

Lecture 6: Proteins; entropy rules

Goal: Introduce Boltzmann distribution, probability of microstate

- Ligand-receptor binding
- Gene regulation
- Cooperativity

PBOC Chapter 6.1.1, 6.1.2, 6.4
(except 6.4.4)

Statistical mechanics for biophysics

Numbers:

RNA polymerase molecules in the nucleus
Ligands near cell surface

What can we answer with these models?
Determine the probability of finding the
system in a particular (energy) state.
Calculate the average values of observables.

Statistical mechanics for biophysics

Previously (Lecture 3):

Microstates

Definition: a **microstate** is a microscopic arrangement of the constituents of a system

Example: Ligand binding to a receptor protein

Lattice model

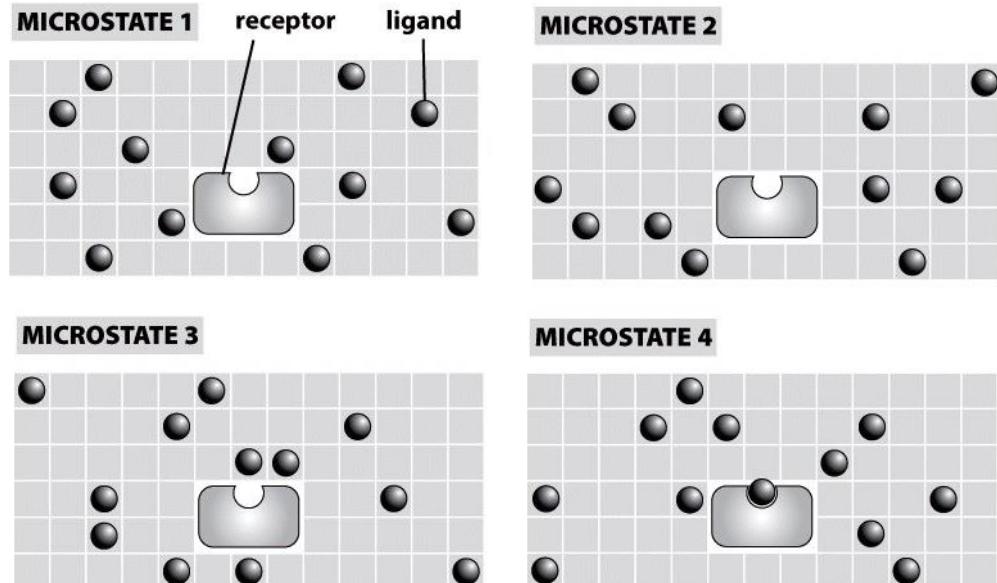
L ligands

Ω boxes

max. one ligand per box

energy ε_b of a bound ligand

energy ε_{sol} of a ligand in solution



Statistical mechanics for biophysics

Microstates

Suppose a system can exist in states with energies E_i .

What is the probability of finding the system in a given state?

Boltzmann distribution, probability of finding the system in a microstate with energy E_i (*derivation, Section 6.1.3*)

$$p(E_i) = \frac{1}{Z} e^{-E_i/k_B T}$$

Partition function, normalization factor so that $\sum_{i=1}^N p(E_i) = 1$

$$Z = \sum_{i=1}^N e^{-E_i/k_B T}$$

Statistical mechanics for biophysics

Microstates

Suppose a system can exist in states with energies E_i .
What is the average energy of the system?

The average energy is the
(probability) weighted mean of the
energies of the states:

$$\langle E \rangle = \sum_{i=1}^N E_i p(E_i) = \frac{1}{Z} \sum_{i=1}^N E_i e^{-\beta E_i}$$

$$= -\frac{1}{Z} \frac{\partial Z}{\partial \beta} = -\frac{\partial}{\partial \beta} (\ln Z)$$

Statistical mechanics for biophysics

Example: Ligand binding

Lattice model

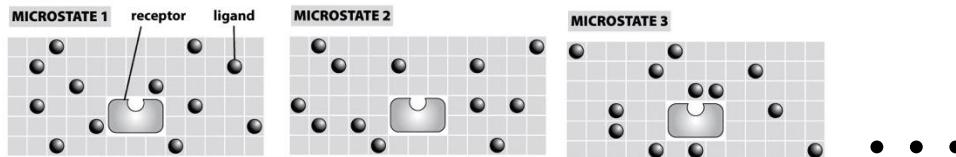
L ligands

Ω boxes

max. one ligand per box

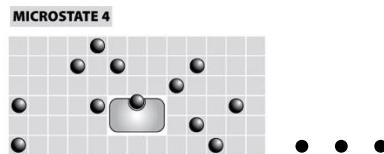
Microstates: multiplicity (Lecture 3)

Microstates with receptor unoccupied



$$\text{number of microstates} = \frac{\Omega!}{L!(\Omega-L)!}$$

Microstates with receptor occupied

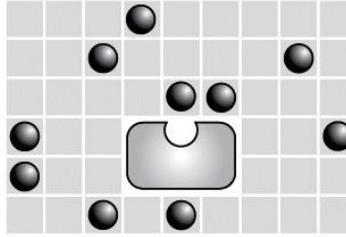
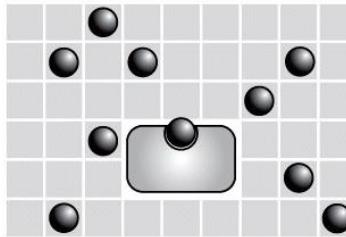


number of microstates?

Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

Microstates: energy, weight

	STATE	ENERGY	MULTIPLICITY	WEIGHT
receptor unbound		$L\varepsilon_{sol}$	$\frac{\Omega!}{L!(\Omega-L)!} \approx \frac{\Omega^L}{L!}$ for $\Omega \gg L$	multiplicity x Boltzmann weight "partial" partition function $\frac{\Omega^L}{L!} e^{-\beta L \varepsilon_{sol}}$
receptor bound		$(L-1)\varepsilon_{sol} + \varepsilon_b$	$\frac{\Omega!}{(L-1)!(\Omega-L+1)!} \approx \frac{\Omega^{L-1}}{(L-1)!}$	$\frac{\Omega^{L-1}}{(L-1)!} e^{-\beta[(L-1)\varepsilon_{sol} + \varepsilon_b]}$

Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

Microstates: probability

$$p_{\text{bound}} = \frac{\sum_{\text{states}} \left(\begin{array}{|c|c|c|c|c|} \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array} \right) + \sum_{\text{states}} \left(\begin{array}{|c|c|c|c|c|} \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array} \right)}{\sum_{\text{states}} \left(\begin{array}{|c|c|c|c|c|} \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array} \right) + \sum_{\text{states}} \left(\begin{array}{|c|c|c|c|c|} \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array} \right)}$$

$$\begin{aligned} &= \frac{\frac{\Omega^{L-1}}{(L-1)!} e^{-\beta[(L-1)\varepsilon_{\text{sol}} + \varepsilon_b]}}{\frac{\Omega^L}{L!} e^{-\beta L \varepsilon_{\text{sol}}} + \frac{\Omega^{L-1}}{(L-1)!} e^{-\beta[(L-1)\varepsilon_{\text{sol}} + \varepsilon_b]}} \\ &= \frac{\frac{L}{\Omega} e^{-\beta[\varepsilon_b - \varepsilon_{\text{sol}}]}}{1 + \frac{L}{\Omega} e^{-\beta[\varepsilon_b - \varepsilon_{\text{sol}}]}} \end{aligned}$$

Define: $\Delta\varepsilon = \varepsilon_b - \varepsilon_{\text{sol}}$

$$c(L) = L/V_{\text{box}}$$

$$c(L = \Omega) = c_0 = \Omega/V_{\text{box}}$$

$$= \frac{\frac{c}{c_0} e^{-\beta \Delta \varepsilon}}{1 + \frac{c}{c_0} e^{-\beta \Delta \varepsilon}}$$

Langmuir isotherm

Hill function of coefficient 1

Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

Microstates: probability

$$p_{\text{bound}} = \frac{\sum_{\text{states}} \left(\begin{array}{|c|c|c|c|c|c|} \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array} \right)}{\sum_{\text{states}} \left(\begin{array}{|c|c|c|c|c|c|} \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array} \right) + \sum_{\text{states}} \left(\begin{array}{|c|c|c|c|c|c|} \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \end{array} \right)} = \frac{\frac{c}{c_0} e^{-\beta \Delta \varepsilon}}{1 + \frac{c}{c_0} e^{-\beta \Delta \varepsilon}}$$

$$L + R \rightleftharpoons LR \quad K_d = \frac{[L][R]}{[LR]} \quad p_{\text{bound}} = \frac{[LR]}{[R] + [LR]}$$

$$p_{\text{bound}} = \frac{\frac{[L]}{K_d}}{1 + \frac{[L]}{K_d}}$$

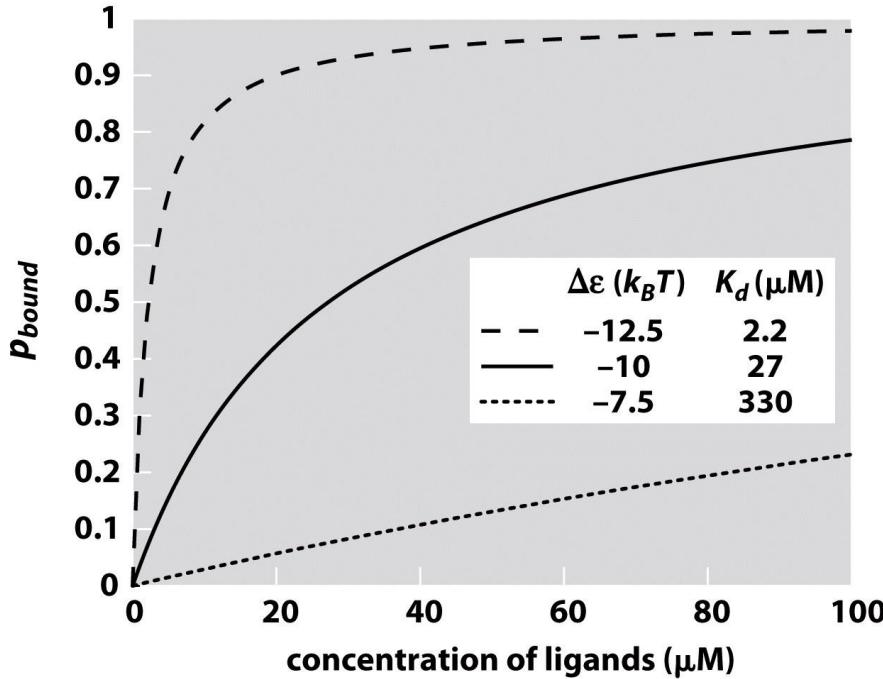
Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

Estimate: $V_{box} = 1 \text{ nm}^3$

$$\text{then } c_0 = \frac{\Omega}{V_{box}} = \left(\frac{6 \times 10^{23}}{10^{24}} \right) \\ = 0.6 \text{ M}$$

Receptor occupancy

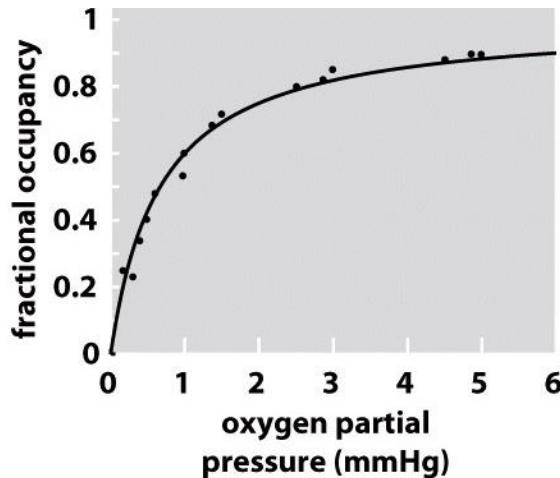
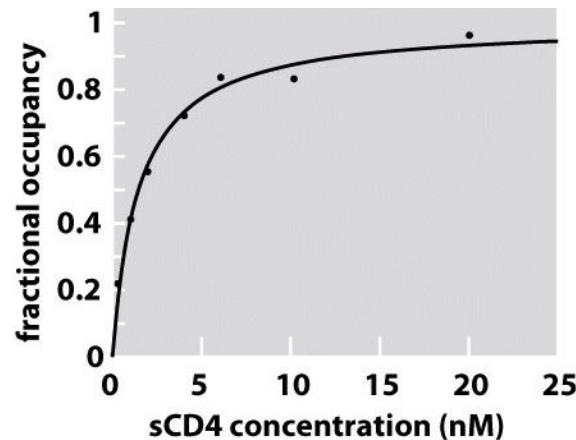
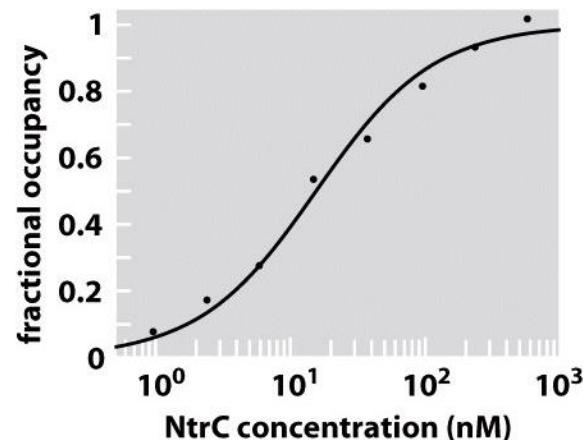


Statistical mechanics for biophysics

Example: Ligand binding to receptor protein

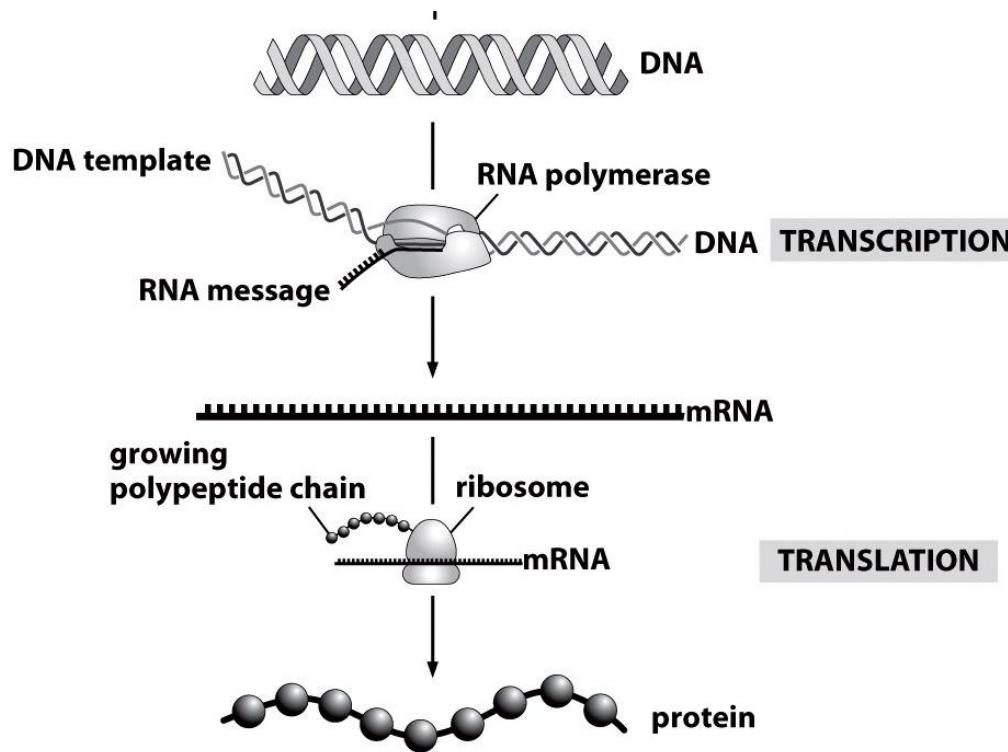
Receptor occupancy

Experimental data



Statistical mechanics for biophysics

Central dogma



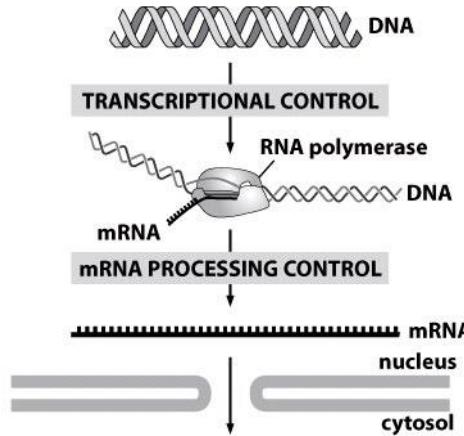
Statistical mechanics for biophysics

How do cells make decisions?

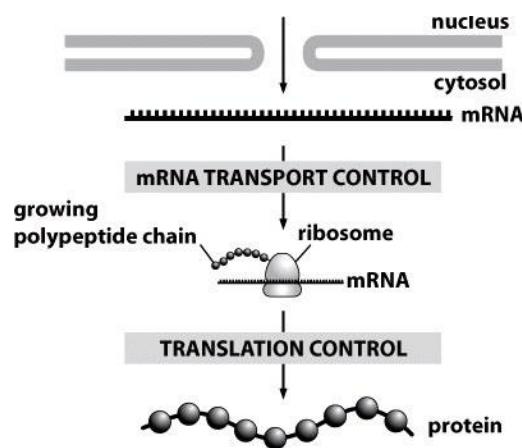
*How can different cells in an organism
maintain different protein concentrations?*

Statistical mechanics for biophysics

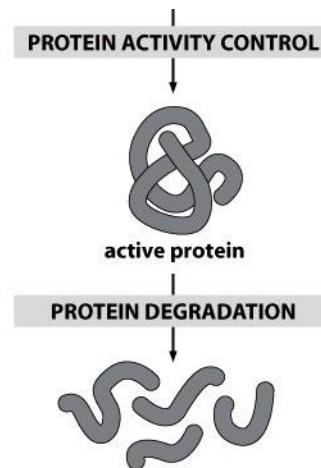
Will the cell make a particular mRNA?



Will an mRNA be transported to the cytoplasm?



Will a protein exist in an active conformation?



Will an mRNA be processed to become mature?

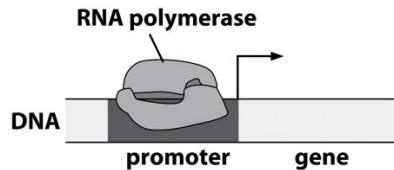
Will an mRNA be translated by the ribosome?

How long will a protein last before being degraded?

Statistical mechanics for biophysics

Will the cell make a particular mRNA?

Example: Transcriptional control



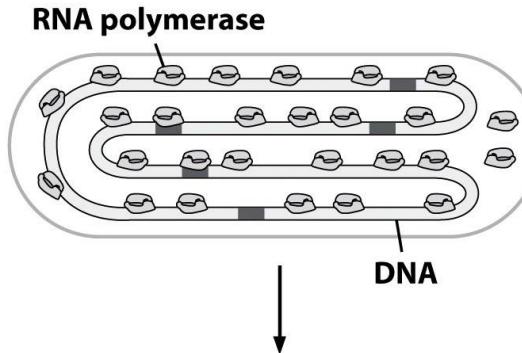
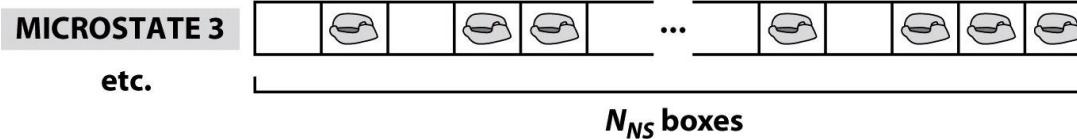
Lattice model

P RNA polymerases

N_{NS} boxes

max. one RNaP per box
assume all are bound

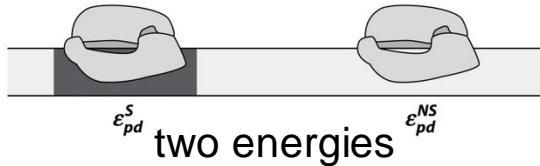
Microstates



Statistical mechanics for biophysics

Example: Transcriptional control

Microstates

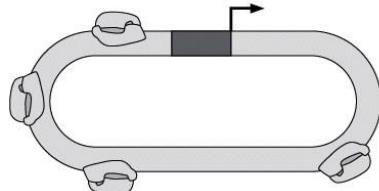


STATE

ENERGY

MULTIPLICITY

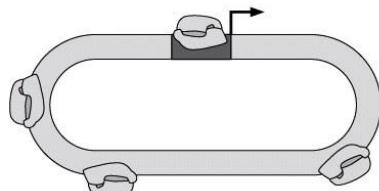
WEIGHT
(MULTIPLICITY x BOLTZMANN WEIGHT)



$$P\varepsilon_{pd}^{NS}$$

$$\frac{N_{NS}!}{P! (N_{NS}-P)!} \approx \frac{(N_{NS})^P}{P!}$$

$$\frac{(N_{NS})^P}{P!} e^{-P\varepsilon_{pd}^{NS}/k_B T}$$



$$(P-1)\varepsilon_{pd}^{NS} + \varepsilon_{pd}^S$$

$$\frac{N_{NS}!}{(P-1)! [N_{NS}-(P-1)]!} \approx \frac{(N_{NS})^{P-1}}{(P-1)!}$$

$$\frac{(N_{NS})^{P-1}}{(P-1)!} e^{-(P-1)\varepsilon_{pd}^{NS}/k_B T} e^{-\varepsilon_{pd}^S/k_B T}$$

Statistical mechanics for biophysics

Example: Transcriptional control

Microstates: probability

$$p_{\text{bound}} = \frac{\sum_{\text{states}} \left(\text{Diagram of a promoter with } P \text{ bound sites} \right)}{\sum_{\text{states}} \left(\text{Diagram of a promoter with } P-1 \text{ bound sites} \right) + \sum_{\text{states}} \left(\text{Diagram of a promoter with } P-2 \text{ bound sites} \right)} = \frac{\frac{N_{NS}}{(P-1)!} e^{-\beta[(P-1)\varepsilon_{NS} + \varepsilon_s]}}{\frac{N_{NS}}{P!} e^{-\beta P \varepsilon_{NS}} + \frac{N_{NS}}{(P-1)!} e^{-\beta[(P-1)\varepsilon_{NS} + \varepsilon_s]}} = \frac{\frac{P}{N_{NS}} e^{-\beta \Delta \varepsilon}}{1 + \frac{P}{N_{NS}} e^{-\beta \Delta \varepsilon}}$$

Define: $\Delta \varepsilon = \varepsilon_s - \varepsilon_{NS}$

$$= \frac{1}{\frac{N_{NS}}{P} e^{\beta \Delta \varepsilon} + 1}$$

Langmuir isotherm

Hill function of coefficient 1

Statistical mechanics for biophysics

Example: Transcriptional control

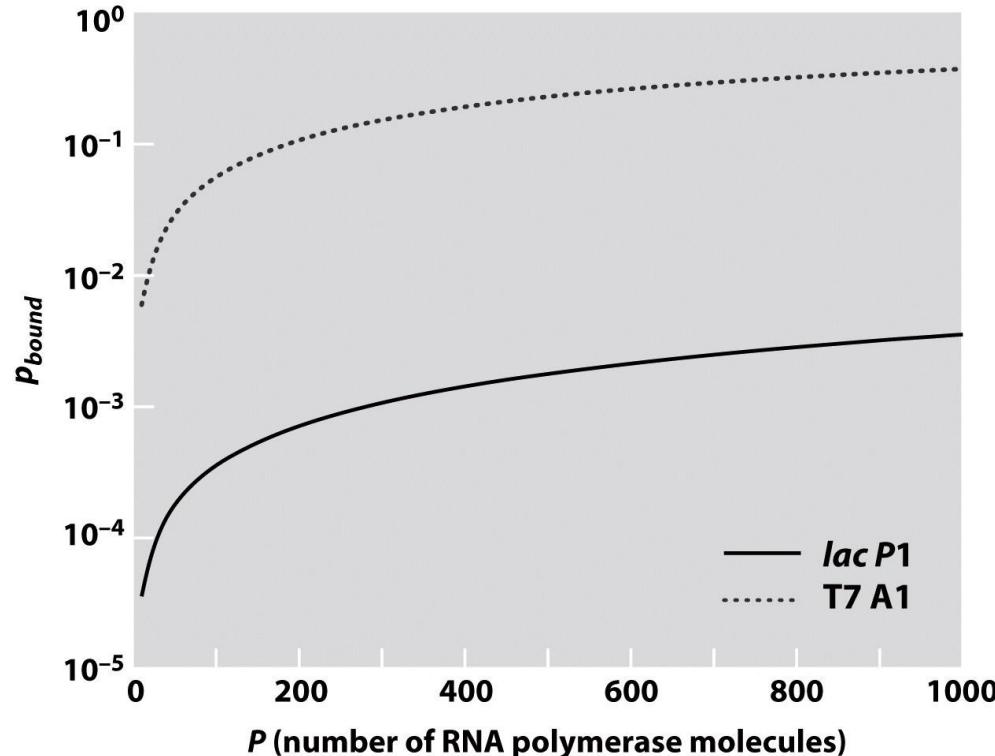
Estimate:

$\Delta\epsilon = -2.9 k_B T$ E. coli

$\Delta\epsilon = -8.1 k_B T$ bacteriophage T7

~5000 RNA polymerase in E. coli

RNA polymerase occupancy



Statistical mechanics for biophysics

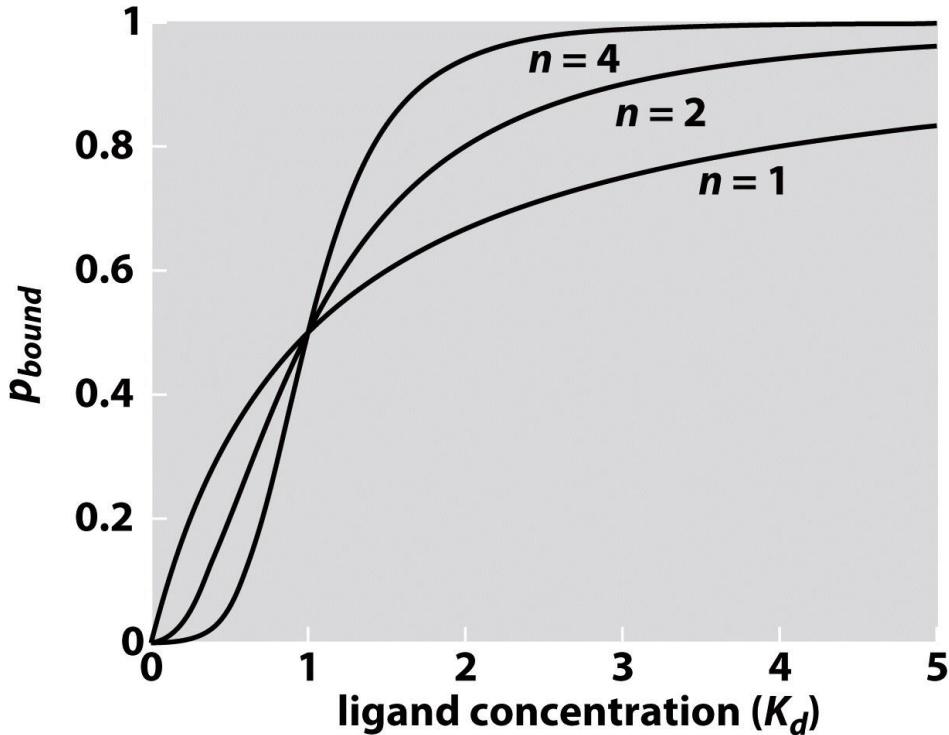
Cooperativity

Analog signal → digital output

Statistical mechanics for biophysics

Binding curves
with different Hill
coefficients

Cooperativity



Lecture 6: Entropy rules

Summary

Lecture 7: Two-state system, ion channels

Goal: Statistical mechanics modeling. Compute the probability of microstates, including applied forces.

- Two-state system
- Mechanosensitive ion channels

PBOC Chapter 7.1.2, 11.5