quad \text{initial condition} \quad c(x, t=0) \begin{cases} c_0 & -L < x < -a \\ 0 & -a < x < a \\ c_0 & a < x < L \end{cases}$$

$$\text{boundary condition} \quad \frac{\partial c}{\partial x} \bigg|_{x=\pm L} = 0$$

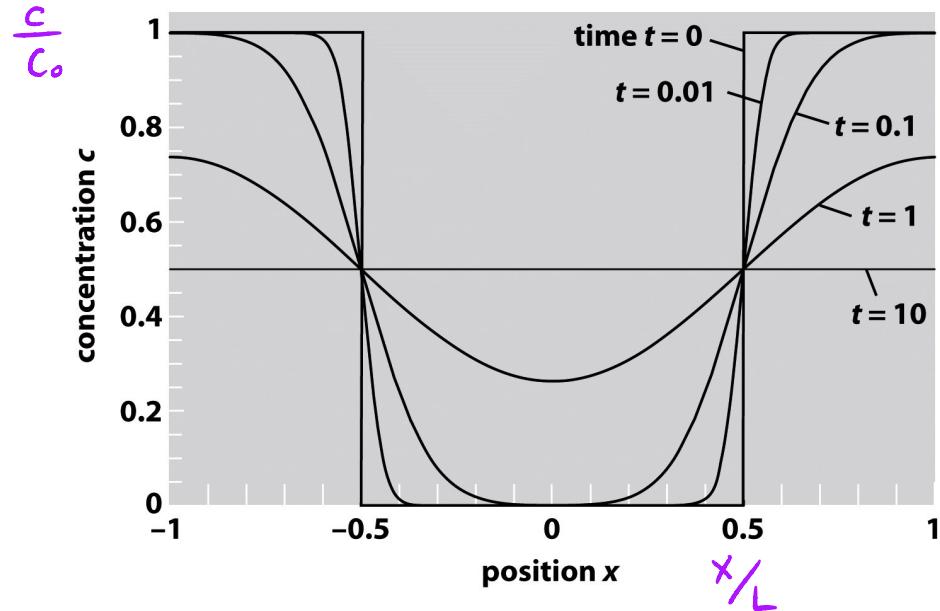
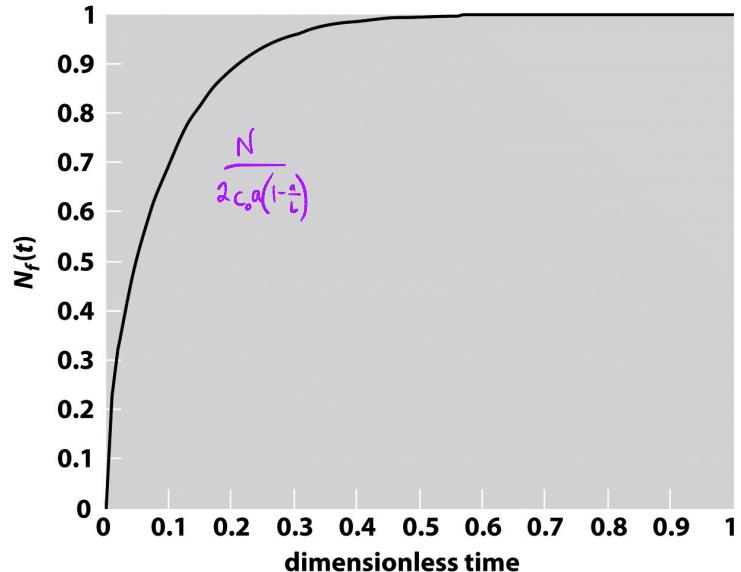
Considering symmetry and B.C., sum of cosine functions. (13.39)

Find weights by applying constraints (13.40 - 13.46) $\Rightarrow c(x, t)$

Also, $N_f = \int_{-a}^a c(x, t) dx$ number of fluorescent molecules in the bleached region.

Diffusion in the cell

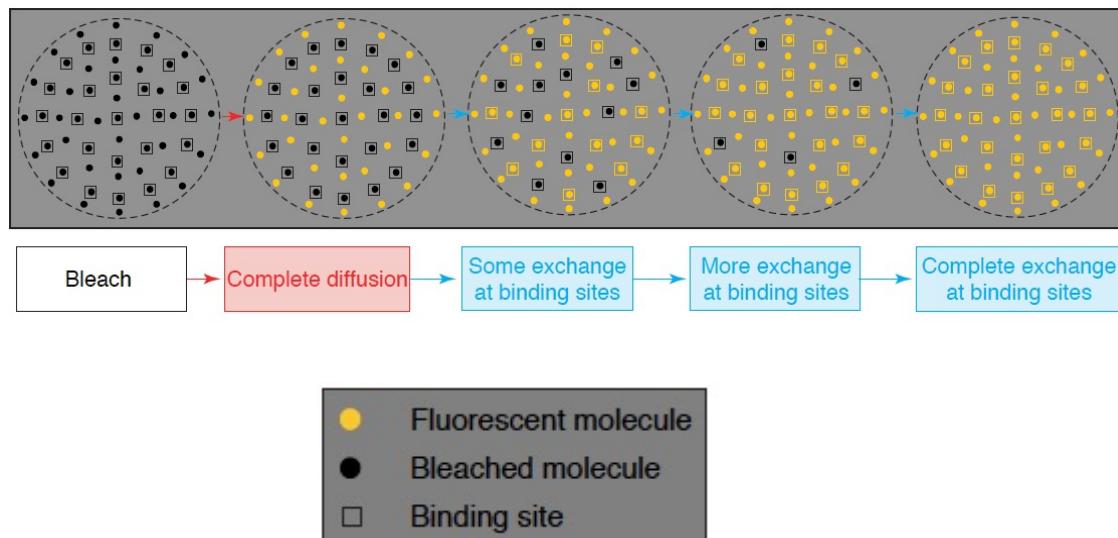
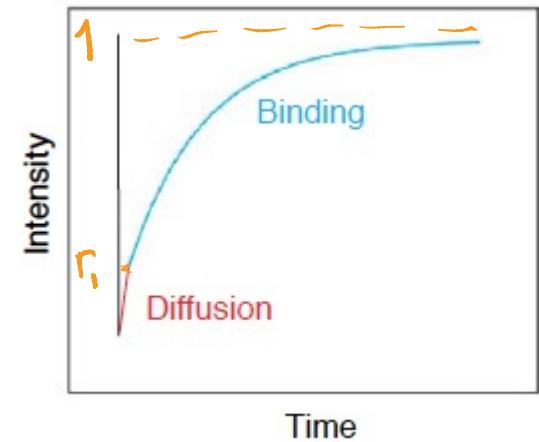
Solutions to the diffusion equation



Diffusion in the cell

Complexity: diffusion + binding

Limit case ($t_{\text{diff}} \ll t_{\text{binding}}$): Two separable timescales

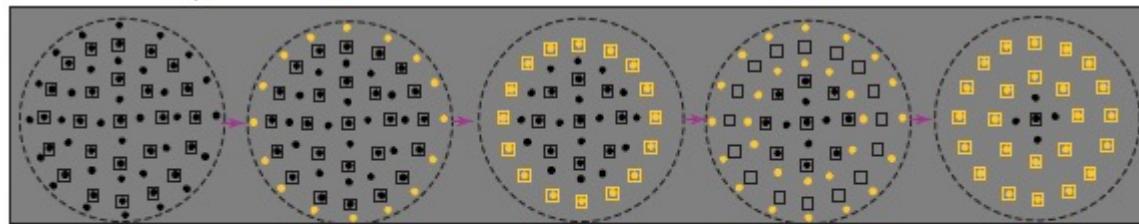
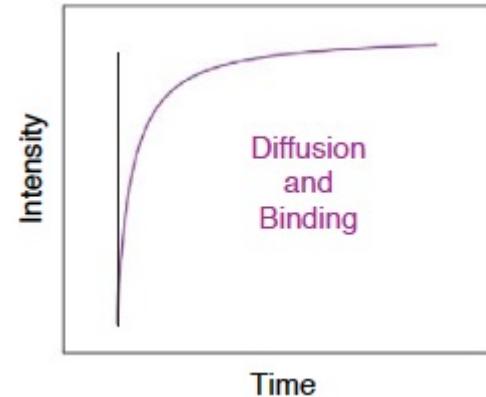


binding delays FRAP recovery,
compare with "inert" molecule!

Diffusion in the cell

Complexity: diffusion + binding

Case ($t_{\text{diff}} \sim t_{\text{binding}}$): Mixing of dynamic modes



Anomalous diffusion:

$$\langle r^2(\tau) \rangle = 6D\tau$$

$$\langle r^2(\tau) \rangle = 6D\tau^\alpha = 6D(\tau)\tau$$

Lecture 8: Diffusion in the cell

Summary:

- Diffusion can be modeled based on macroscopic or microscopic considerations.
- In either case, the fundamental physical basis is thermal agitation driving a random walk.
- Transport in a cell may be modified by binding, crowding, barriers.
- More complex physical constraints can be accounted for by modifying micro-trajectories. Deviation from Fick's Law.
- The effective diffusion coefficient reflects physical constraints on particle motion.