
• Brownian motion
• Concentration fields and diffusive dynamics

PBOC Chapter 13.1, 13.2.1-13.2.3

Lecture 8: Diffusion in the cell

Goal: Role of Brownian motion in living systems. 
Compute the time to travel a distance, model diffusion 
in gradient.

macro/micro models



Diffusion in the cell

Active	vs.	passive transport

↓ ↓
directed motion passive random walk

something does wat Brownian motion = diffusion (thermal)

energy
is consumed

this week
next lecture



Diffusion in the cell

Active	vs.	passive transport

passive,
diffusive

(free in the cytoplasm)

active,
directed

(central dogme DNA-mRNA)



How long to get from one place to another?
[*) = CDT ne

where I depends on dimension

time [diff<memsquareddisplace
a

D thulaug =100 My for a Sen proteinita

viscosity
Numerical estimates : To Li um

-squid axon

"Life ? L = So cmT

squid



How long to get from one place to another?
(x** DTae

time [diff=memsquareddisplace
a

thermal energe - 100 Mr for a 5 um protein in $Danie
viscosity

Numerica estimates : This
-squid axon

dif)SISOa

1 cm = 18 um



Diffusion in the cell

Time	to	diffuse	biological	distances

↑
diff=

25 log(t) = 2log(xy
*)

- logD



Diffusion in the cell

Active	vs.	passive	transportExample: Bacterial motion

random short timescale
walke long timescale

directed motion

explore space , swim then tumble Swim



Diffusion in the cell

Time	to	diffuse	biological	distancesExample : protein cargo in
neuron

diff=
diffusion is

=T
efficient over
short distances. crossover distance

=
tar-n

directed transport
is efficient

over long histances .



Diffusion in the cell

Time	to	diffuse	biological	distancesHow to measure ?
Fluorescence

recovery
after photobleaching (FRAP) can measure diffusive dynamics

create a concentration gradient
proteins
in a cell,

fluorescently
tagged

shine strong excitation light photobleached diffusion
," recovery

"



Diffusion in the cell

Concentration	fields	and	diffusion
How to model?

Models that govern diffusive dynamics
·

macroscopic
:

concentration field
,
c(r

,
t)

flux j(, t) change in #/ine/oven
· microscopic :

particle trajectories ,

probability of hopping
f

Two models
,
one process



Diffusion in the cell

Concentration	fields	and	diffusion

macroscopic
diffusion is high
a consequence

of concentration

gradients. low

t

microscopic
random walks

concentration gradient



Diffusion in the cell

Concentration	fields	and	diffusion
How to model?

MACROSCOPIC
Models that govern diffusive dynamics
·

macroscopic
:

concentration varies with
concentration field

,
c(r

,
t) # position , c(r)

flux j(, t) change in #/ine/ Discretiza : divide system
· microscopic : into small boxes

,
volume AV

particle trajectories , E
probability of hopping =volume

f BoxeslargeenoughtocontinmanypartiesaTwo models
,
one process



Diffusion in the cell

Concentration	fields	and	diffusion:	Fick’s	LawMACROSCOPIC

1D flow

flux : number of particles crossing per area per unit time Units : Teng]'Stime]
Assertion for diffusing particles :

j = -D Firs Law

~ If is negative, particles will flow toward +X .

Units of D:length
Ctime]



MACROSCOPIC

Diffusion equation , change in concentration with time :

change in # of particles in a box of volume AV
per
time:

&wi
conservation of mass : change = number entering - number leaving

AV = j(x)AA - j(x+bx)AA

Taylor expansion
:

AV = j(x)xA - (j(x)+ AX]DA

=>- universel as long as mass conserved

Previously :

substitute

j = -D fira Dimensi diffusion equation
constant D

may differ if other constraints hold



Diffusion in the cell

Concentration	fields	and	diffusion:	Fick’s	Law
MACROSCOPIC

& DID diffusion equation

u = Dyc34

Typical values of Dr



Particles	in	a	fluid

Diffusion in the cell

Microscopic model :

random trajectories
sum over microtrajectories -> macroscopic response



Diffusion in the cell

Summing	over	microtrajectoriesMicroscopic
(micro DISPLACEMENT

step size a Probabilitya b
- a

rate of steps

+ a

O ·

in

ensures total

probability is 1



Diffusion in the cell

Summing	over	microtrajectoriesMicroscopic
(micro DISPLACEMENT

step size a probability
of

s trajedory in time At
- a Observables:

rate of steps (x) = a : (bt + (a) - kA+ + (0) . (1-24AD = 8

(2) = a = kDt + (a) kA+ + o = 2akDt
+ a

Over time interval t : <DX2) = Lack-
D

O ·

in

ensures total

probability is 1



Microscopic Macro ((x
,
+) p(x ,t) Micro

What is the
governing equation for p(x,t) , probability density that the

particle is at position X of time +?
↓ ↓

Given p(x,t), (Marbor
process , probabilities are history independent)

P(x ,t + yt) = Hi p(xt) + kD+ - p(x - a, t) +mp(x+a
,
t) *

-

stays at X was of X-a
,
moves right

was
at X + a , moves left



Microscopic
What is the

governing equation for p(x,t) , probability density that the
particle is at position X of time +?
↓ ↓

Given p(x,t), (Marbor
process , probabilities are history independent)

P(x ,t + yt) = Hi p(xt) + kD+ - p(x - a, t) +mp(x+a
,
t) *

-

stays at X was of X-a
,
moves right

was
at X + a , moves left

Taylor expansion
:

p(x ,

t+xt) = p(x,t) + y+ o
p (x=,t) = p(x,t) =a)2x



Microscopic
What is the

governing equation for p(x,t) , probability density that the
particle is at position X of time +?
↓ ↓

Given p(x,t), (Marbor
process , probabilities are history independent)

P(x ,t + yt) = Hi p(xt) + kD+ - p(x - a, t) +mp(x+a
,
t) *

-

stays at X was of X-a
,
moves right

was
at X + a , moves left

Taylor expansion
:

p(x ,

t+xt) = p(x,t) + y+ o
p (x=,t) = p(x,t) =a)2x

Substitute into

p(x,t) +(+ ) = (1 -24bt) - p(xt) + kat - (p(x,t) -a
- ht · (p(x,t) +a

= p(x , t) + a
=

kA + 0xyyt)
2

OX



Microscopic
What is the

governing equation for p(x,t) , probability density that the
particle is at position X of time +?
↓ ↓

Given p(x,t), (Marbor
process , probabilities are history independent)

P(x ,t + yt) = Hi p(xt) + kD+ - p(x - a, t) +mp(x+a
,
t) *

-

stays at X was of X-a
,
moves right

was
at X + a , moves left

Taylor expansion
:

p(x ,

t+xt) = p(x,t) + y+ o
p (x=,t) = p(x,t) =a)2x

Substitute into

p(x,t) +(+ ) = (1 -24bt) - p(xt) + kat - (p(x,t) -a
- ht · (p(x,t) +a

= p(x , t) + a
=

kA + 0xyyt)
2xh Also

,
(13

. 15) - (13 .
22)

,

=>= I dimensional diffusion egn , develop by summing over
all

ox" constant D = a2k microtrajectories



An ode to E. coli
Molecular	censusPreviously:

cells are crowded



Diffusion	in	crowded	environments
What is the diffusion coefficient associated with “crowded” random walk?
Assume fraction of occupied lattice sites ϕ

Diffusion in the cell

Conly one molecule can
occupy

lattice site)



Diffusion in the cell

Summing	over	microtrajectories:	Crowding	(14.3.2)

WEIGHT DISPLACEMENT

kat(1-q) - a

-

un

probability site isunoccupied
kat(1 -4) + a

↓



Diffusion in the cell

Summing	over	microtrajectories:	Crowding	(14.3.2)

WEIGHT DISPLACEMENT

Observables:

kat(1-q) - a
(Dx) = a : (bt(1 -y) + (a) . kAt(t -q)+ 0 = 8

un
(2) = a = kDt(1 -y) + (a) kAt(1 -y) + o

probability site isunoccupied
= 2akD+ (1- p)kat(1 -4) + a

Over time interval +: <NX2) =Lay

↓ = D: (1 - p)
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Figure 1. Lattice model of tracer particles of size b di�using in the pres-
ence of crowding molecules of size a. The tracer particle can hop to the
neighboring tracer site only if there are no crowding molecules present in
the r = b/a adjacent crowding molecule sites. The fraction of sites occupied
by crowding molecules is ⇥.

masses and a typical protein density which is 1.3 times that of water. The data are provided
on the book website.
(a) Possible trajectories of the tracer molecule are a step of length b in the positive x-
direction, a step in the negative x-direction, or staying put. The probabilities of each of
these trajectories is 1/2(1�⇥)r, 1/2(1�⇥)r, and 1� (1�⇥)r. The first two are calculated
as the probability of a step (1/2), times the probability that the adjacent site is unoccupied
((1�⇥)r), thus allowing for a step. An adjacent site of size b is considered unoccupied if all
the r = b/a sites of size a that are part of it are unoccupied by crowding molecules. The
fraction of a-size sites that are occupied is ⇥, which is also the probability of occupancy of
one of these sites by a crowding molecule. Taking all the trajectories and their probabilities
into account, the average of the square of the displacement of the tracer particle after one
step is

(73)
�
x2

⇥
1

= b2(1� ⇥2)r.

Since every step is independent of every other step, and all the steps are identically dis-
tributed random variables, the average displacement squared after N = t/� steps is

(74)
�
x2

⇥
= Nb2(1� ⇥2)r = 2Dt .

The the di�usion constant is given by

(75) D = D0(1� ⇥)r,

where D0 = b2/2� is the di�usion constant of tracer particles in the absence of crowding
molecules.

(b) The data provided gives the molecular masses of the various crowding molecules used
in the experiment. From this we can compute the relative sizes of the tracer molecule
(adolase) to the crowding agents (the parameter r introduced in (a)), by taking the third
root of the ratio of the two masses. This assumes that all the molecules used in the exper-
iment can be treated as balls of equal density. The molecular weights and r parameters
for the four di�erent crowding agents used in the experiment are given in the table below.

Molecular species MW [Da] r
ribonuclease 12,400 2.3
ovalbumin 43,500 1.5
BSA 70,000 1.3
aldolase 150,000 1

tracer diffusion in protein solution

Diffusion	in	crowded	environments

Transport in cellular systems

O is a good start, aldolase
↑

next order

model also
so

- drea/d
protein

considers

excluded

volume Good agreement when taking into account excluded volume:
tracer Idaca) protein (dprotein)

*

* excluded

region
Idtracer+&protei



Diffusion in the cell

Solutions	to	the	diffusion	equation

Suppose c(x ,+ = 0) is a spike at X= 0. standard deviationo

c(x ,+= 0) = S(x)

Solution to the diffusion equation :

c(x
,
+)= e
*

(Greis fat an
=

Note :

(xz) = 9% x- P(x)dx = 2Dt(13 .
33 - 34) -

--
Um

c(x
, t)/N



Diffusion in the cell

Solutions	to	the	diffusion	equationMacroscopic
photobleach
&
-

=D initial condition c(x,to)Ex
acXxL/ boundary condition

=y

=O

-a(Xa

*

time-> Considering symmetry and B
.
C
.,

sum of cosine functions
.

(13
.
39)

FRAP of elongated bacterium
Find weights by applying constraints (13 .40 -13 .46) => c(x

,
6)

15 diffusion
,
box of length 22

Also
, No = Sa <k+dx number of fluorescent molecules

in the bleached
region.



Diffusion in the cell

Solutions	to	the	diffusion	equation
&
Co

N

)

*/



Complexity:	diffusion	+	binding
Limit	case	(tdiff <<	tbinding):	Two	separable	timescales

Diffusion in the cell

1 ------

T

binding delaysFRAPrecove
,

S



Case	(tdiff ~	tbinding):	Mixing	of	dynamic	modes

r2 (τ ) = 6Dτ

r2 (τ ) = 6Dτα = 6D(τ )τ

Anomalous	diffusion:

Complexity:	diffusion	+	binding

Diffusion in the cell



Summary:

Lecture 8: Diffusion in the cell

· Diffusion can be modeled based on macroscopic or microscopic
considerations.

· In either case
,
the fundamental physical basis is thermal agitation driving a random walk.

· Transport in a
cell

may
be modified by binding , crowding , barriers.

· More complex physical constraints can be accounted for by modifying
micro-trajectories .

Deviation from Fick's Law.

· The effective diffusion coefficient reflects physical constraints on particle motion-


