

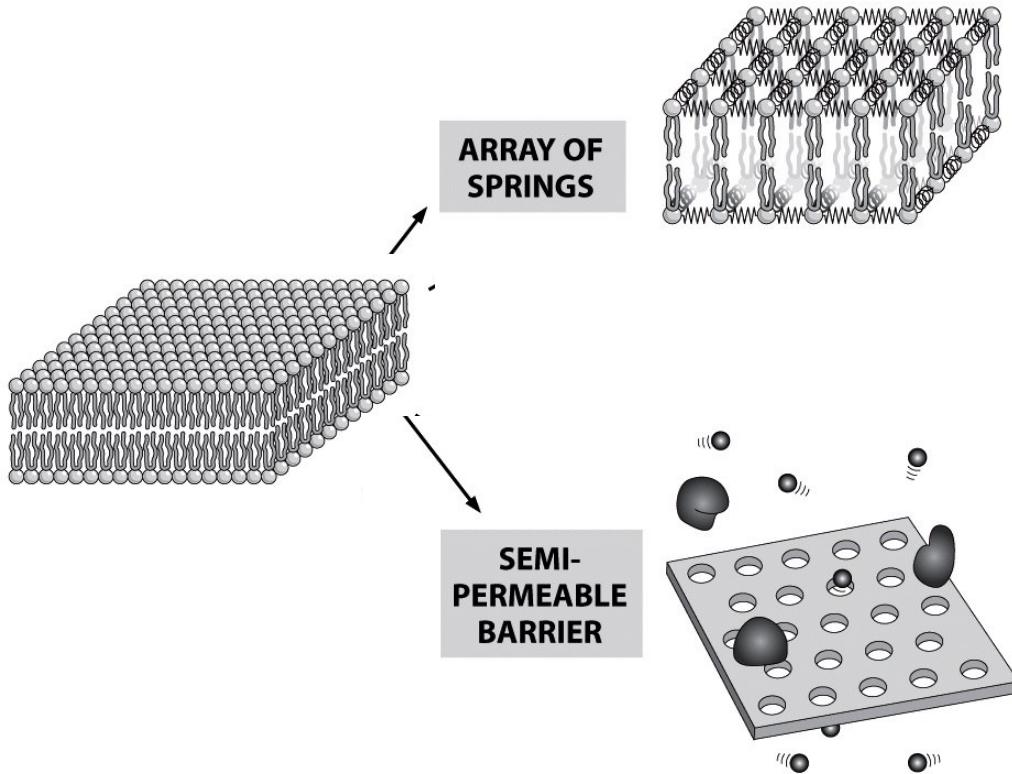
Lecture 5: Biological membranes

Goal: Estimates and models of membrane shapes

- Membrane pulling
- Shapes of organelles
- Shapes of cells

PBOC Chapter 11.3, 11.4

Biological membranes



Lecture 4, 5

Lecture 7

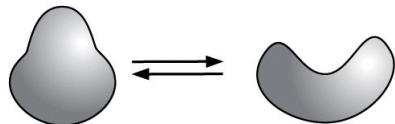
The springiness of biological membranes

Previously:

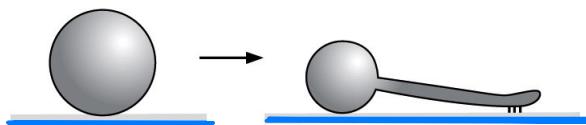
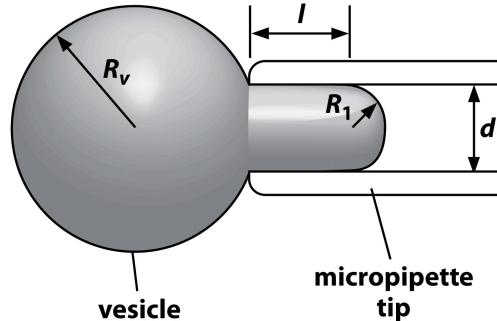
Membrane shape changes

How? Physical, energy-based description

spontaneous shape change



shape change because of applied forces



Can deduce elastic (stretch) modulus from experiment

Assumptions:

mechanical equilibrium

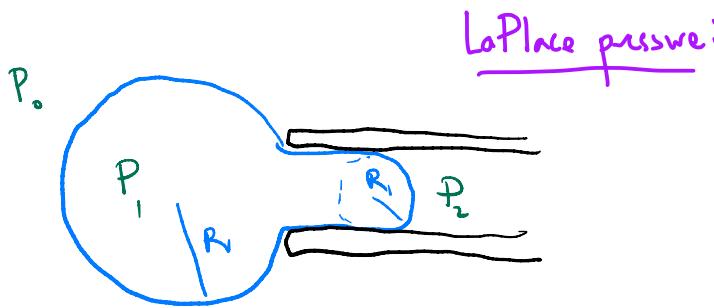
membrane tension is constant

change in area comes from stretching

Model: Calculate energy cost

The springiness of biological membranes

P.B.C 11.3



Springiness of membranes

experimentally imposed

$$\tau = \frac{P_2 - P_0}{2} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)^{-1}$$

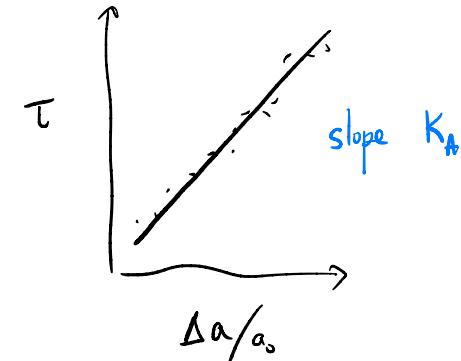
measured

$$\tau = K_A \frac{\Delta a}{a_0}$$

$F = kx$
analogue

measured

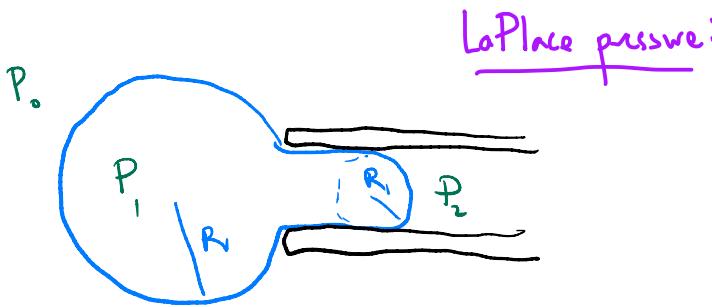
area
stretch modulus $K_A = 250 \text{ mN/m}$



The springiness of biological membranes

P.B.C 11.3

Springiness of membranes



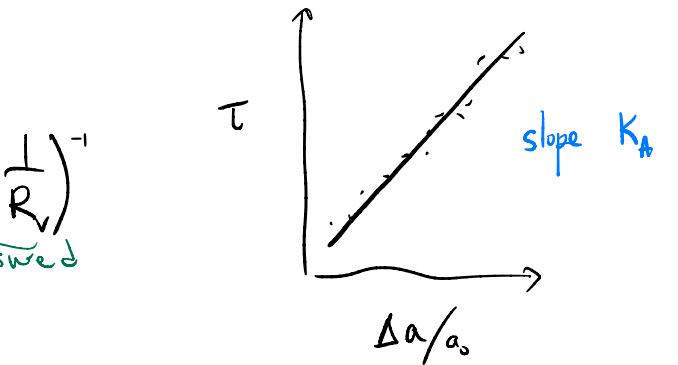
LaPlace pressure:

$$\tau = \frac{P_2 - P_0}{2} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)^{-1}$$

experimentally imposed
measured

$$\tau = K_A \frac{\Delta a}{a_0}$$

$F = kx$
analogue
measured



$$\text{stretch modulus } K_A = 250 \text{ mN/m}$$

How to compare?

Rubber 10-100 MPa

Bone 14 GPa

Titanium 116 GPa

$$P_A = \frac{N}{m^2}$$

membrane thickness?
 $\sim 5 \text{ nm}$

$$250 \times 10^3 \frac{N}{m} / 5 \times 10^{-9} \text{ m} = 50 \times 10^6 \frac{N}{m^2} = 50 \text{ MPa}$$

Structure, energetics, and function of membranes

Definition:

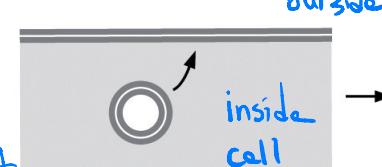
roughly spherical
membrane compartment
(bilayer).

Size: 20 nm - 5 μ m

purposes of
vesicles

dynamic processes:

membrane fusion



Vesicles in cells

release material
to outside

membrane budding

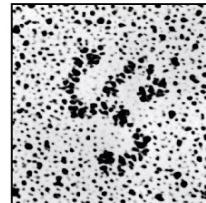
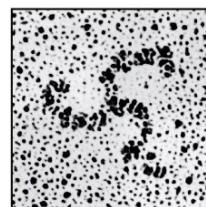
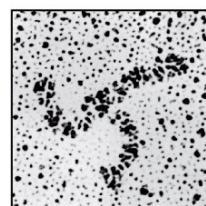
transport material
to another compartment
or cell

{ exocytosis: deliver material outside
intra/inter-cellular transport: move material within/between cells
endocytosis: bring material inside (clathrin)

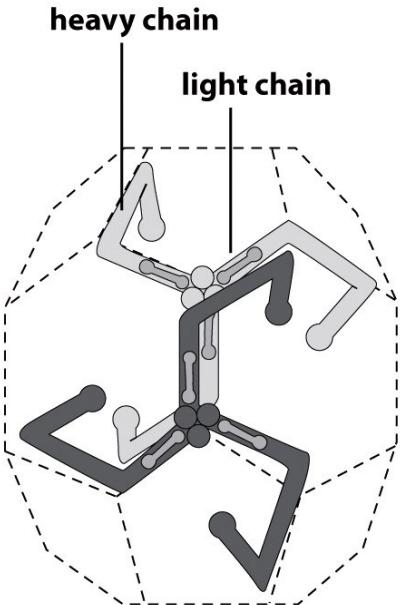
Structure, energetics, and function of membranes

Vesicles in cells: Proteins shape membranes

clathrin
protein

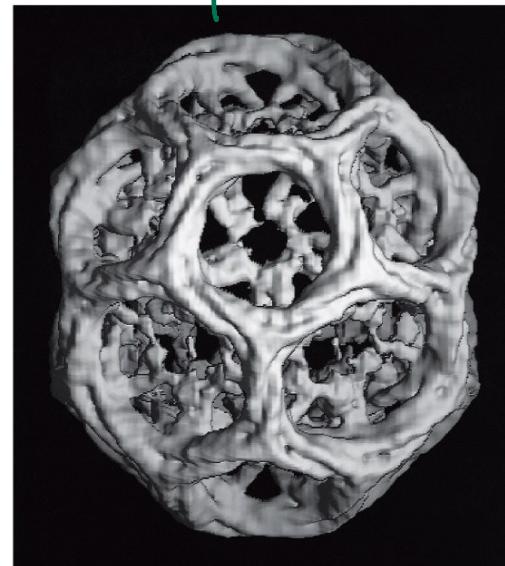


(A)



(B) proteins lower energy
by associating, curve↓

"clathrin-coated pit"
endocytic vesicle

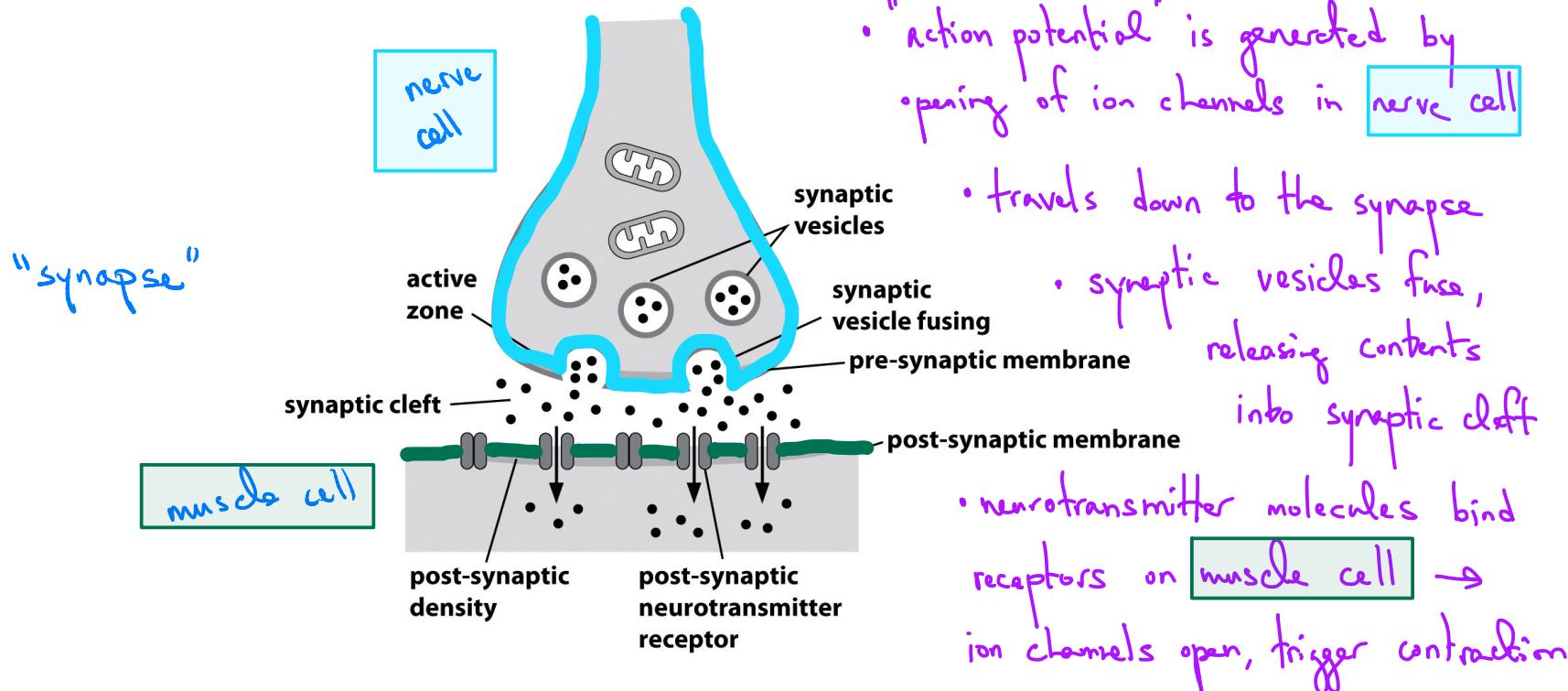


(C)

50 nm

Structure, energetics, and function of membranes

Vesicles in cells: synaptic signalling between nerve cells



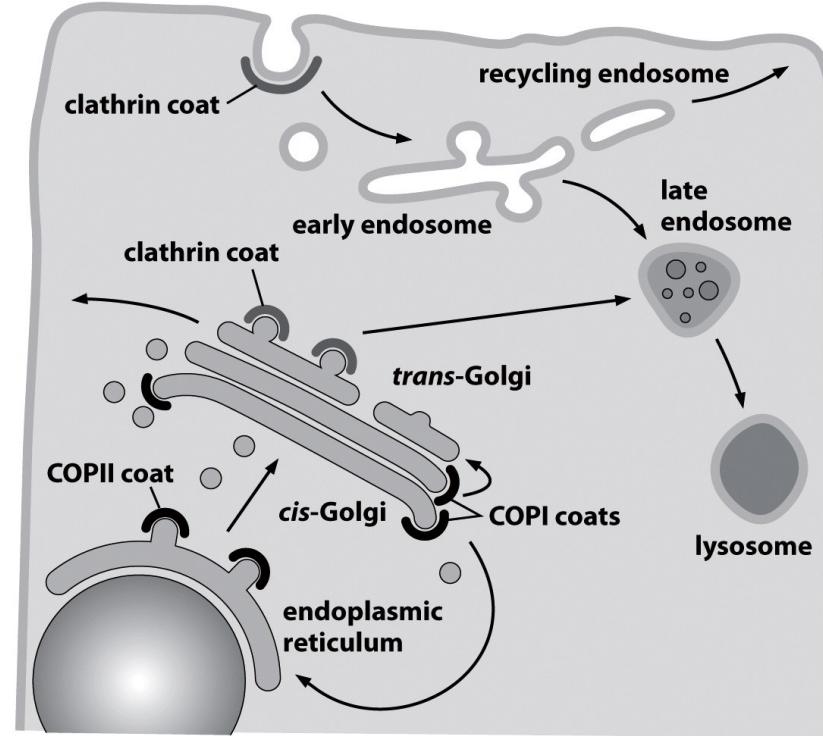
Structure, energetics, and function of membranes

Vesicles in cells: intracellular transport

Secretory pathway
From protein production
to modification to
targeting to interior
or surface.
"Assembly line"

Common shapes:

Spheres
tubes



organelles communicate
via vesicles

Structure, energetics, and function of membranes

Vesicles in cells: energy cost

What is the energy to make one vesicle, 10 nm in radius? (Assume spherical, $K_B = 10 k_B T$)

elastic

Structure, energetics, and function of membranes

Vesicles in cells: energy cost

What is the energy to make one vesicle, 10 nm in radius? (Assume spherical, $K_B = 10 k_B T$)

bending modulus has units of energy

$$G_{\text{bend}} = \frac{K_B}{2} \int_{\text{surface}} (K_1 + K_2)^2 dA$$

$$= \frac{K_B}{2} \int_{\text{surface}} \left(\frac{1}{R} + \frac{1}{R}\right)^2 dA = \frac{2K_B}{R^2} (4\pi R^2) = 8\pi K_B$$

Surprising! Independent of R

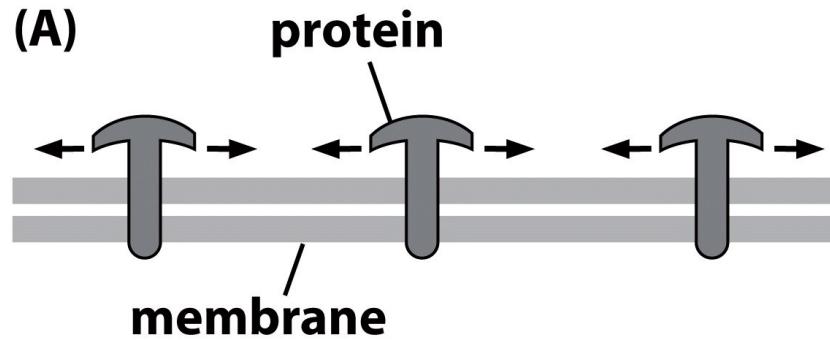
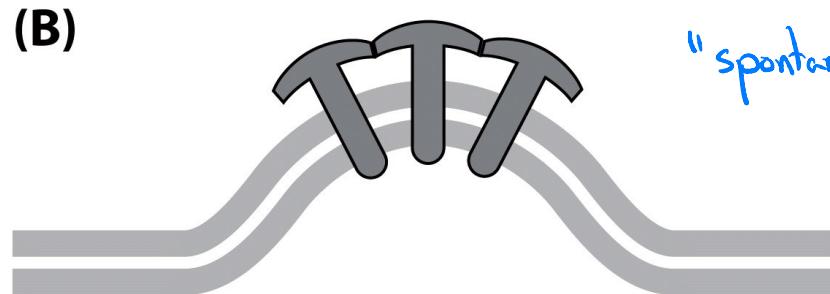
$$\text{Estimate: } G_{\text{bend}} \approx 250 \text{ } k_B T \gg k_B T$$

energy comes from protein-protein interactions, spontaneous curvature of lipids

Structure, energetics, and function of membranes

Vesicles in cells: Proteins shape membranes

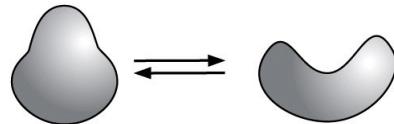
clathrin
:
COP1
COP II



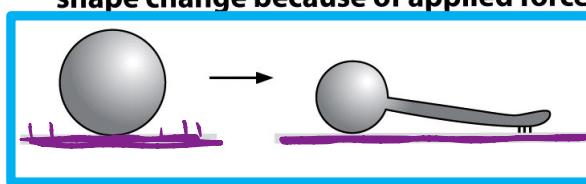
Structure, energetics, and function of membranes

Membrane shape changes

spontaneous shape change

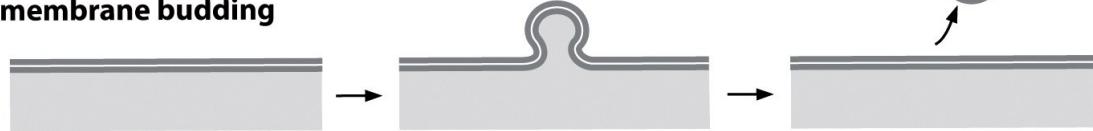


shape change because of applied forces

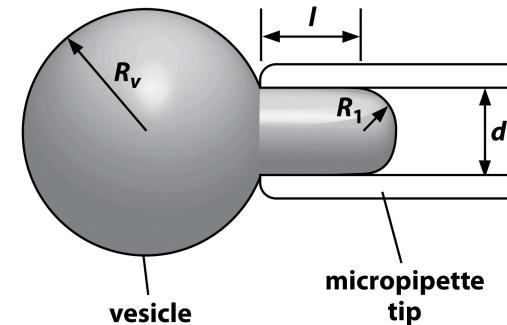


membrane fusion

membrane budding



molecular motors : exert forces



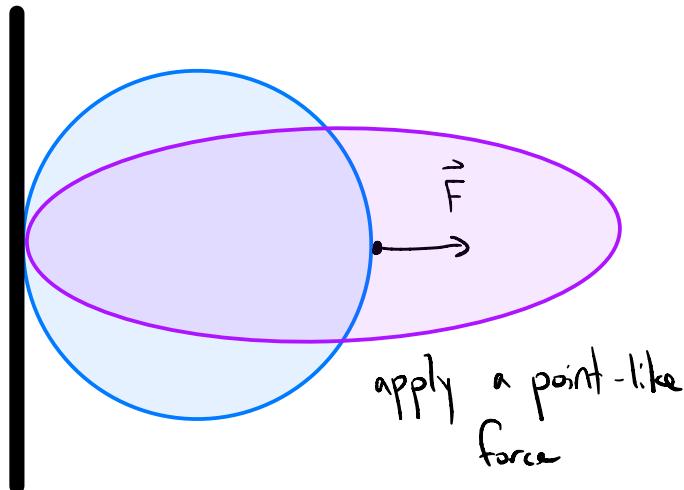
Structure, energetics, and function of membranes

Membrane pulling model

Spherical vesicle. What will happen if you use optical tweezers to pull on a bead attached to the membrane?

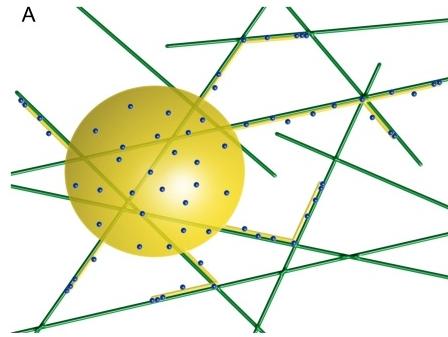
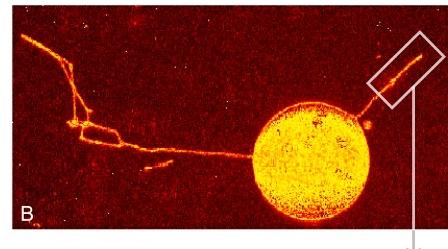
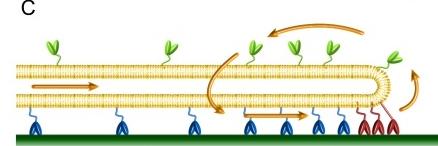
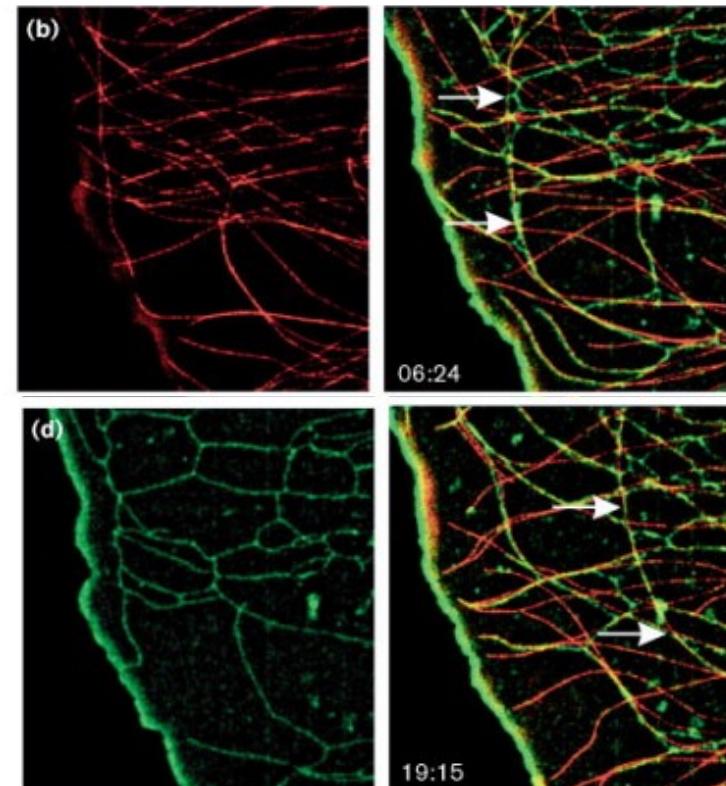
<https://www.youtube.com/watch?v=8PZfgIBI77A>

What shape do you expect the membrane to take?



Structure, energetics, and function of membranes

Motors pull membranes



<https://ars.els-cdn.com/content/image/1-s2.0-S0960982298703215-mmc1.mp4>

Structure, energetics, and function of membranes

Membrane pulling model

Spherical vesicle. What will happen if you use optical tweezers to pull on a bead attached to the membrane?

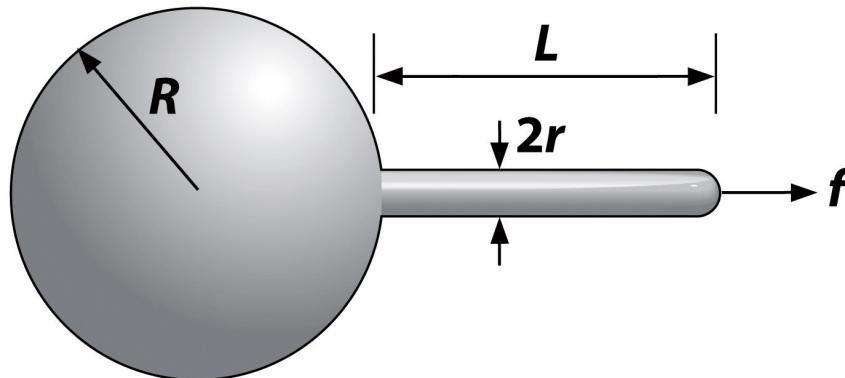
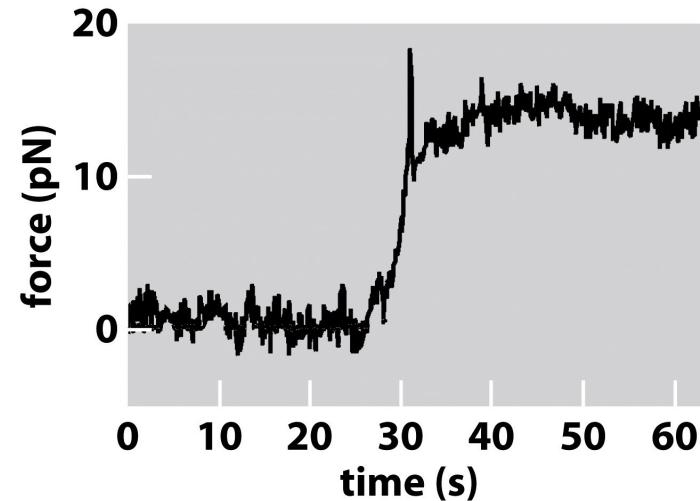


Figure 11.26 Physical Biology of the Cell (© Garland Science 2009)



What is the equilibrium shape? Minimize free energy. PBOC 11.3.2

- bending
- stretching
- work done against pressure difference
- work done by applied force

1. Bending

principal curvatures

	reside	tube	cap
κ_1	$1/R$	$1/r$	$1/r$
κ_2	$1/R$	0	$1/r$
S_{dA}	$4\pi R^2$	$2\pi rL$	$2\pi r^2$
G_{bend}	$8\pi K_b$	$\frac{\pi K_b L}{R}$	$4\pi K_b$

What is the equilibrium shape? Minimize free energy. PBOC 11.3.2

- bending
- stretching
- work done against pressure difference
- work done by applied force

1. bending

	Vesicle	tube	cap
κ_1	$1/R$	$1/r$	$1/r$
κ_2	$1/R$	0	$1/r$
$\int dA$	$4\pi R^2$	$2\pi r L$	$2\pi r^2$
G_{bend}	$8\pi K_b$	$\frac{\pi K_b L}{R}$	$4\pi K_b$

2. stretching

$$G_{\text{stretch}} = \frac{K_A}{2} \frac{(\Delta a)^2}{a_0} = \frac{K_A}{2} \frac{(2\pi r L + 4\pi R^2 - 4\pi R_0^2)^2}{4\pi R_0^2}$$

$R, L \gg r$
ignore cap

$$\frac{K_A}{2} \int \left(\frac{\Delta a}{a_0} \right)^2 dA$$

3. work against pressure ($\Delta V = 0$)

$$G_{PV} = -V \Delta P = -\Delta P \left[\frac{4}{3} \pi R^3 + \pi r^2 L \right]$$

$\underbrace{\quad}_{\text{pressure difference inside ; out}}$

4. work by applied force $G_{\text{load}} = -fL$ (analogue of $W = F\Delta x$)

Minimize free energy G_{tot} with respect to R, r, L

$\underbrace{\tau}_{\text{tension}}$

$$\frac{\partial G_{\text{tot}}}{\partial R} = 0 \Rightarrow \text{Laplace relation} \quad \Delta P = \frac{2}{R} K_A \frac{(\Delta a)}{a_0}$$

$$\frac{\partial G_{\text{tot}}}{\partial r} = 0 \Rightarrow r = \sqrt{\frac{K_b}{2\tau}} \quad (\text{neglecting } \Delta P \text{ term}) \approx \boxed{50 \text{ nm}}$$

$$\frac{\partial G_{\text{tot}}}{\partial L} = 0 \Rightarrow f = 2\pi \sqrt{2K_b \tau} \quad \text{Experiment: } f \approx 10 \text{ pN}$$

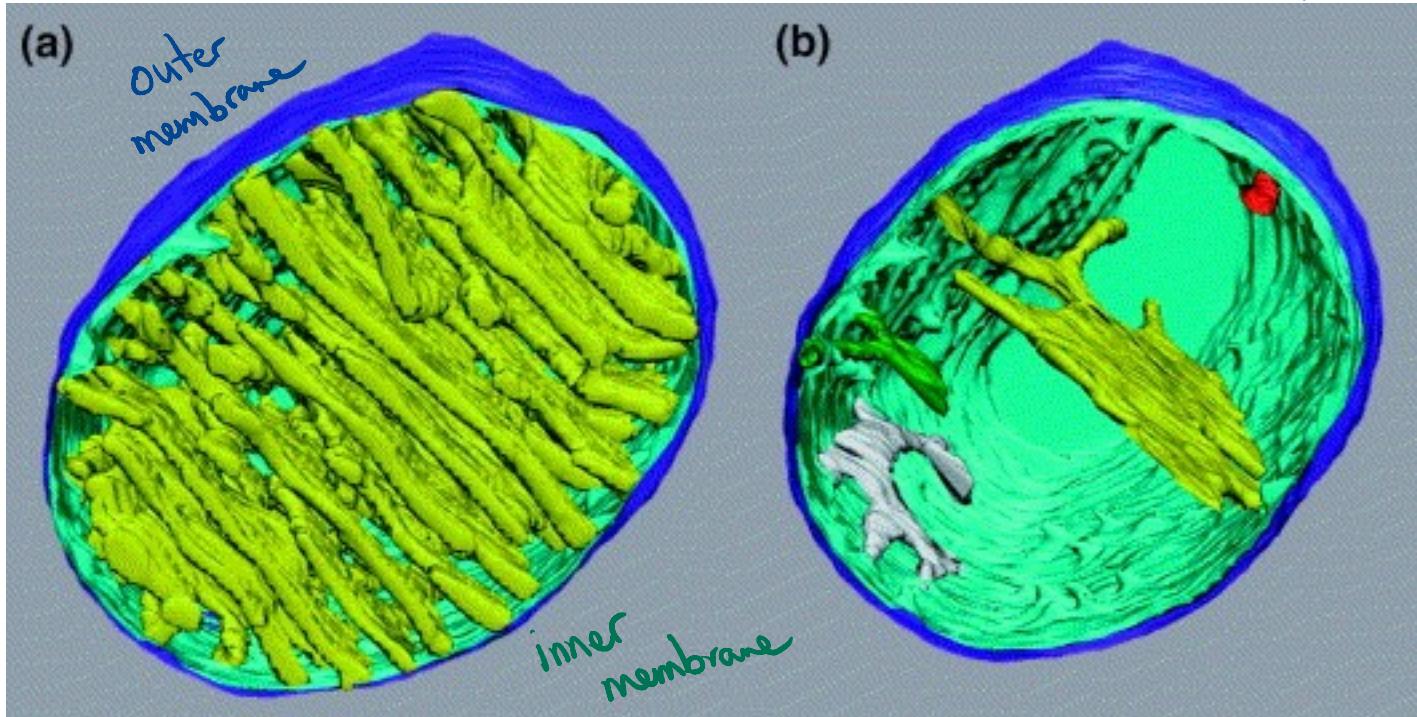
$$\tau \approx \boxed{0.015 \text{ pN/nm}}$$

$$\text{motors } \sim \text{pN/5 nm} = \boxed{0.2 \text{ pN/nm}}$$

Membranes and shape

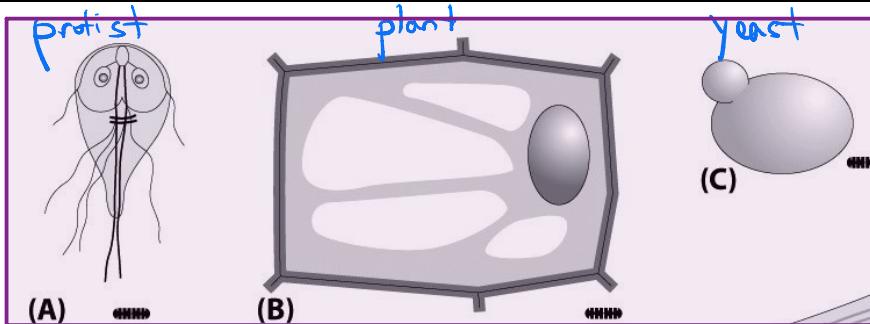
Organelle shape: mitochondria

inner
membrane
area
 $\sim 10 \times$
outer
membrane
area
 ~ 0.01
plasma
membrane
area

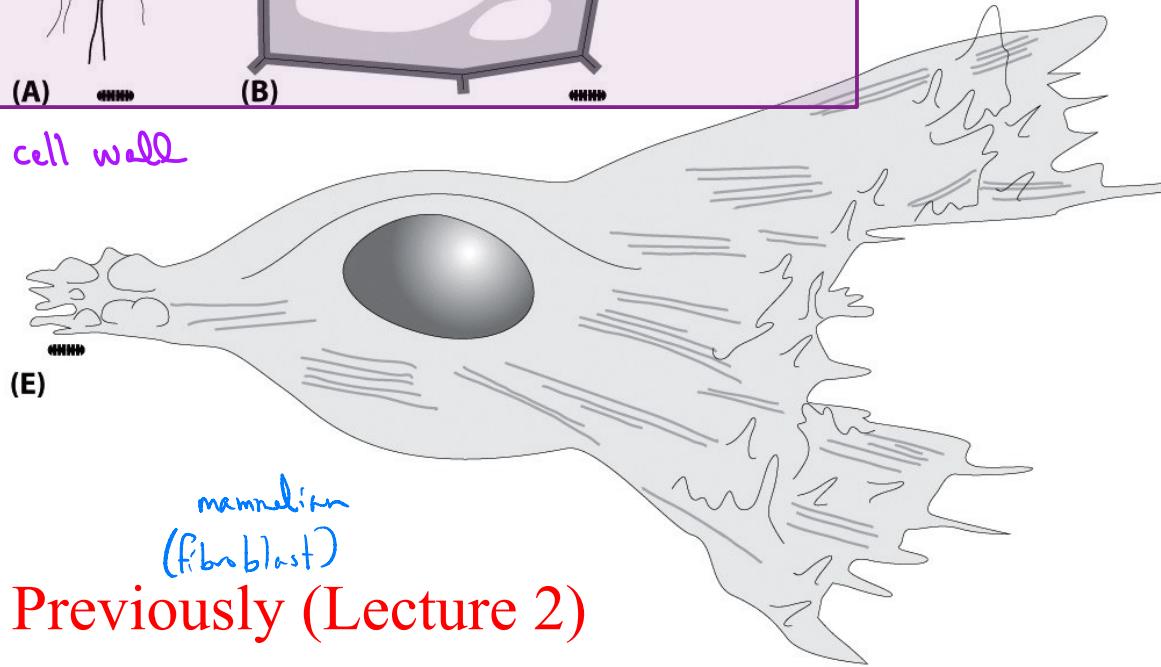


What drives
non-spherical shapes?
We don't
know!
But would
like to ...

Membranes and shape: Cell shape

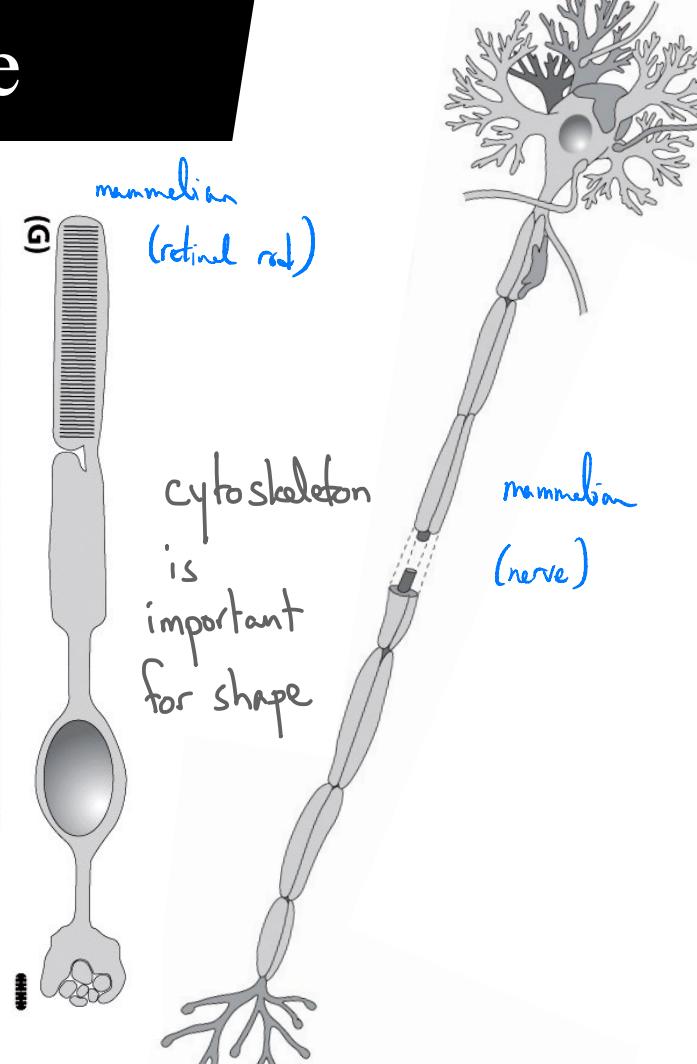


cell wall



mammalian
(fibroblast)

Previously (Lecture 2)



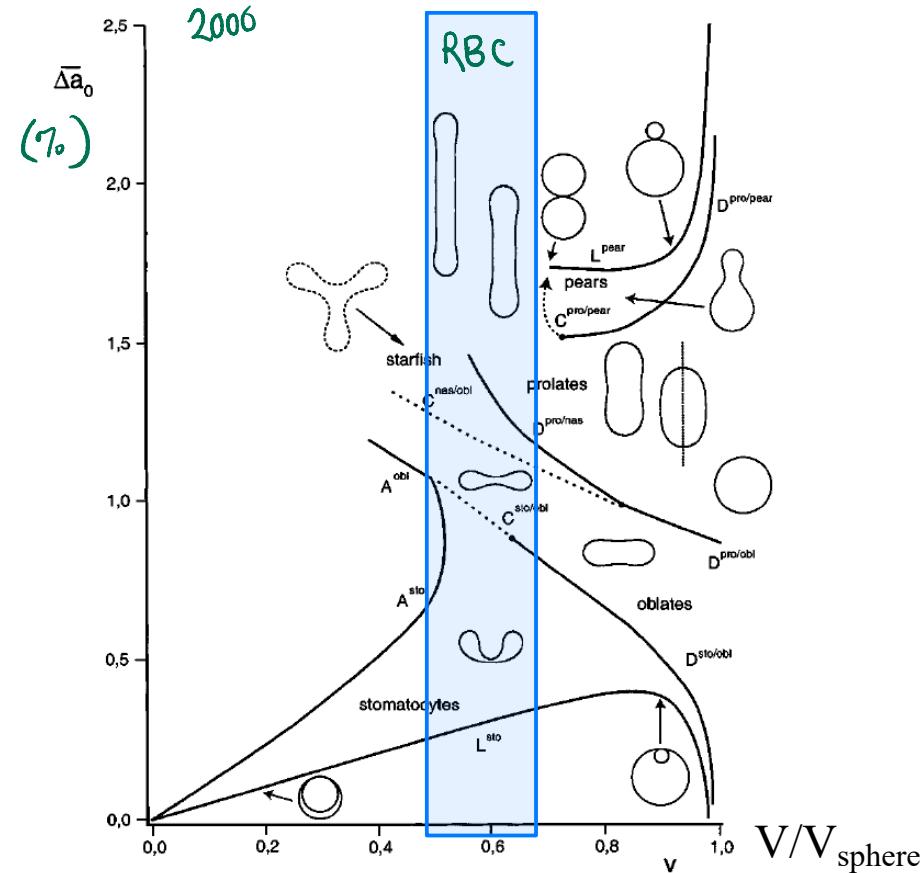
mammalian
(nerve)

Membranes and shape

Vesicle shapes: stretch and bend

(no shear, fluids don't resist shear)

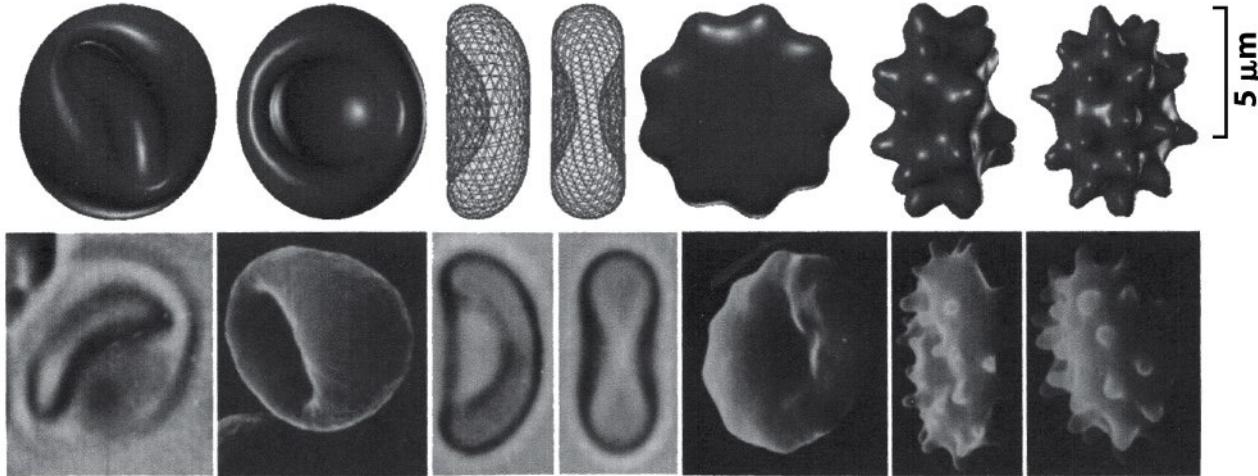
minimize free energy for
different volumes, different
leaflet area differences
(inner/outer) $\overline{\Delta a}_0$



Membranes and shape

Previously:

Cells as minimizers



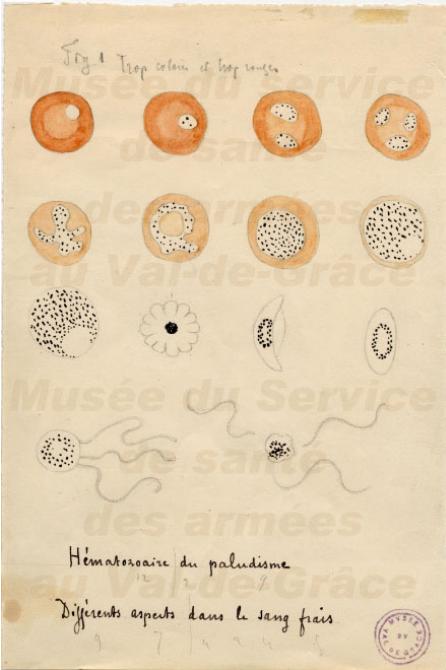
changes in area difference between two leaflets of bilayer

bend + stretch
elasticity dominates

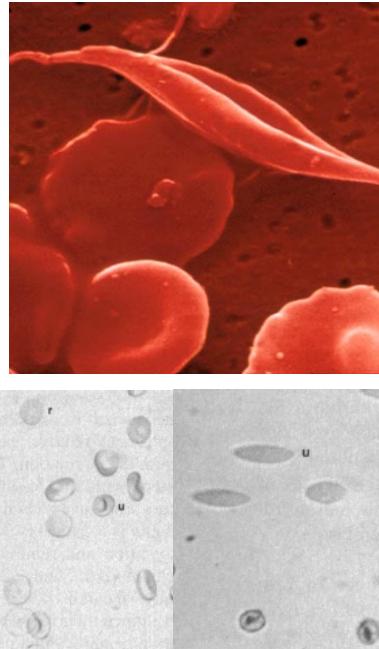
shear elasticity becomes important →
cytoskeletal network (spectrin protein)

Membrane and shape

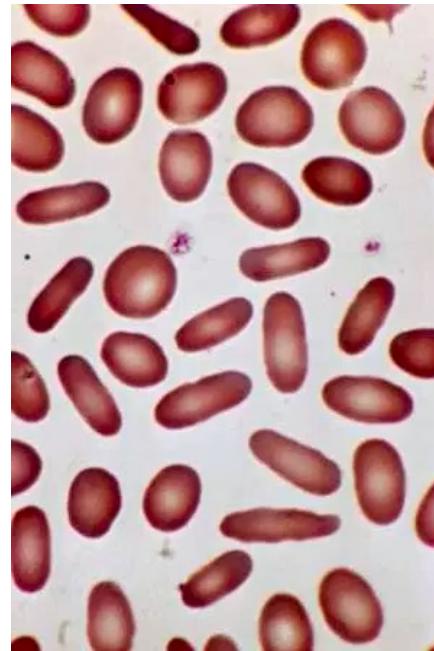
Red blood cell shape and disease



Malaria



Sickle cell anemia

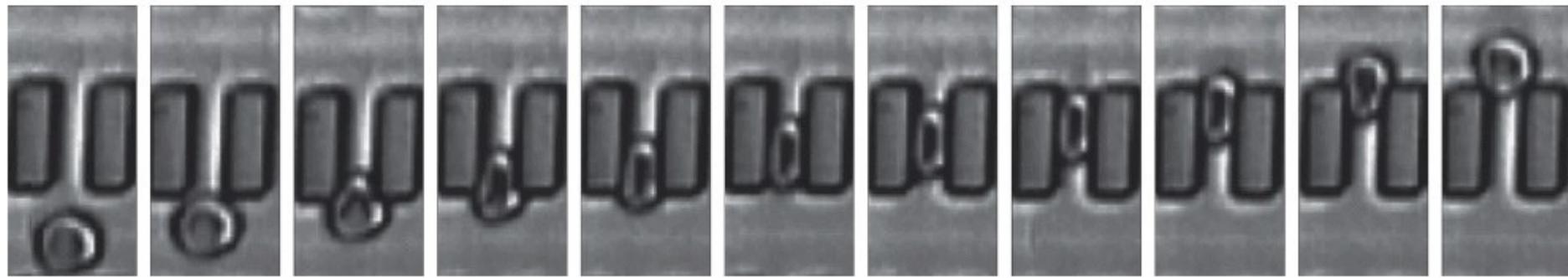


Hereditary elliptocytosis

Membranes and shape

Red blood cell deformations

10 μ m



How much would the elasticity have to change to prevent RBC from passing through capillary? \rightarrow disease

Lecture 5: Biological membranes

Summary

- Vesicles transport molecules and can bud and fuse from membranes (plasma mem., organelles)
 - protein coats or lipids
 - can lower energy to bend membrane (spontaneous curvature)
- Membranes can change shape due to applied forces.
 - In cells, proteins (molecular motors)
 - In vitro, also optical tweezers \vdash micropipettes
 - Mammalian cell shape comes from cytoskeleton (red blood cell example)
 - Plants, yeast, bacteria cell shapes come from cell wall

Lecture 6: Proteins; entropy rules

Goal: Introduce Boltzmann distribution, probability of microstate

- Ligand-receptor binding
- Gene regulation
- Cooperativity

PBOC Chapter 6.1.1, 6.1.2, 6.4
(except 6.4.4)