Lecture 7: Two-state system, 1on channels

Goal: Statistical mechanics modeling. Compute the
probability of microstates, including applied forces.
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PBOC Chapter 7.1.2, 11.5



Statistical mechanics for biophysics

Previously (Lecture 3): . .
Microstates: Canonical ensemble

Definition: a microstate is a microscopic
arrangement of the constituents of a system
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Statistical mechanics for biophysics

Previously (Lecture 6): _ .
Microstates: Canonical ensemble

Suppose a system can exist in states with energies E;.
What is the probability of finding the system in a given state?

Boltzmann distribution, probability of |
finding the system in a microstate p(E;) = 7 e Ei/kp (6.4)
with energy E; (derivation, Section 6.1.3)
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Two-state system

State variables, o
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Two-state system

State variables, o
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Two-state system

Ion channel gating  €()-© i.v.n(\*f)icm
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Two-state system
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Two-state system

-2.5 sec

ATP-induced structural changes



Two-state system

lon channel gating
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Two-state system
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The active membrane

Mechanosensitive Ion Channels and Membrane Elasticity
o= 1

view from cellular interior
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The active membrane
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The crystal structure of tetrameric SaMscL



The active membrane

Mechanosensitive Ion Channels and Membrane Elasticity
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The active membrane

: : . PR.C .S
Brrghic cost s » One-dimensional solution for MscL B
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The active membrane

One-dimensional solution for MscL
die wagy Fom ylaghbe i dusien
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ulx) =wlkx) —w
° minimize free energy:

« functional derivative (5.7 Appendix)

« derive equilibrium equation (11.40-11.43)

« identify physical solutions u(x) (11.44-11.51)

« apply BC, substitute back into free energy (11.51-57)
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The active membrane

Two-dimensional solution for MscL

V2 w3

use cylindrical symmetry to calculate total energy (11.58-59)
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The active membrane

One-dimensional solution for MscL

« Sketch the free energy as a function of channel radius.
* Find the critical tension, defined as the tension at which
the free energies of open and closed states are equal. T,
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The active membrane

One-dimensional solution for MscL
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The active membrane

One-dimensional solution for MscL
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The active membrane

One-dimensional solution for MscL

Theory Experiment
n Terit (KpT /A?) AG(z = 0) (kgT) P12 (mmHg)  AG(r = 0) (kgT)
16 2.3.10°3 5 24 + 2 4
18 5.2.1073 11.5 42 +5 9.4
20 9.3.103 20.4 72+8 23.5
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Lecture 7: Two-state system, 1on channels
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Lecture 8: Diffusive dynamics

Goal: Role of Brownian motion in living systems.
Compute the time to travel a distance, model diffusion
In gradient.

* Brownian motion
» Concentration fields and diffusive dynamics

PBOC Chapter 13.1, 13.2.1-13.2.3



The active membrane

Mechanosensitive Ion Channels and Membrane Elasticity
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