

Lecture 6: Proteins; entropy rules

Goal: Introduce Boltzmann distribution, probability of microstate

- Ligand-receptor binding
- Gene regulation
- Cooperativity

PBOC Chapter 6.1.1, 6.1.2, 6.4
(except 6.4.4)

Statistical mechanics for biophysics

(implies "large system")

Numbers:

RNA polymerase molecules in the nucleus

3-5,000 (E. coli)

Ligands near cell surface

~80,000 (mammalian)

0.3-300 mM acetylcholine neurotransmitter

What can we answer with these models?

Determine the probability of finding the system in a particular (energy) state.

Calculate the average values of observables.

Statistical mechanics for biophysics

Previously (Lecture 3):

Microstates

Definition: a **microstate** is a microscopic arrangement of the constituents of a system

Example: Ligand binding to a receptor protein

Lattice model

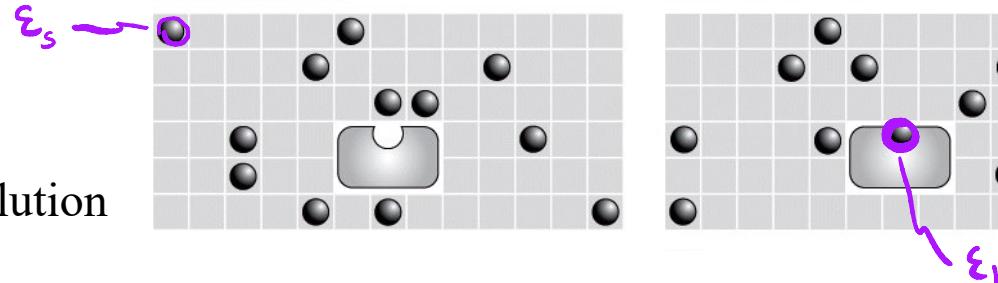
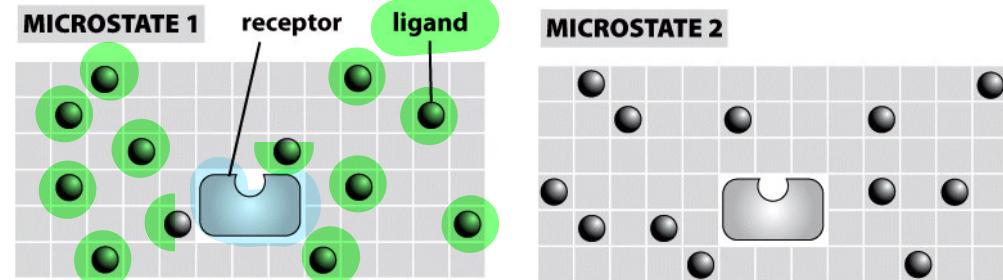
L ligands

Ω boxes

max. one ligand per box

energy ε_b of a bound ligand

energy ε_{sol} of a ligand in solution



Statistical mechanics for biophysics

Microstates

Suppose a system can exist in states with energies E_i .

What is the probability of finding the system in a given state?

Boltzmann distribution, probability of finding the system in a microstate with energy E_i (*derivation, Section 6.1.3*)

$$p(E_i) = \frac{1}{Z} e^{-E_i/k_B T}$$

Partition function, normalization factor so that $\sum_{i=1}^N p(E_i) = 1$

$$Z = \sum_{i=1}^N e^{-E_i/k_B T}$$

Statistical mechanics for biophysics

Microstates

Suppose a system can exist in states with energies E_i .
What is the average energy of the system?

$$\beta = \frac{1}{k_B T}$$

The average energy is the
(probability) weighted mean of the
energies of the states:

$$\langle E \rangle = \sum_{i=1}^N E_i p(E_i) = \frac{1}{Z} \sum_{i=1}^N E_i e^{-\beta E_i}$$

Note: $\frac{\partial Z}{\partial \beta} = \sum_{i=1}^N \frac{\partial}{\partial \beta} (e^{-\beta E_i})$

$$= -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -\frac{\partial}{\partial \beta} (\ln Z)$$

chain rule
 $(f(g(x)))' = g'(x) f'(g(x)) = \sum_{i=1}^N -E_i e^{-\beta E_i}$

chain
rule

Statistical mechanics for biophysics

Example: Ligand binding

Lattice model

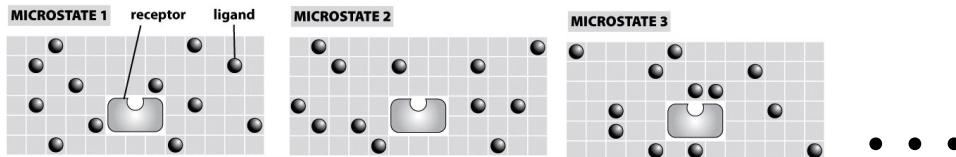
L ligands

Ω boxes

max. one ligand per box

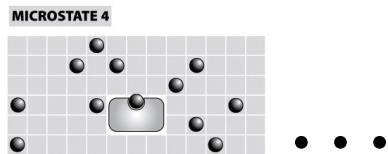
Microstates: multiplicity (Lecture 3)

Microstates with receptor unoccupied



$$\text{number of microstates} = \frac{\Omega!}{L!(\Omega-L)!}$$

Microstates with receptor occupied



$$L \rightarrow L-1$$

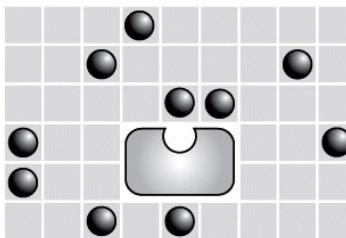
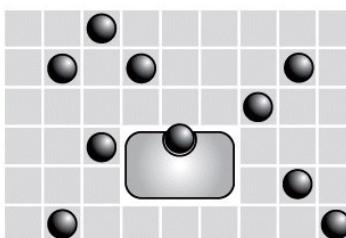
number of microstates?

$$\frac{\Omega!}{(L-1)! (\Omega-(L-1))!}$$

Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

Microstates: energy, weight

	STATE	ENERGY	MULTIPLICITY	WEIGHT
receptor unbound		$L\epsilon_{sol}$ (Total energy of system)	$\frac{\Omega!}{L!(\Omega-L)!} \approx \frac{\Omega^L}{L!}$ for $\Omega \gg L$	multiplicity x Boltzmann weight "partial" partition function
receptor bound		$(L-1)\epsilon_{sol} + \epsilon_b$	$\frac{\Omega!}{(L-1)!(\Omega-L+1)!} \approx \frac{\Omega^{L-1}}{(L-1)!}$	$\frac{\Omega^{L-1}}{(L-1)!} e^{-\beta[(L-1)\epsilon_{sol} + \epsilon_b]}$ multiplicity \approx Boltzmann weight

Note: approximation of $\frac{N!}{(N-M)!}$ for $N \gg M$

$$= N \cdot (N-1) \cdot \dots \cdot (N-(M+1)) = N^M$$

$$M \text{ terms } \approx N \text{ in value}$$

Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

Microstates: probability

$$p_{\text{bound}} = \frac{\sum_{\text{states}} \left(\begin{array}{|c|c|c|c|} \hline & \bullet & \bullet & \bullet \\ \hline \end{array} \right)}{\sum_{\text{states}} \left(\begin{array}{|c|c|c|c|} \hline & \bullet & \bullet & \bullet \\ \hline \end{array} \right) + \sum_{\text{states}} \left(\begin{array}{|c|c|c|c|} \hline & \bullet & \bullet & \bullet \\ \hline \end{array} \right)}$$

$$\begin{aligned} &= \frac{\frac{\Omega^{L-1}}{(L-1)!} e^{-\beta[(L-1)\varepsilon_{\text{sol}} + \varepsilon_b]}}{\frac{\Omega^L}{L!} e^{-\beta L \varepsilon_{\text{sol}}} + \frac{\Omega^{L-1}}{(L-1)!} e^{-\beta[(L-1)\varepsilon_{\text{sol}} + \varepsilon_b]}} \\ &= \frac{\frac{L}{\Omega} e^{-\beta[\varepsilon_b - \varepsilon_{\text{sol}}]}}{1 + \frac{L}{\Omega} e^{-\beta[\varepsilon_b - \varepsilon_{\text{sol}}]}} \end{aligned}$$

Define: $\Delta\varepsilon = \varepsilon_b - \varepsilon_{\text{sol}}$
 $c(L) = L/V_{\text{box}}$ $\# \text{ ligands}$
saturation: $c(L = \Omega) = c_0 = \Omega/V_{\text{box}}$ system size

$$P_{\text{bound}} = \frac{\frac{c}{c_0} e^{-\beta \Delta \varepsilon}}{1 + \frac{c}{c_0} e^{-\beta \Delta \varepsilon}}$$

Langmuir isotherm
Hill function of coefficient 1

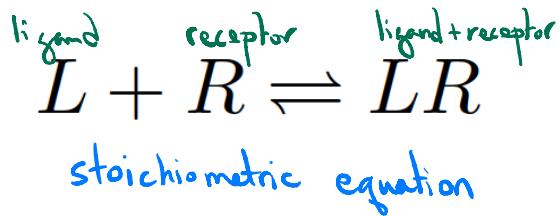
Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

Microstates: probability (PB.C 6.4.1)

$$p_{\text{bound}} = \frac{\sum_{\text{states}} \left(\begin{array}{|c|c|c|c|} \hline \text{Ligand} & \text{Receptor} & \text{Ligand+Receptor} \\ \hline \text{Bound} & \text{Free} & \text{Bound} \\ \hline \end{array} \right)}{\sum_{\text{states}} \left(\begin{array}{|c|c|c|c|} \hline \text{Ligand} & \text{Receptor} & \text{Ligand+Receptor} \\ \hline \text{Free} & \text{Bound} & \text{Free} \\ \hline \end{array} \right) + \sum_{\text{states}} \left(\begin{array}{|c|c|c|c|} \hline \text{Ligand} & \text{Receptor} & \text{Ligand+Receptor} \\ \hline \text{Free} & \text{Free} & \text{Bound} \\ \hline \end{array} \right)}$$
$$= \frac{\frac{c}{c_0} e^{-\beta \Delta \varepsilon}}{1 + \frac{c}{c_0} e^{-\beta \Delta \varepsilon}}$$

$[L]$ ligand concentration



$$K_d = \frac{[L][R]}{[LR]}$$

dissociation constant

$$\text{Substitute: } [LR] = \frac{[L][R]}{K_d}$$

$$p_{\text{bound}} = \frac{\frac{[L]}{K_d} \uparrow}{1 + \frac{[L]}{K_d} \downarrow}$$

0.5

$$p_{\text{bound}} = \frac{[LR] \cancel{\downarrow}}{[R] + [LR]}$$

$$\Rightarrow K_d = c_0 e^{\beta \Delta \varepsilon}$$

chemistry stat mech

$$p_{\text{bound}} = 0.5, c = K_d$$

entropy loss = energy gain

Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

Estimate: $V_{\text{box}} = 1 \text{ nm}^3$; $c_0 = \frac{1 \text{ molecule}}{\text{nm}^3}$

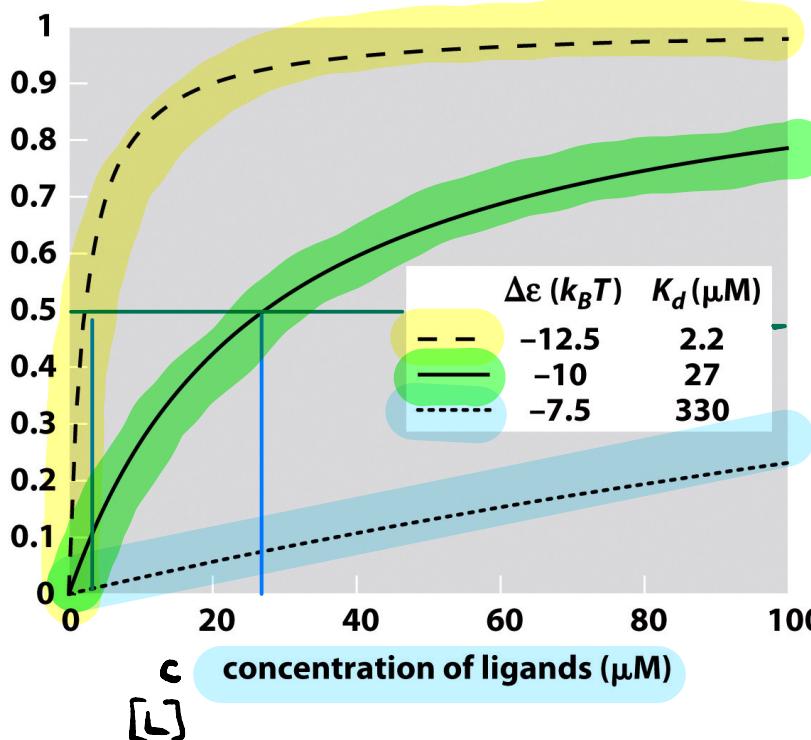
then $c_0 = \frac{\Omega}{V_{\text{box}}} = \left(\frac{6 \times 10^{23}}{10^{24}}\right)$ conversion to M

$$= 0.6 \text{ M}$$

(Note: $1 \text{ M} = \frac{6 \times 10^{23}}{1000 \text{ cm}^3}$ molecules \oplus)

"saturation" in biochemistry texts: $\sim 1 \text{ M}$

Receptor occupancy

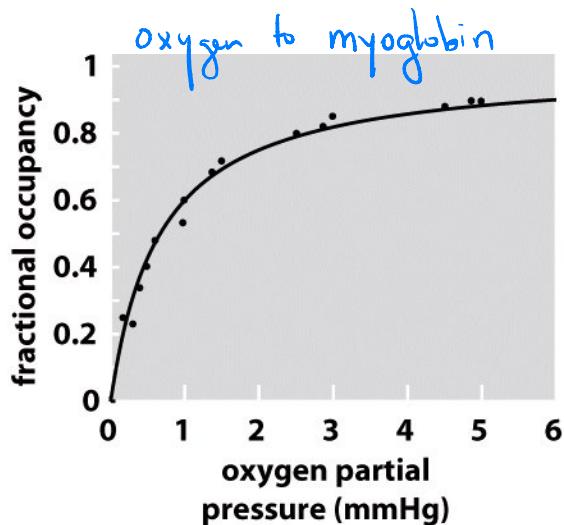


As $\Delta\epsilon$ increases, exponential dependence leads to strong selection of binding partners. Point mutations can lead to major changes in cell behaviors.

Statistical mechanics for biophysics

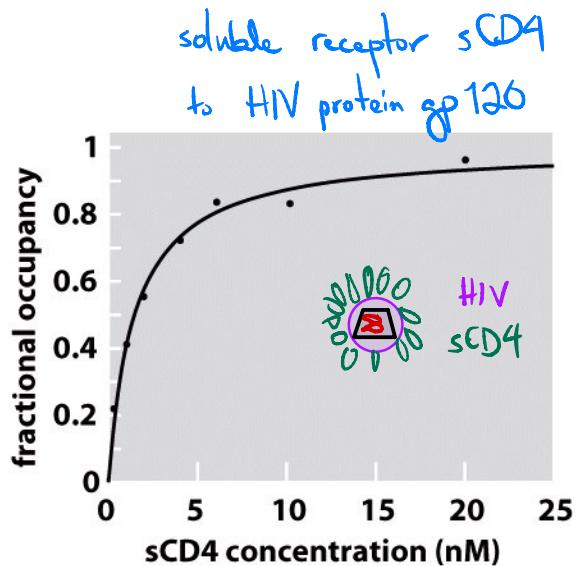
Example: Ligand binding to receptor protein

Experimental data

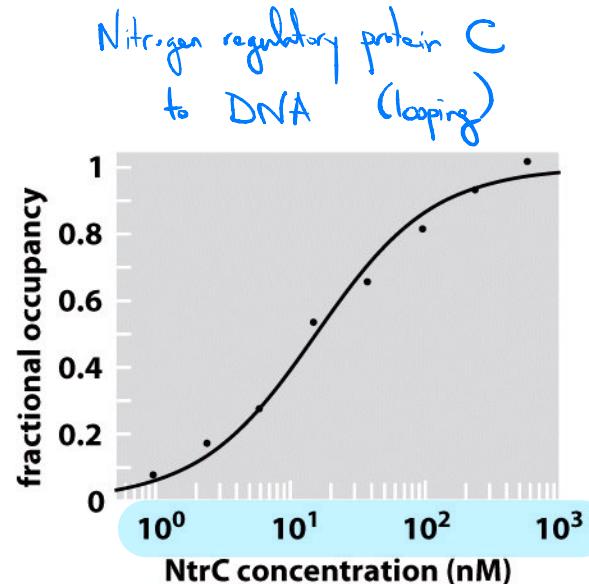


$$C_0 = 1 \text{ atm} = 760 \text{ mmHg}$$
$$\Rightarrow \varepsilon \approx -7.04 \text{ } k_B T$$

Receptor occupancy



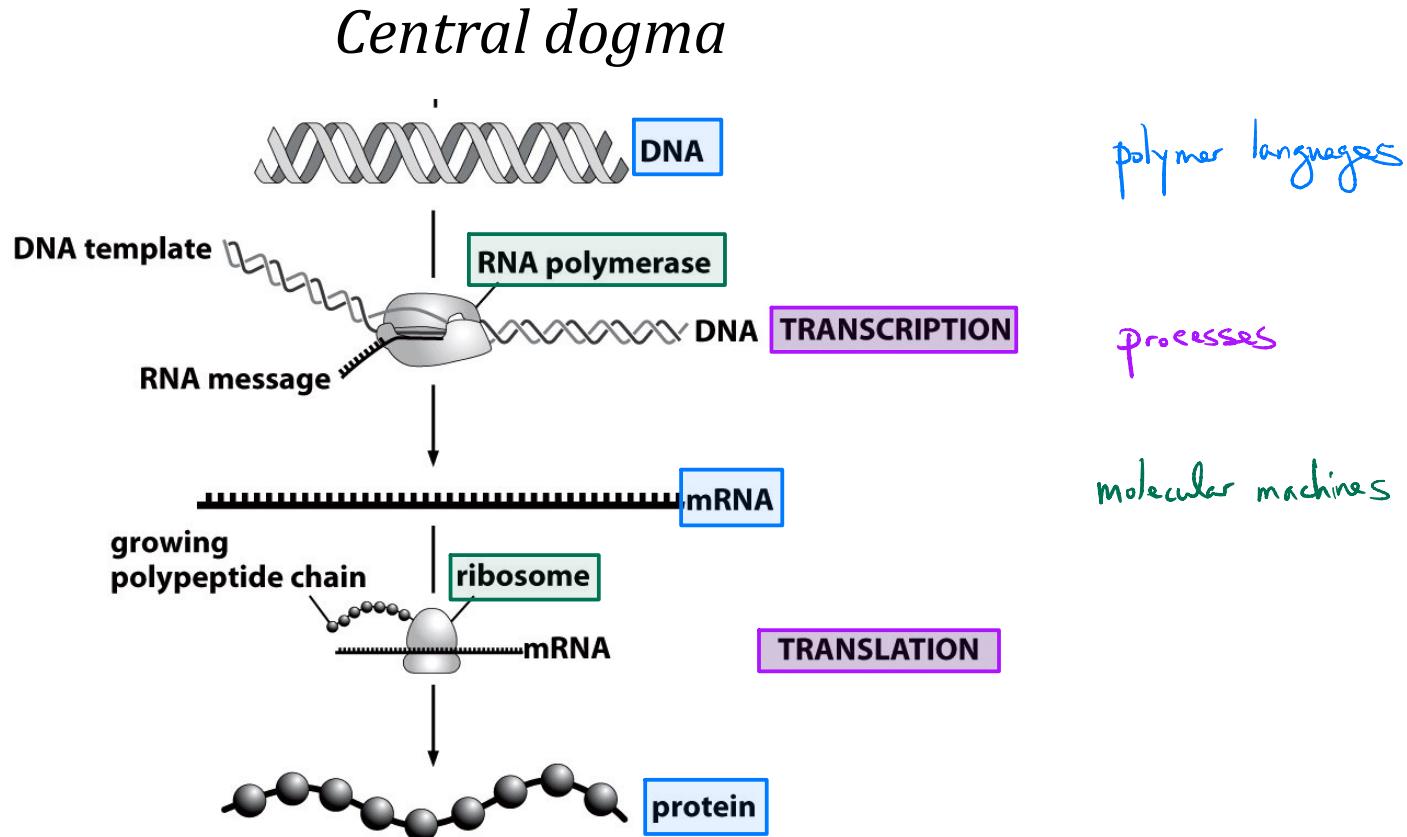
$$C_0 = 0.6 \text{ M}$$
$$\Rightarrow \varepsilon \approx -19.84 \text{ } k_B T$$



$$C_0 = 0.6 \text{ M}$$
$$\varepsilon \approx -17.47 \text{ } k_B T$$

Statistical mechanics for biophysics

Previously :



Statistical mechanics for biophysics

How do cells make decisions?

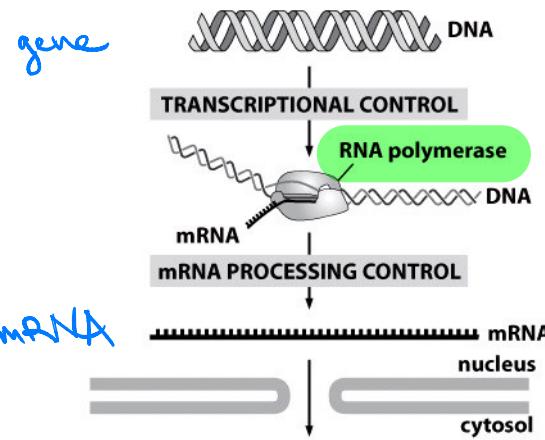
*How can different cells in an organism
maintain different protein concentrations?*

Example: Soil-dwelling amoeba, *Dictyostelium discoideum*

Vegetative, aggregation, migration, culmination

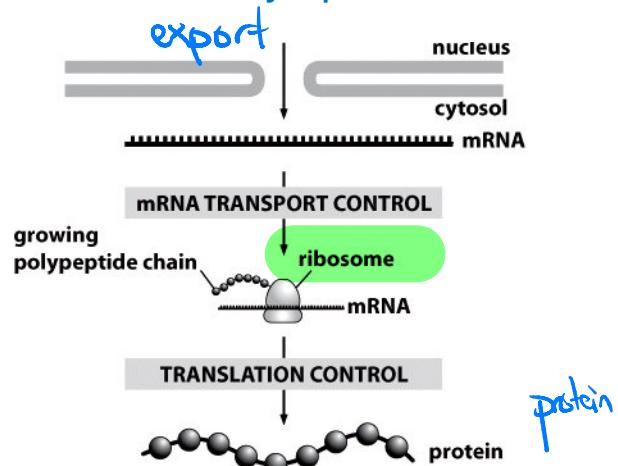
Statistical mechanics for biophysics

Will the cell make a particular mRNA?



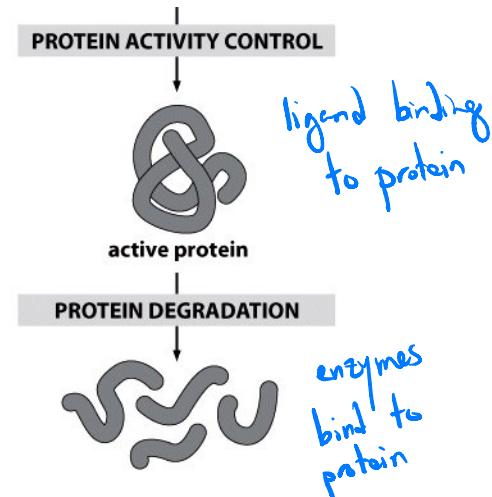
Will an mRNA be processed to become mature?

Will an mRNA be transported to the cytoplasm?



Will an mRNA be translated by the ribosome?

Will a protein exist in an active conformation?



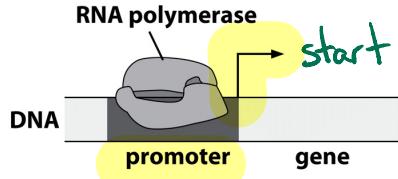
How long will a protein last before being degraded?

Statistical mechanics for biophysics

Will the cell make a particular mRNA?

Example: Transcriptional control

Single case, direct binding



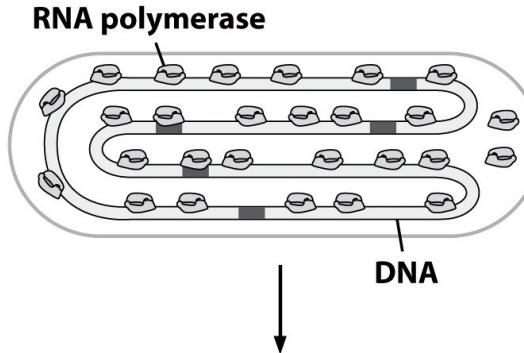
Lattice model

P RNA polymerases

N_{NS} boxes

max. one RNaP per box
assume all are bound

Microstates



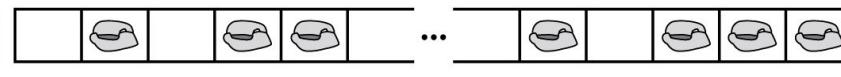
MICROSTATE 1

...

MICROSTATE 2

...

MICROSTATE 3



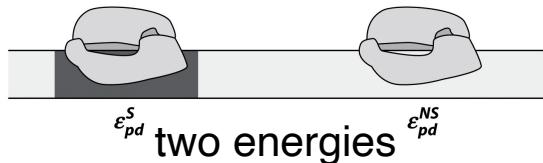
etc.

N_{NS} boxes

Statistical mechanics for biophysics

Example: Transcriptional control

Microstates



STATE

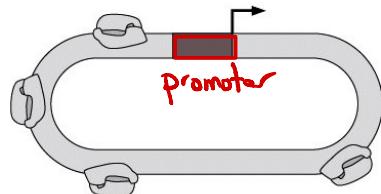
ENERGY

MULTIPLICITY

WEIGHT

(MULTIPLICITY x BOLTZMANN WEIGHT)

promoter
not bound

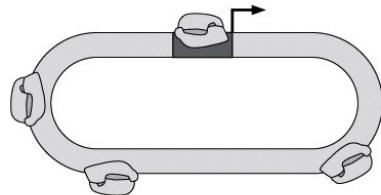


$$P\epsilon_{pd}^{NS}$$

$$\frac{N_{NS}!}{P! (N_{NS}-P)!} \approx \frac{(N_{NS})^P}{P!}$$

$$\frac{(N_{NS})^P}{P!} e^{-P\epsilon_{pd}^{NS}/k_b T}$$

promoter
bound



$$(P-1)\epsilon_{pd}^{NS} + \epsilon_{pd}^S$$

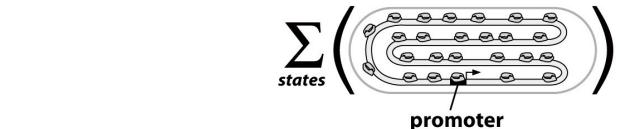
$$\frac{N_{NS}!}{(P-1)! [N_{NS}-(P-1)]!} \approx \frac{(N_{NS})^{P-1}}{(P-1)!}$$

$$\frac{(N_{NS})^{P-1}}{(P-1)!} e^{-(P-1)\epsilon_{pd}^{NS}/k_b T} e^{-\epsilon_{pd}^S/k_b T}$$

Statistical mechanics for biophysics

Example: Transcriptional control

Microstates: probability



$$p_{\text{bound}} = \frac{\sum_{\text{states}} \left(\text{Diagram of a promoter with } P \text{ sites, } 1 \text{ site bound} \right) + \sum_{\text{states}} \left(\text{Diagram of a promoter with } P \text{ sites, } 2 \text{ sites bound} \right)}{\sum_{\text{states}} \left(\text{Diagram of a promoter with } P \text{ sites, all empty} \right) + \sum_{\text{states}} \left(\text{Diagram of a promoter with } P \text{ sites, all bound} \right)}$$

$$= \frac{\frac{N_{NS}}{P!} e^{-\beta P \varepsilon_{NS}} + \frac{N_{NS}}{(P-1)!} e^{-\beta [(P-1) \varepsilon_{NS} + \varepsilon_s]}}{\frac{N_{NS}}{(P-1)!} e^{-\beta [(P-1) \varepsilon_{NS} + \varepsilon_s]}}$$

$$\boxed{= \frac{\frac{P}{N_{NS}} e^{-\beta \Delta \varepsilon}}{1 + \frac{P}{N_{NS}} e^{-\beta \Delta \varepsilon}}}$$

Define: $\Delta \varepsilon = \varepsilon_s - \varepsilon_{NS}$

$$= \frac{1}{\frac{N_{NS}}{P} e^{\beta \Delta \varepsilon} + 1}$$

Langmuir isotherm
Hill function of coefficient 1

Statistical mechanics for biophysics

Example: Transcriptional control

RNA polymerase occupancy

Estimate:

$\Delta\epsilon = -2.9 k_B T$ E. coli lacP1 promoter

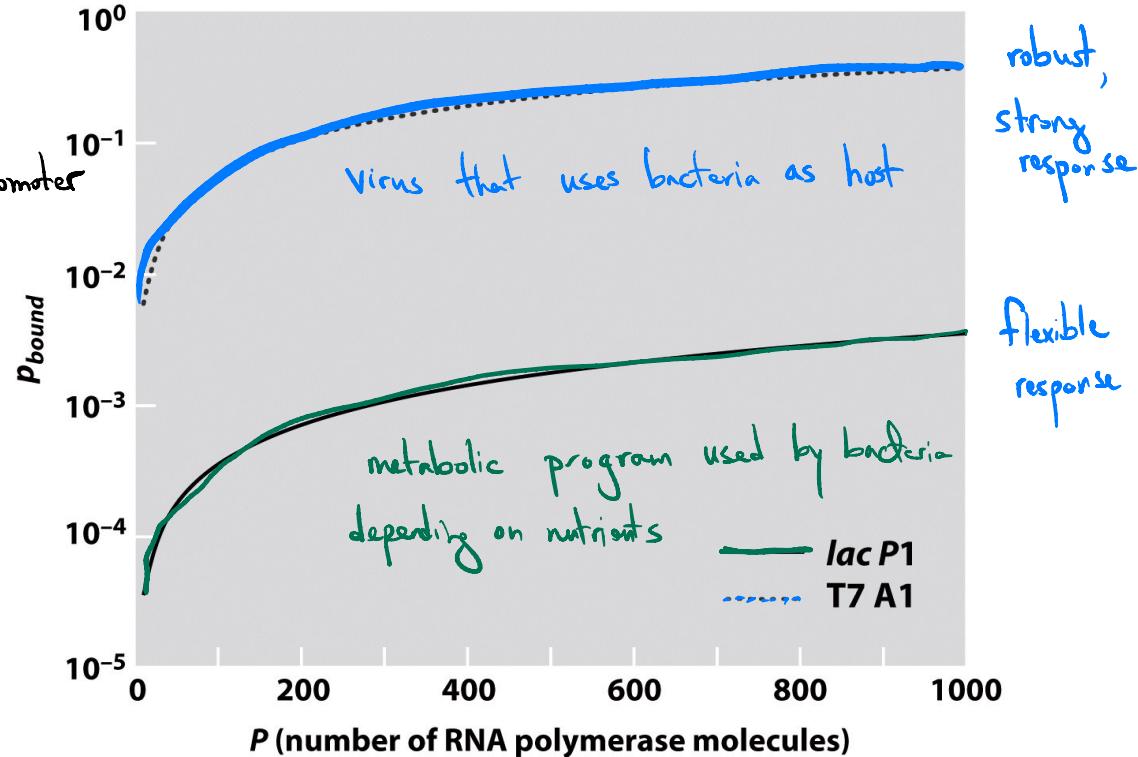
$\Delta\epsilon = -8.1 k_B T$ bacteriophage T7 promoter

~5000 RNA polymerase in E. coli

"hijacking" resources of host

make it much more likely
to transcribe pathogen genes

than own genes.



Statistical mechanics for biophysics

Cooperativity

(PB.C 6.4.3)

^{concentration}
Analog signal → digital output ^{on/off}

^{equilibrium}
dissociation constant

$$K_d = \frac{[L]^2 [R]}{[L_2R]}$$

$$\Rightarrow [L_2R] = \frac{[L]^2 [R]}{K_d}$$

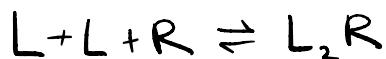
Statistical mechanics for biophysics

Cooperativity

(P.B.C 6.4.3)

^{concentration}
Analog signal → digital output
^{on/off}

reaction



equilibrium
dissociation constant

$$K_d = \frac{[L]^2 [R]}{[L_2 R]}$$

$$\Rightarrow [L_2 R] = \frac{[L]^2 [R]}{K_d} \quad \text{⊗}$$

probability of binding

$$P_{\text{bound}} = \frac{[L_2 R]}{[R] + [L_2 R]} = \frac{[L]^2}{K_d + [L]^2}$$
$$= \frac{\left(\frac{[L]}{K_d}\right)^2}{1 + \left(\frac{[L]}{K_d}\right)^2}$$

Hill function
with coefficient
 $n = 2$

Statistical mechanics for biophysics

Cooperativity

(P.B.C 6.4.3)

^{concentration}
Analog signal → digital output ^{on/off}

$$P_{\text{bound}} = \frac{\text{probability of binding}}{[R] + [L_2R]} = \frac{[L]^2}{K_d + [L]^2}$$
$$= \frac{\left(\frac{[L]}{K_d}\right)^2}{1 + \left(\frac{[L]}{K_d}\right)^2}$$

Hill function with coefficient $n=2$

In general, for n^{th} degree cooperativity

$$P_{\text{bound}} = \frac{\left(\frac{[L]}{K_d}\right)^n}{1 + \left(\frac{[L]}{K_d}\right)^n} = \frac{\left(\frac{c}{c_0} e^{-\beta \Delta \epsilon}\right)^n}{1 + \left(\frac{c}{c_0} e^{-\beta \Delta \epsilon}\right)^n}$$

Hill function with coefficient n

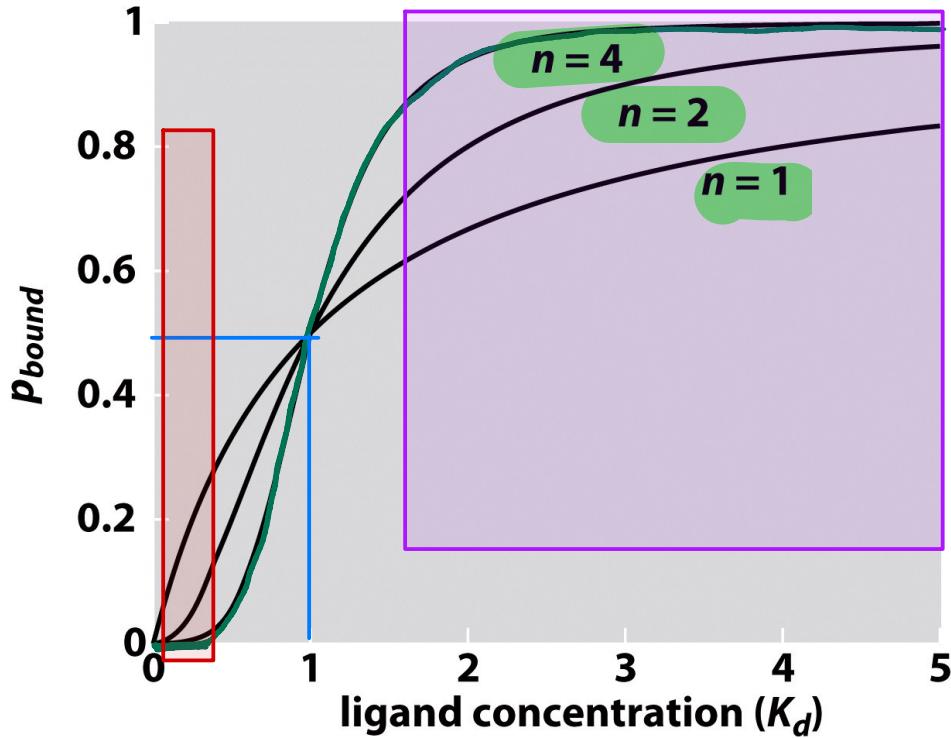
Statistical mechanics for biophysics

Binding curves
with different Hill
coefficients

higher $n \rightarrow$ more switch-like
binding response

"on" state and "off" state
very narrow in-between range

Cooperativity



(Chapter 7)

Case study in cooperativity: toy model for hemoglobin, "dimoglobin"

N oxygen molecules, Ω boxes, ϵ_{sol} , ϵ_b , J
cooperativity energy

<u>State</u>	<u>Energy</u>	<u>Multiplicity</u>	<u>Weight</u>
two oxygen binding sites			P_0
			P_1
			.
			P_2

Write down P_2 , probability that both sites are bound.

What is the average occupancy $\langle N \rangle$?

(Chapter 7)

Case study in cooperativity: toy model for hemoglobin, "dimeroglobin"

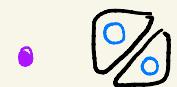
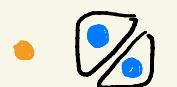
<u>State</u>	<u>Energy</u>	<u>Multiplicity</u>	<u>Weight</u>
	$N\epsilon_{sol}$	$\Omega^N / N!$	$\frac{\Omega^N}{N!} e^{-\beta N \epsilon_{sol}}$
	$(N-1)\epsilon_{sol} + \epsilon_b$	$\Omega^{N-1} / (N-1)!$	$\frac{\Omega^{N-1}}{(N-1)!} e^{-\beta [(N-1)\epsilon_{sol} + \epsilon_b]}$
	$(N-2)\epsilon_{sol} + J + 2\epsilon_b$	$\Omega^{N-2} / (N-2)!$	$\frac{\Omega^{N-2}}{(N-2)!} e^{-\beta [(N-2)\epsilon_{sol} + J + 2\epsilon_b]}$

Write down P_2 , probability that both sites are bound.

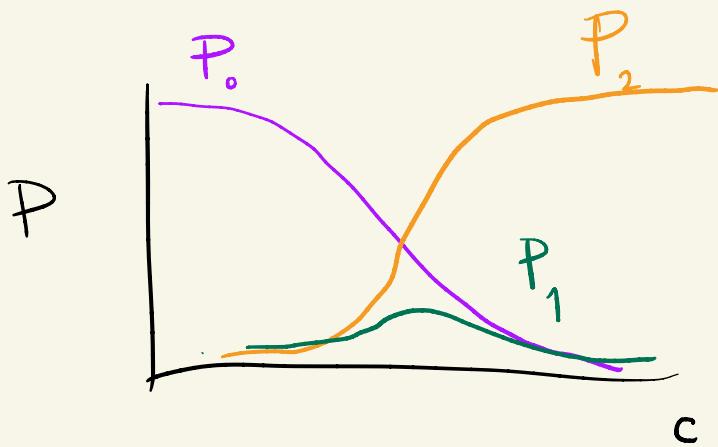
What is the average occupancy $\langle N \rangle$?

Case study in cooperativity: toy model for hemoglobin, "dimoglobin"

State



$$\begin{aligned}
 P_2 &= \frac{\frac{N(N-1)}{\pi^2} e^{-\beta(J+2\epsilon_b-2\epsilon_{sol})}}{1 + 2 \frac{N}{\pi} e^{-\beta(\epsilon_b-\epsilon_{sol})} + \frac{N(N-1)}{\pi^2} e^{-\beta(J+2\epsilon_b-2\epsilon_{sol})}} \\
 &\approx \frac{\left(\frac{c}{c_0}\right)^2 e^{-\beta(J+2\Delta\epsilon)}}{1 + 2 \frac{c}{c_0} e^{-\beta\Delta\epsilon} + \left(\frac{c}{c_0}\right)^2 e^{-\beta(J+2\Delta\epsilon)}}
 \end{aligned}$$



$$\langle N \rangle = P_1 + 2P_2$$

Lecture 6: Entropy rules

Models

- Lattice model with microcanonical ensemble requires states, energies, Boltzmann weights
- Lattice model can be used to calculate Probability of energy states, Average values
- Cooperativity can be described by a Hill function, with n the degree of cooperativity.

Summary

Interpretation

$> 10 \times$

- Strong binding ($|\varepsilon| > k_B T$) means higher occupancy at low concentration, long-lived
- Weak binding ($|\varepsilon| > k_B T$) makes for low occupancy, short-lived states
- Cooperativity doesn't change K_d , but changes shape of curve.
- Receptor proteins binding to ligands can start a chain of events (signaling), or block
- Each part of the central dogma relies on binding

Lecture 7: Two-state system, ion channels

Goal: Statistical mechanics modeling. Compute the probability of microstates, including applied forces.

- Two-state system
- Mechanosensitive ion channels

PBOC Chapter 7.1.2, 11.5