

Lecture 7: Two-state system, ion channels

Goal: Statistical mechanics modeling. Compute the probability of microstates, including applied forces.

- Two-state system

state variable $\sigma_i = \{0,1\}$

- Mechanosensitive ion channels

two-state system + mechanics

PBOC Chapter 7.1.2, 11.5

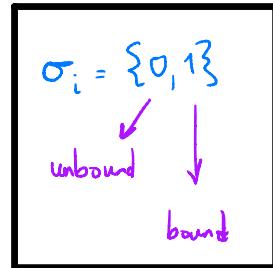
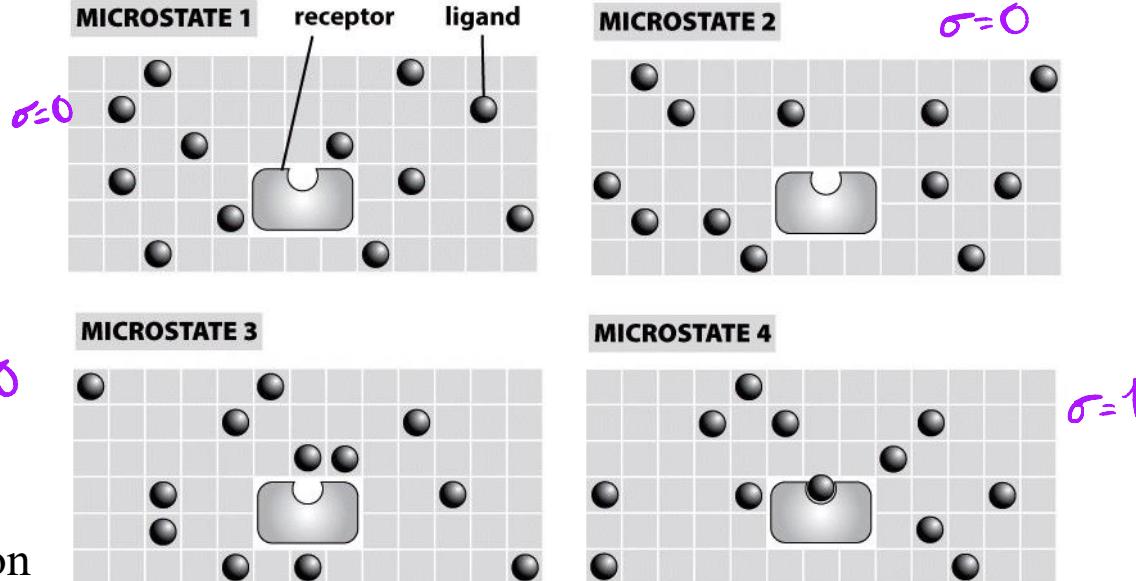
Statistical mechanics for biophysics

Previously (Lecture 3):

Microstates: Canonical ensemble

Definition: a **microstate** is a microscopic arrangement of the constituents of a system

Example: Ligand binding to a receptor protein



Lattice model

L ligands

Ω boxes

max. one ligand per box

energy ε_b of a bound ligand

energy ε_{sol} of a ligand in solution

Statistical mechanics for biophysics

Previously (Lecture 6):

Microstates: Canonical ensemble

Suppose a system can exist in states with energies E_i .

What is the probability of finding the system in a given state?

Boltzmann distribution, probability of finding the system in a microstate with energy E_i (*derivation, Section 6.1.3*)

$$p(E_i) = \frac{1}{Z} e^{-E_i/k_B T} \quad (6.4)$$

Partition function, normalization factor so that $\sum_{i=1}^N p(E_i) = 1$

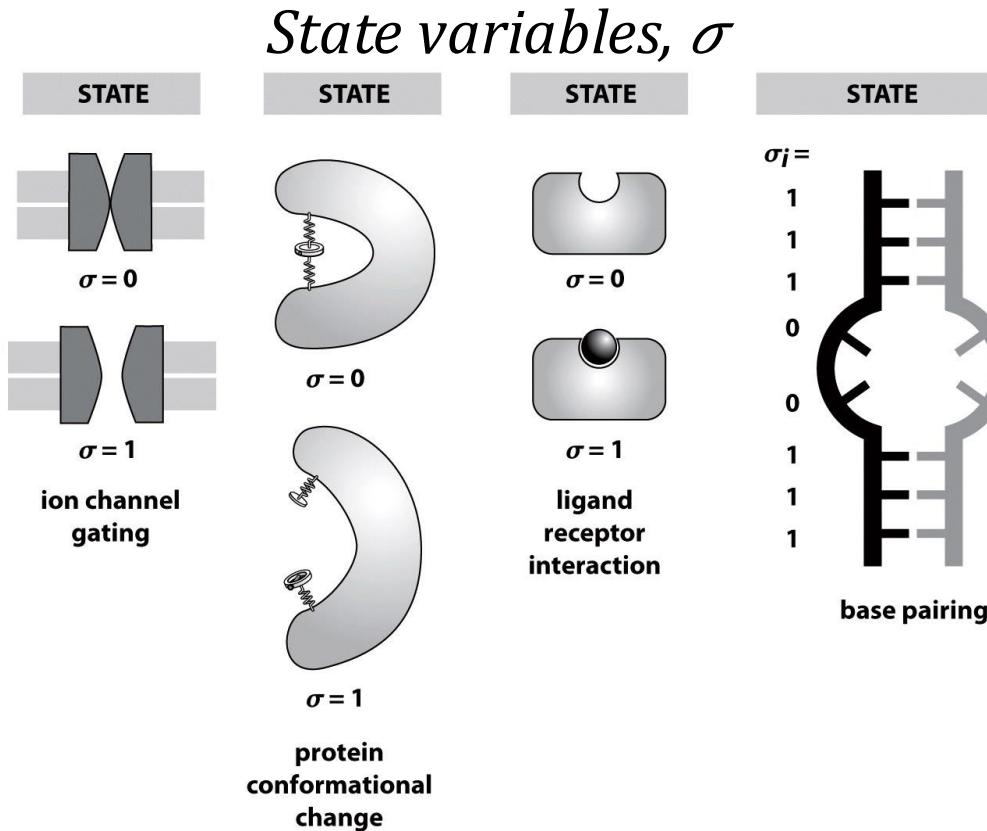
$$Z = \sum_{i=1}^N e^{-E_i/k_B T} \quad (6.5)$$

Two-state system

System takes on different states in time or as an ensemble:

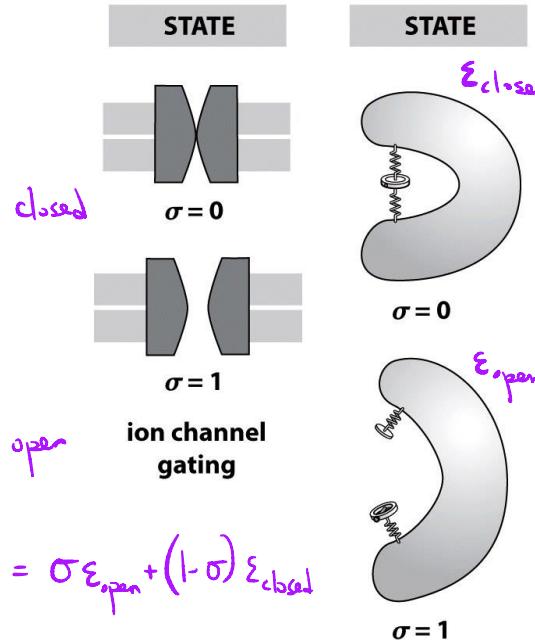
State variable $\sigma_i = \{0, 1\}$

(Note: We have chosen this convention; other choices for σ are possible by adjusting $E(\sigma)$)



Two-state system

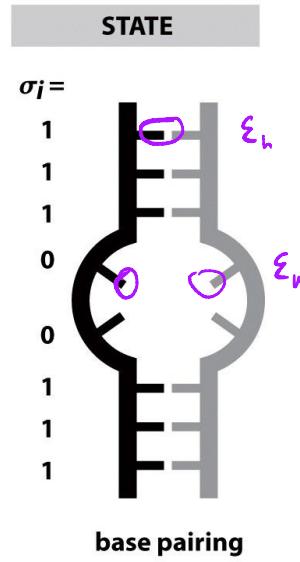
State variables, σ



$$E(\sigma) = \sigma \varepsilon_{open} + (1 - \sigma) \varepsilon_{closed}$$

protein
conformational
change

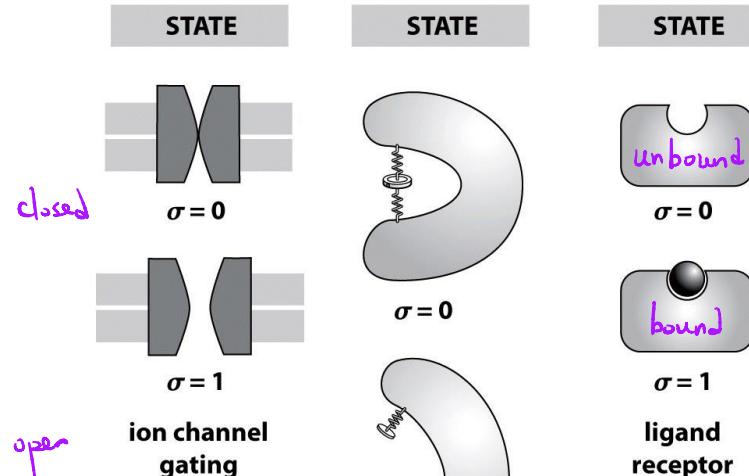
$$E(\sigma) = ?$$



$$E(\sigma) = ?$$

Two-state system

State variables, σ



$$E(\sigma) = \sigma \varepsilon_{\text{open}} + (1 - \sigma) \varepsilon_{\text{closed}}$$

protein conformational change

$$\begin{aligned} E(\sigma) &= L \varepsilon_{\text{sol}} (1 - \sigma) + ((L-1) \varepsilon_{\text{sol}} + \varepsilon_b) \sigma \\ &= \varepsilon_{\text{sol}} (L - \sigma) + \varepsilon_b \sigma \end{aligned}$$

$$\begin{aligned} \sigma_i = 1 & \quad \varepsilon_h \\ 1 & \quad \varepsilon_h \\ 1 & \quad \varepsilon_h \\ 0 & \quad \varepsilon_h \\ 0 & \quad \varepsilon_h \\ 1 & \quad \varepsilon_h \\ 1 & \quad \varepsilon_h \\ 1 & \quad \varepsilon_h \\ 0 & \quad \varepsilon_h \\ 0 & \quad \varepsilon_h \\ 1 & \quad \varepsilon_h \\ 1 & \quad \varepsilon_h \\ 1 & \quad \varepsilon_h \end{aligned}$$

$$E(\sigma) = \sum_i \sigma_i \varepsilon_h + \sum_i (1 - \sigma_i) \varepsilon_h$$

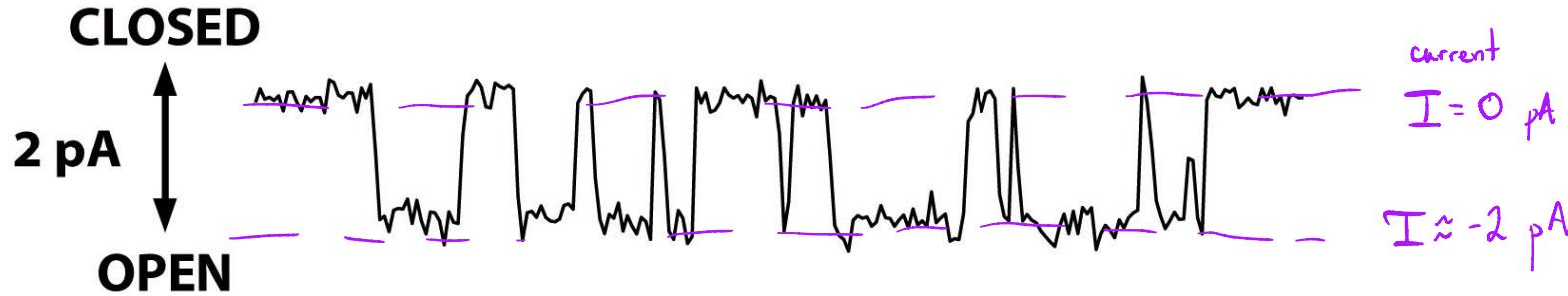
base pairing

Two-state system

Ion channel gating

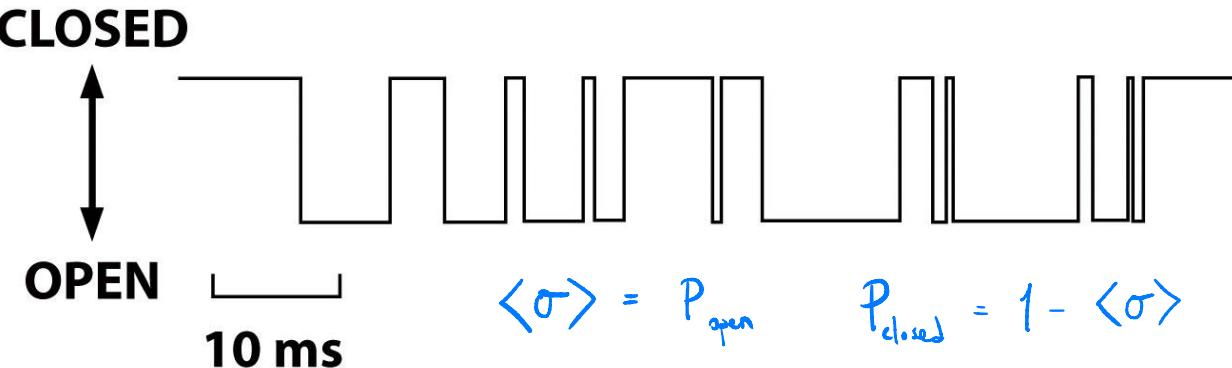
$$E(\sigma) = \sigma \varepsilon_{\text{open}} + (1-\sigma) \varepsilon_{\text{closed}}$$

Experiment:
rapid transitions
between two
states



Model: $\sigma = 0$

$\sigma = 1$

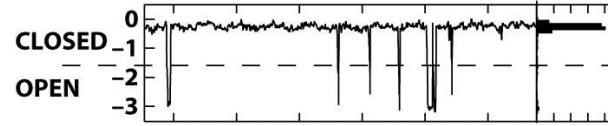


Two-state system

Ion channel gating

Experiment: Apply a voltage, measure current

High voltage : mostly closed



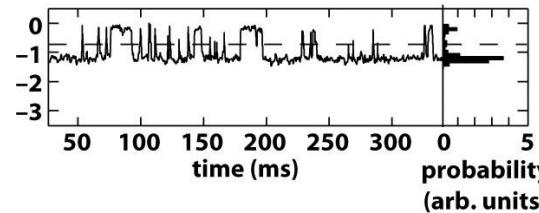
applied voltage (mV)	$\epsilon_{open} - \epsilon_{closed}$ ($k_B T$)
-125	3.24



-105 1.14

-95 0.05

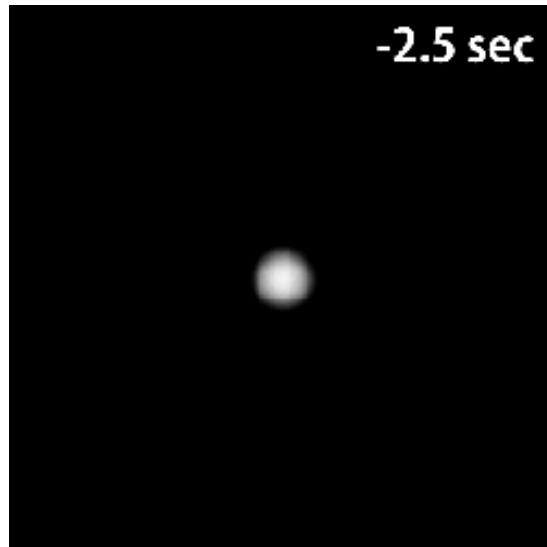
Low voltage : mostly open



-85 -1.27

probability (arb. units)

Two-state system

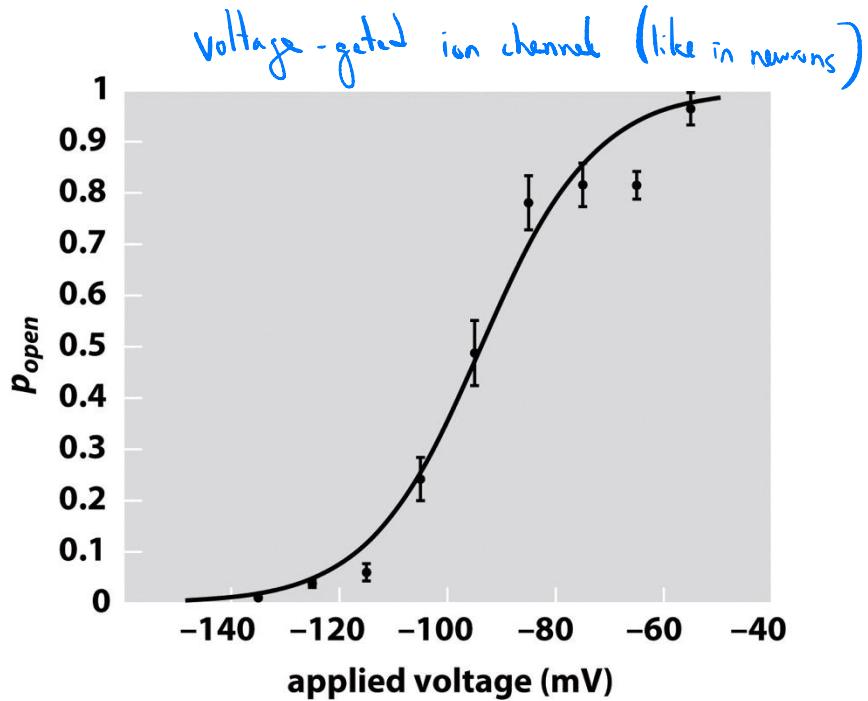
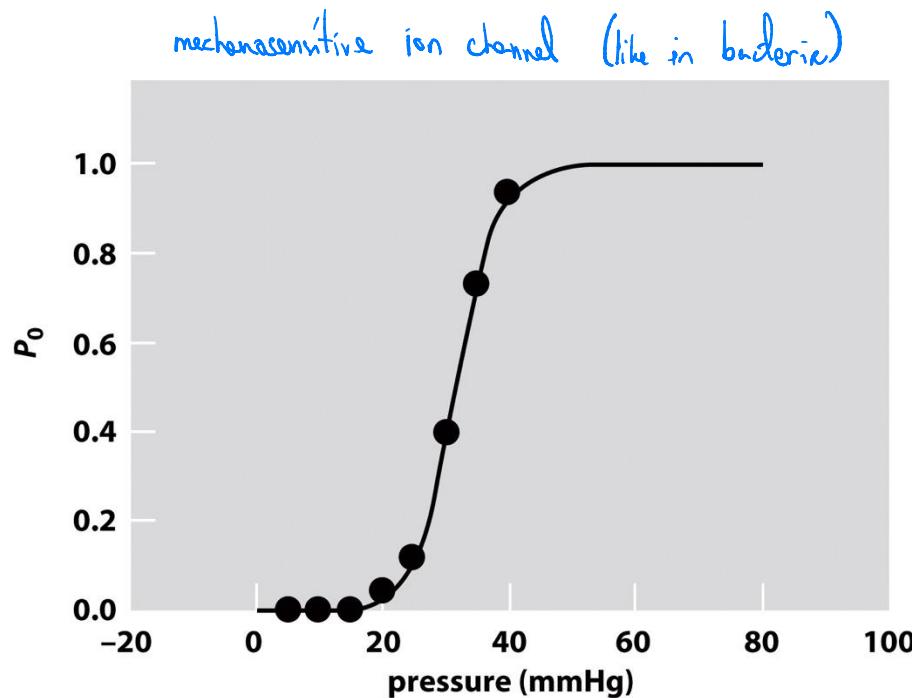


-2.5 sec

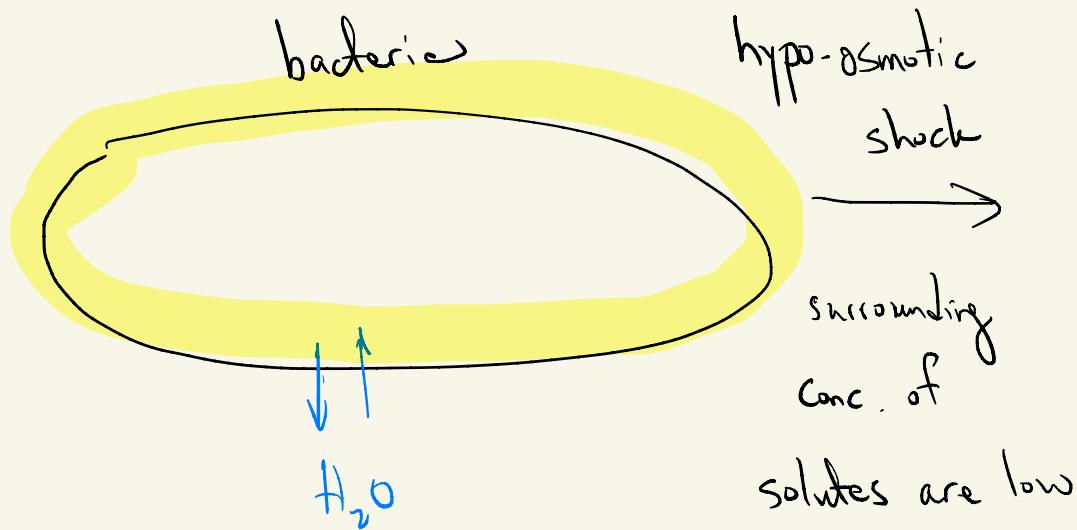
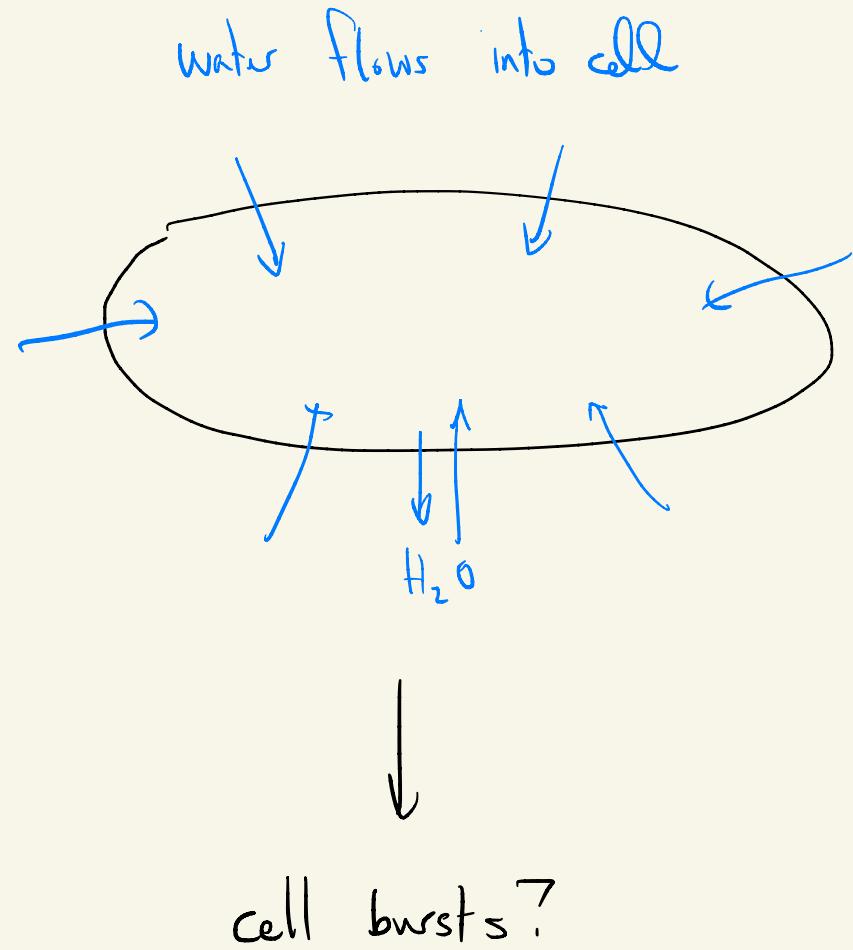
ATP-induced structural changes

Two-state system

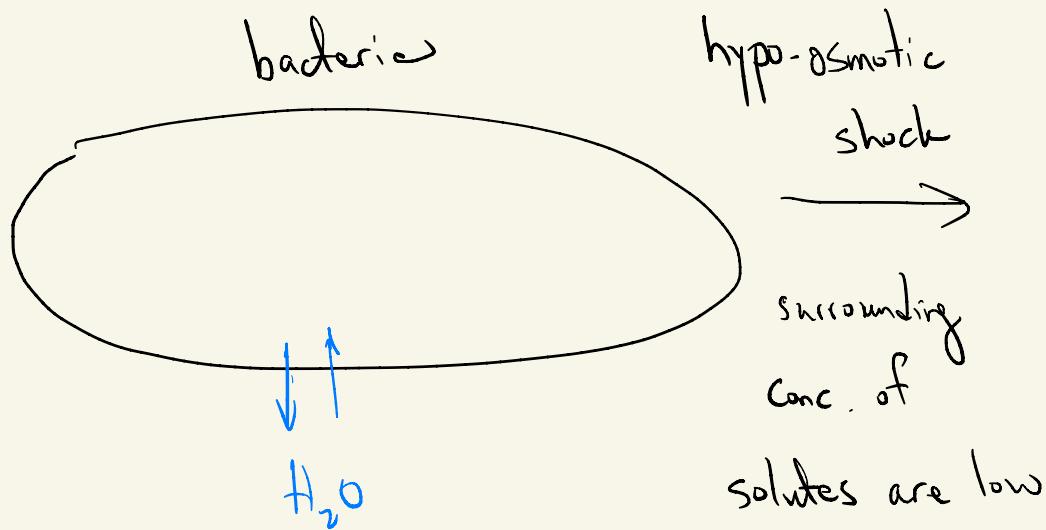
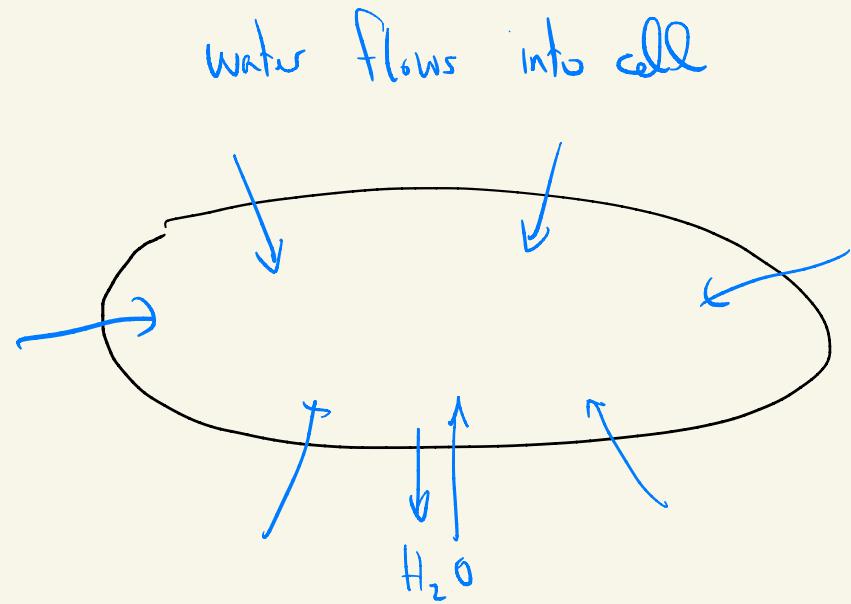
Ion channel gating



Mechanosensitive Ion Channels (MscL)

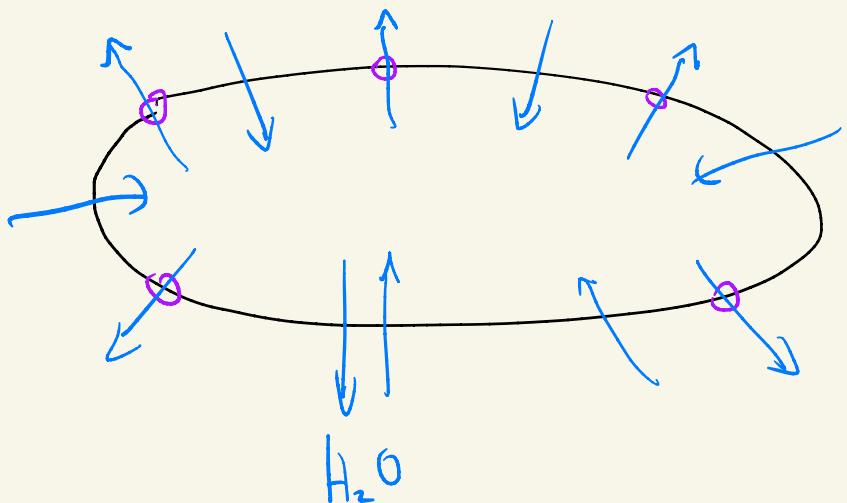


Mechanosensitive Ion Channels (Mscl)



Mscl
channels open

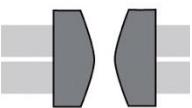
solutes / ions flow out
balance is
achieved



Two-state system

$$E(\sigma) = \sigma \varepsilon_{\text{open}} + (1-\sigma) \varepsilon_{\text{cl}}$$

Ion channel gating

STATE	Energy	Weight
closed $\sigma = 0$	$\varepsilon_{\text{closed}}$	$e^{-\beta \varepsilon_{\text{closed}}}$
open  $\sigma = 1$ ion channel gating	$\varepsilon_{\text{open}} - T\Delta A$ <i>change in channel area when it opens</i>	$e^{-\beta(\varepsilon_{\text{open}} - T\Delta A)}$

Calculate P_{open} in presence of membrane tension, T energy/area

Channel opening relieves membrane tension by reducing membrane area

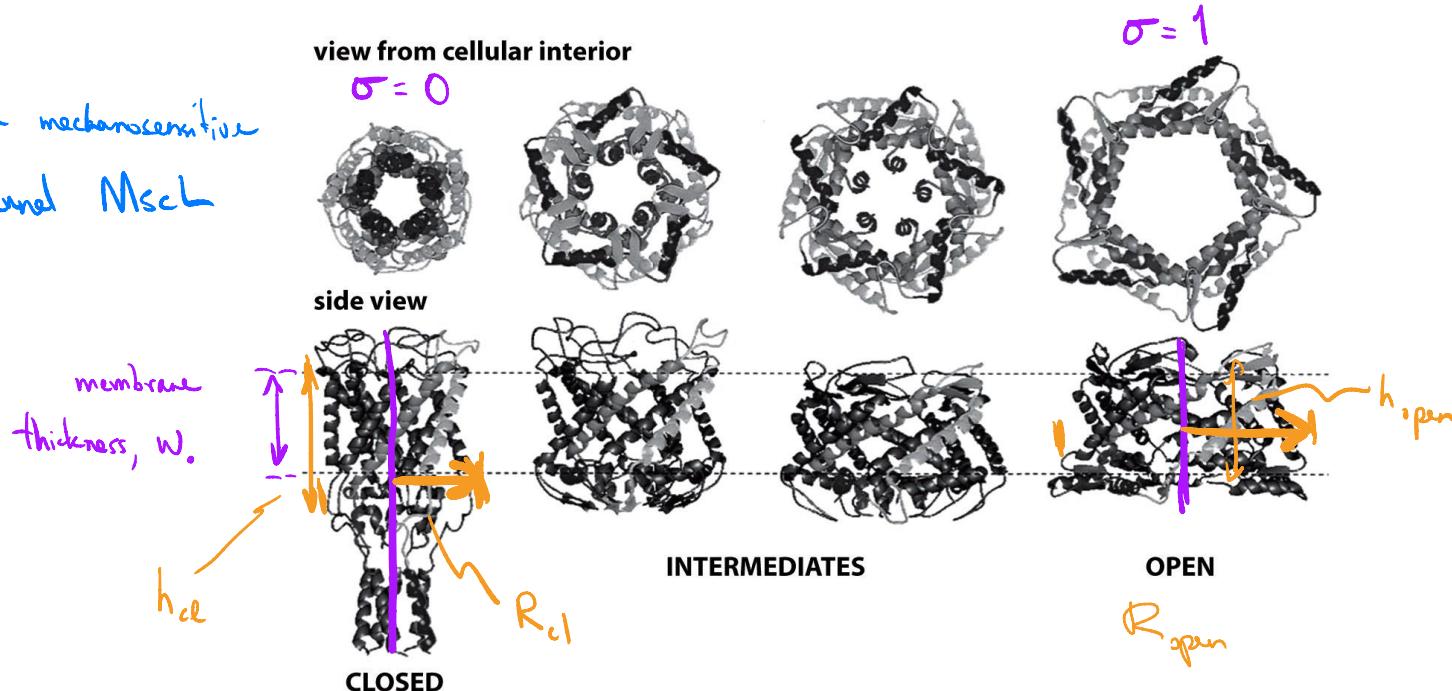
$$P_{\text{open}} = \frac{e^{-\beta \varepsilon_{\text{closed}}}}{e^{-\beta \varepsilon_{\text{closed}}} + e^{-\beta(\varepsilon_{\text{open}} - T\Delta A)}} = \langle \sigma \rangle$$

The active membrane

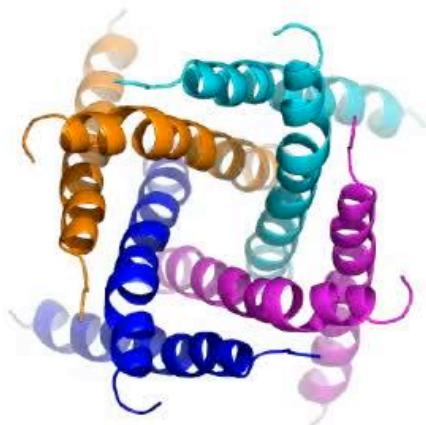
PB.C
11.5

Mechanosensitive Ion Channels and Membrane Elasticity

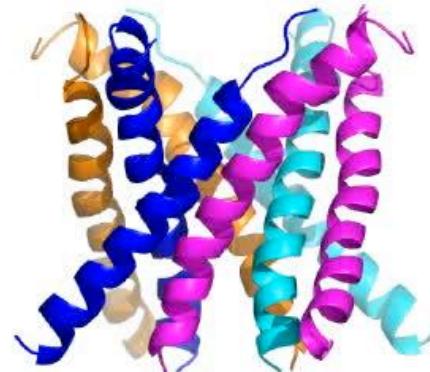
bacterial mechanosensitive
ion channel Mscl



The active membrane



$$\begin{aligned}\alpha &= -42 \\ \eta &= 30 \\ R &= 1.2\end{aligned}$$



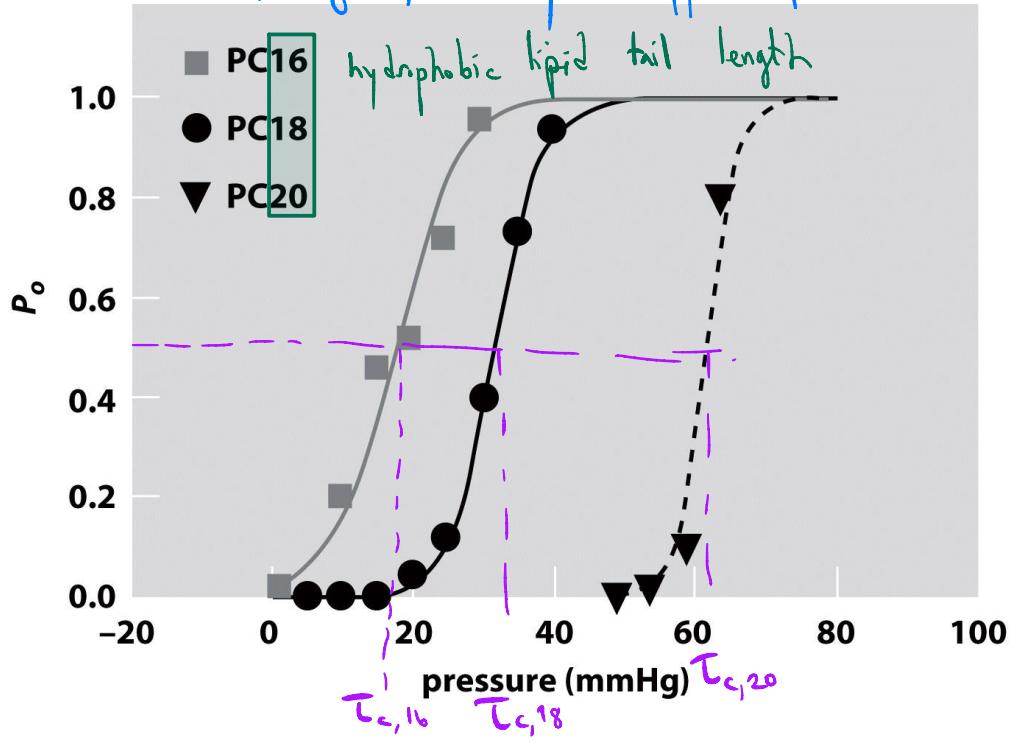
Step 1

The crystal structure of tetrameric SaMscL

The active membrane

Mechanosensitive Ion Channels and Membrane Elasticity

opening probability vs. applied pressure



short tails \rightarrow lower pressure required to open

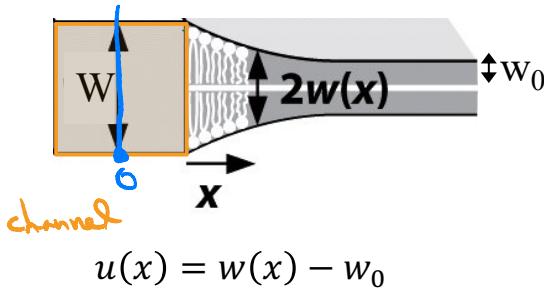
long tails \rightarrow higher pressure required to open

hydrophobic matching + mechanics

- critical tension, T_c , at which channels are equally likely to be open or closed

The active membrane

Energetic cost to change membrane thickness



Question: How will this change free energy, T_c ?

Channel has radius R

One-dimensional solution for *MscL*

PB0C 11.5

Connecting elastic energy minimization to two-state system.

What do we know about $u(x)$?

$$u(R) = \frac{W}{2} - w_0$$

$$u'(R) = 0$$

$$u(\infty) = 0$$

$$u'(\infty) = 0$$

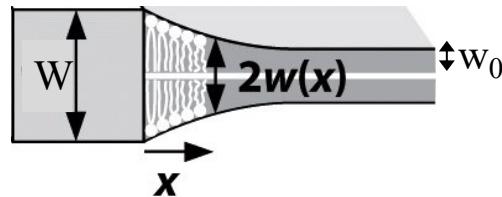
B.C.

$u(x)$

minimizes free energy, subject to B.C.

The active membrane

One-dimensional solution for *MscL*



$$u(x) = w(x) - w_0$$

elastic energy from hydrophobic inclusion

$$G_h[u(x)] = \underbrace{\frac{K_b}{2} \int_R^\infty \left(\frac{d^2 u}{dx^2}\right)^2 dx}_{\text{bending energy}} + \underbrace{\frac{K_t}{2w_0^2} \int_R^\infty u(x)^2 dx}_{\text{thickness energy}}. \quad (11.35)$$

$$(11.7) \qquad \qquad \qquad (11.8)$$

1D energy/length

minimize free energy:

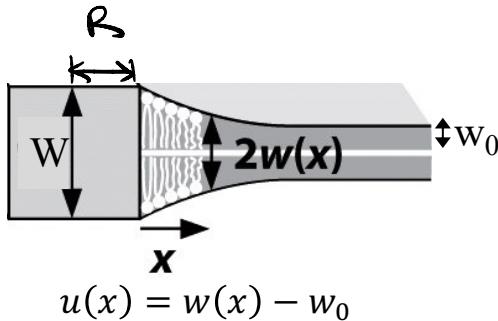
- functional derivative (5.7 Appendix)
- derive equilibrium equation (11.40-11.43)
- identify physical solutions $u(x)$ (11.44-11.51)
- apply BC, substitute back into free energy (11.51-57)

$$G_h = \frac{K_t U^2}{\sqrt{2} \lambda w_0^2}. \quad (11.57)$$

where λ is the decay length of the deformation, $U = \frac{w}{2} - w_0$ is hydrophobic mismatch between protein/membrane

The active membrane

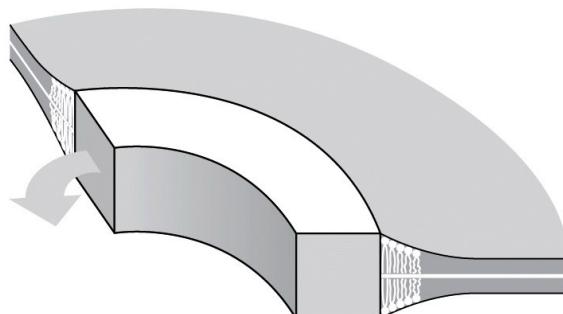
Two-dimensional solution for MscL



$$G_h = \frac{K_t U^2}{\sqrt{2} \lambda w_0^2}. \quad (11.57)$$

(1D elastic energy)

use cylindrical symmetry to calculate total energy (11.58-59)



$$\begin{aligned}
 G_{\text{MscL}} &= G_h + G_{\text{tension}} & KU^2 \\
 &= G_0 + \underbrace{\frac{K_t U^2}{\sqrt{2} w_0^2 \lambda}}_{\substack{\text{circumference} \\ \text{energy/length}}} - \underbrace{\tau \pi R^2}_{\substack{\text{loading device}}} & .(11.58)
 \end{aligned}$$

offset

"line tension"

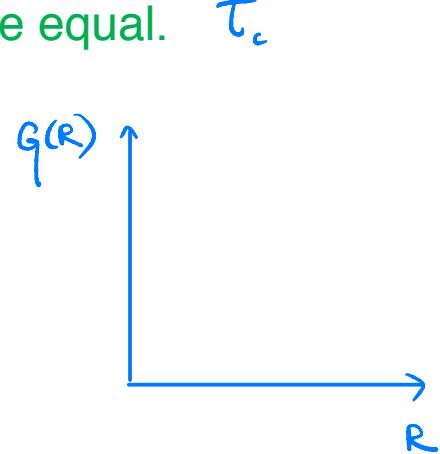
where λ represents the decay length, and $U = \frac{W}{2} - w_0$

The active membrane

One-dimensional solution for MscL

- Sketch the free energy as a function of channel radius.
- Find the critical tension, defined as the tension at which the free energies of open and closed states are equal. T_c

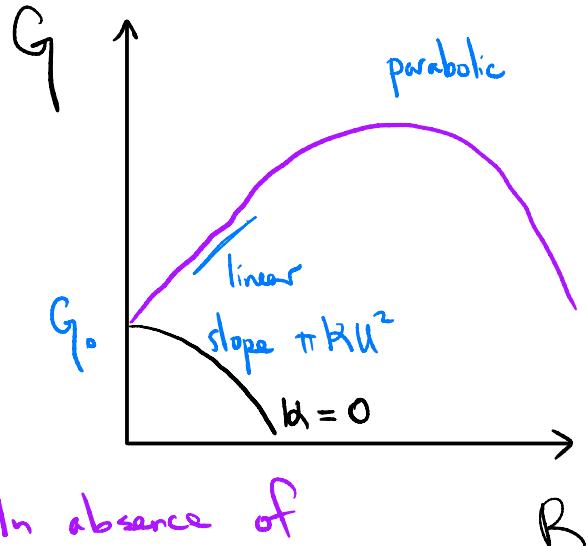
$$G(R) = G_0 + \underbrace{\pi K U^2 R}_{\text{membrane deformation}} - \underbrace{T \pi R^2}_{\text{tension (applied force)}}$$



T_c given R_{open} and R_{closed}

The active membrane

One-dimensional solution for MscL



$$G(R) = G_0 + \pi KU^2 R - \frac{1}{2} \tau \pi R^2$$

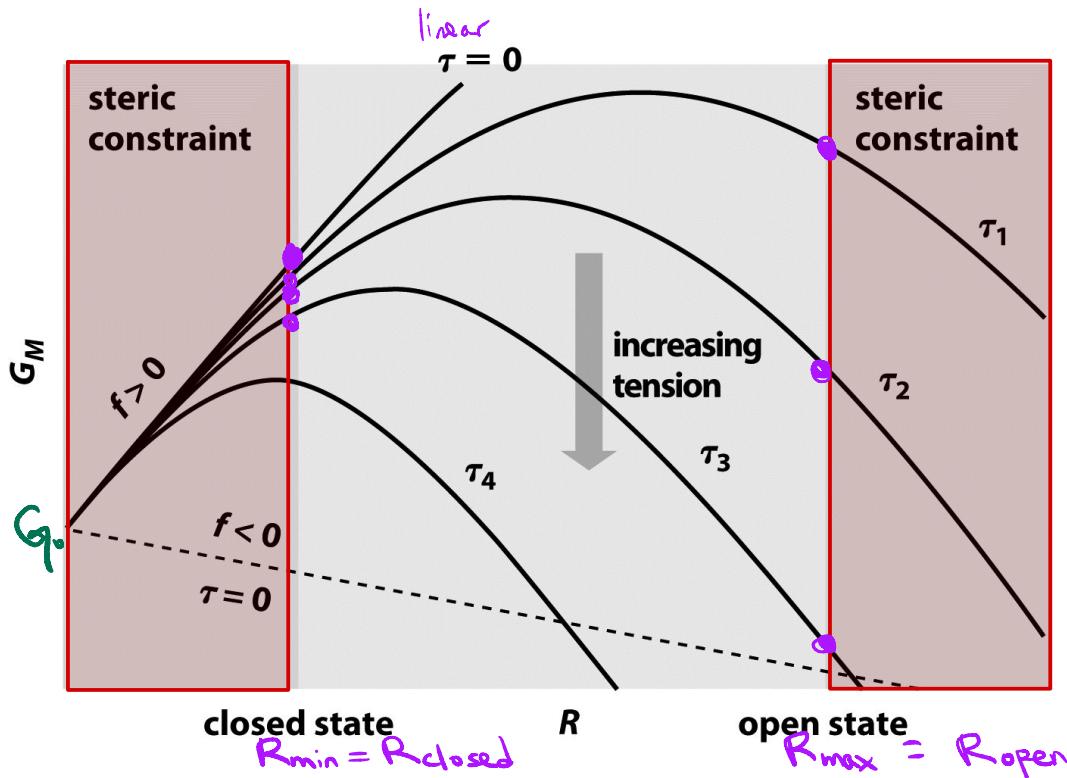
$$\text{at } \tau = \tau_c, \quad G(R_{\text{open}}) = G(R_{\text{closed}})$$

$$\Rightarrow KU^2 R_{\text{open}} - \frac{1}{2} \tau_c R_{\text{open}}^2 = KU^2 R_{\text{closed}} - \frac{1}{2} \tau_c R_{\text{closed}}^2$$

$$\tau_c = \frac{KU^2}{R_{\text{cl}} + R_{\text{open}}}$$

The active membrane

One-dimensional solution for *MscL*



As tension increases, transition from linear to parabolic occurs at smaller R

- stable radius

f : effective line tension

$$= \frac{K_t u^2}{\sqrt{2} w_0^2 \lambda}$$

The active membrane

One-dimensional solution for MscL

Theory		Experiment	
n	$\tau_{crit} (k_B T / \text{\AA}^2)$	$\Delta G(\tau = 0) (k_B T)$	$P_{1/2} (\text{mmHg})$
16	$2.3 \cdot 10^{-3}$	5	24 ± 2
18	$5.2 \cdot 10^{-3}$	11.5	42 ± 5
20	$9.3 \cdot 10^{-3}$	20.4	72 ± 8

need pipette radius to compare

good agreement

$P = \tau / A$

scaling is in good agreement

Lecture 7: Two-state system, ion channels

Summary

- Two state systems: Can write the energy $E(\sigma)$ where σ is a state variable.
- Ion channels: open or closed state. Different energies \rightarrow distinct probabilities.
Energies change depending on external parameters, gating mechanisms.
- Mechanosensitive ion channels: Account for membrane deformation due to hydrophobic mismatch.
Two local minima in free energy, corresponding to open & closed states.

Lecture 8: Diffusive dynamics

Goal: Role of Brownian motion in living systems.
Compute the time to travel a distance, model diffusion in gradient.

- Brownian motion
- Concentration fields and diffusive dynamics

PBOC Chapter 13.1, 13.2.1-13.2.3

The active membrane

Mechanosensitive Ion Channels and Membrane Elasticity

