

Lecture 3: Mechanical and chemical equilibrium

Goal: Energy minimization models

- Biological systems as minimizers
- Entropy and hydrophobicity

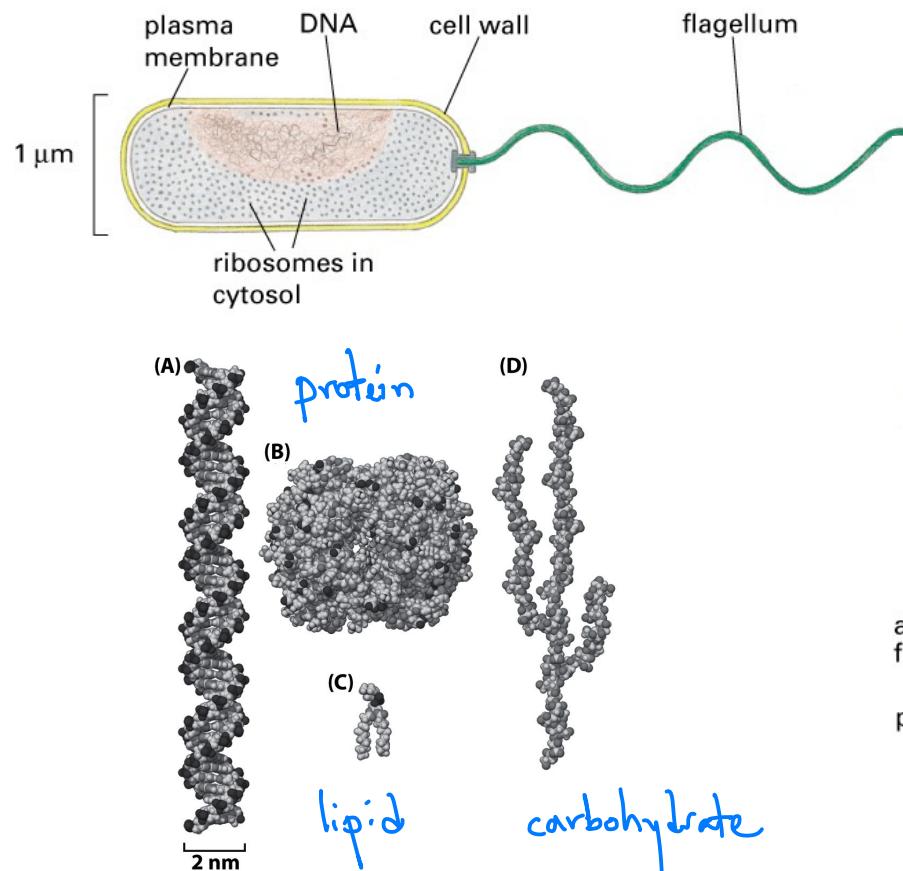
PBOC Chapter 5.2, 5.5.1

Announcement: Video-recorded lecture next week.

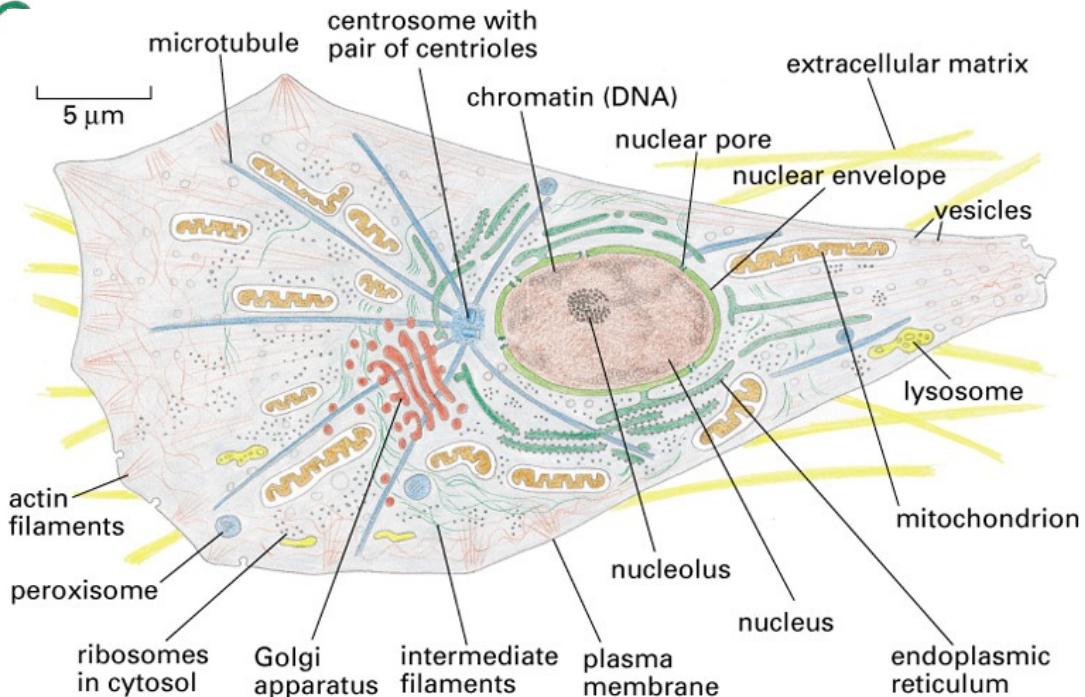
Basic facts about cells

Previously:

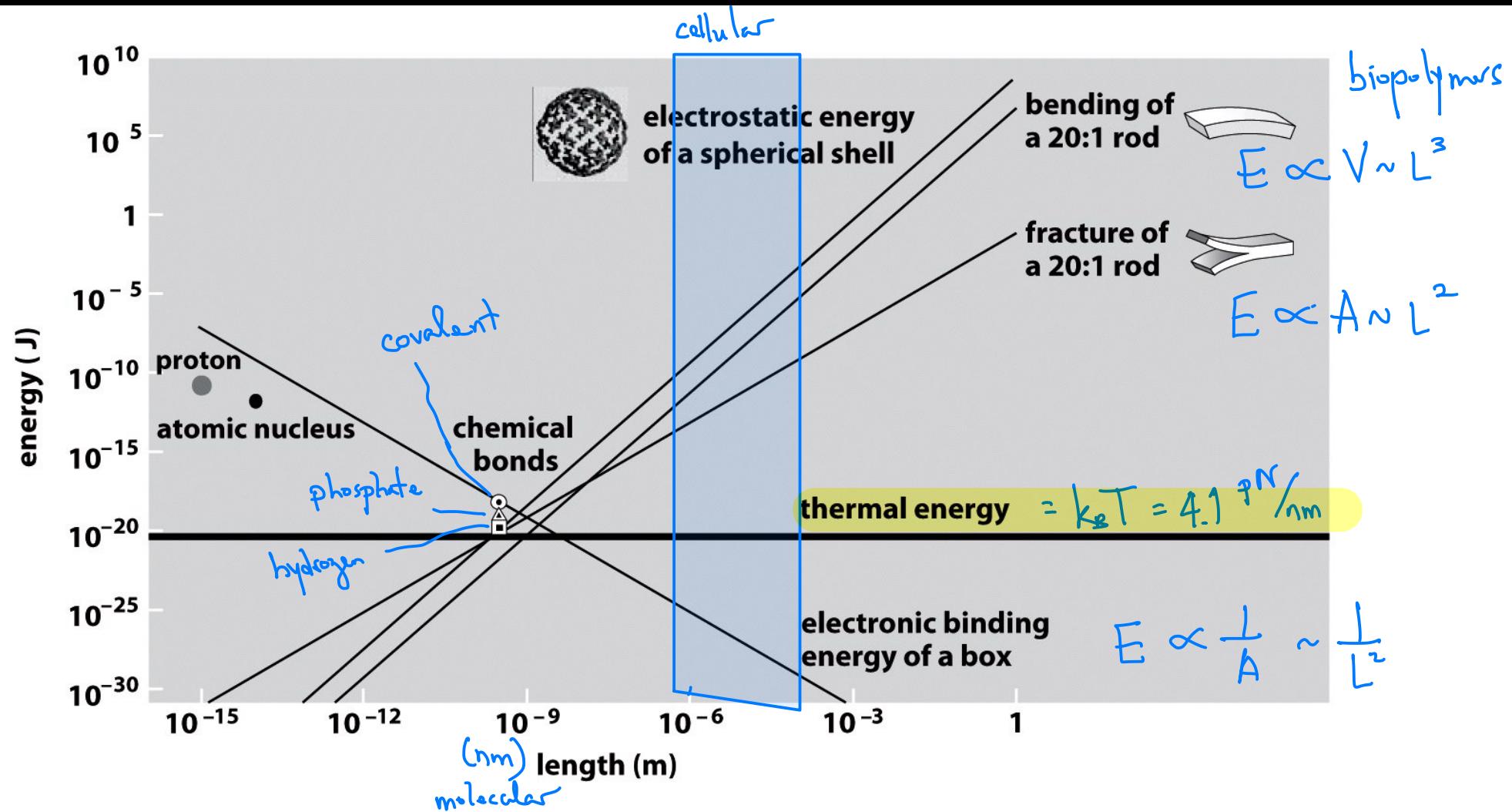
Prokaryotes and Eukaryotes



DNA
(nucleic acids)



Energy in the cell



Energy in the cell

Active vs passive processes

$\gg k_B T$

$\sim k_B T$

- transforming molecules, make/break
covalent / phosphate bonds
- steps of central dogma (transcription, translation)
- transport in cell by molecular motor
- constriction at cell division site
- segregation of DNA into daughter cells

Non-equilibrium, consuming energy.

protein folding (hydrophobicity)

binding / unbinding processes :

ligand + protein
protein + DNA

Model using energy minimization

Biological systems as minimizers

Passive processes can be modeled by minimizing free energy

- What determines the shape of a red blood cell?
- Given a particular oxygen partial pressure in the lungs, what is the fractional binding occupancy of the hemoglobin within red blood cells?
- How much force is required to package the DNA within the capsid of a bacteriophage?
- What fraction of Lac repressor molecules in an E. coli cell are bound to DNA and what is the probability that one such molecule is bound specifically?

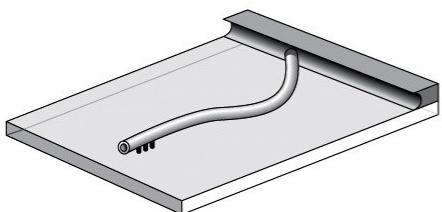
Useful simplification: many chemical and mechanical systems can be treated as if they are close to an equilibrium state.

Biological systems as minimizers

Proteins as minimizers

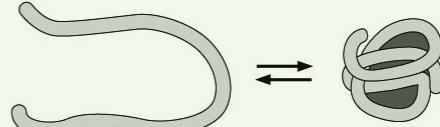
length scale : nm

chemical bonds
contribute to
energy

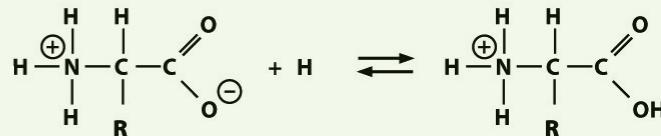


microtubule growing against a barrier

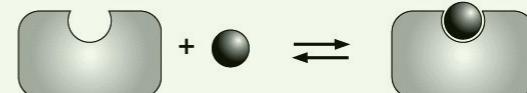
mechanical
deformation
contributes to energy



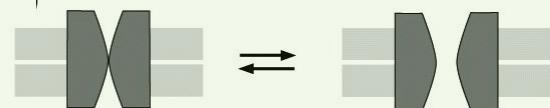
protein folding and unfolding



carboxylic acid group becoming
protonated and deprotonated



ligand binding and unbinding to receptor



ion channel opening and closing

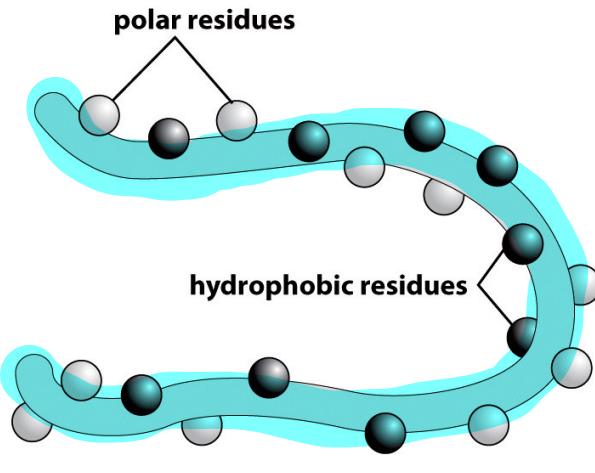
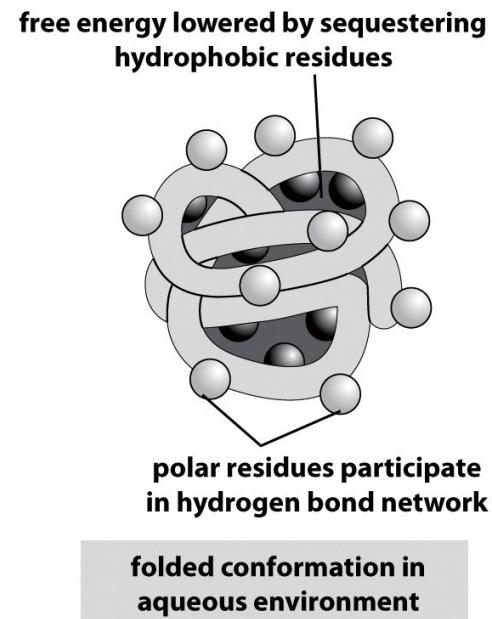
Model : Write an expression for free energy, minimize.
calculate probability of finding system in a state.

Biological systems as minimizers

How to find minimum energy states? Probabilities?

1. Identify the states.
2. Determine free energy of each state.

Biological systems as minimizers



Protein folding

Number of possible 3D conformations is so large that a random search would take a long time:

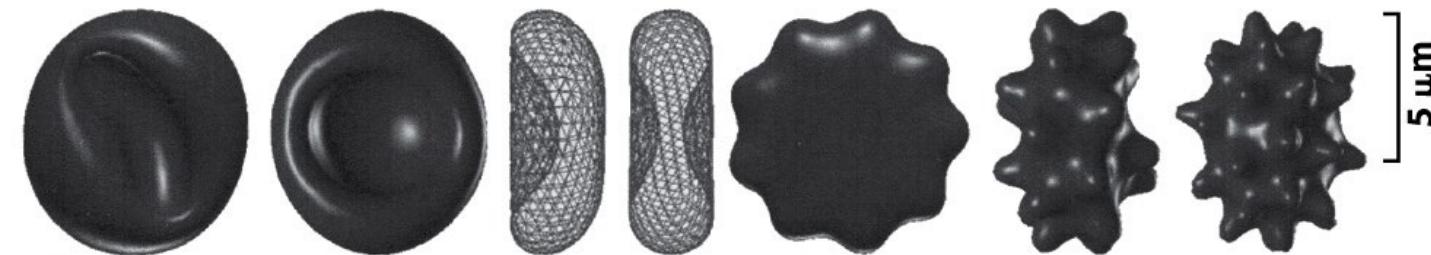
100-monomer chain
 $6^{100} = 6.5 \times 10^{77}$

One structure per femtosecond
 2×10^{55} years
Age of universe $\sim 10^{10}$ years

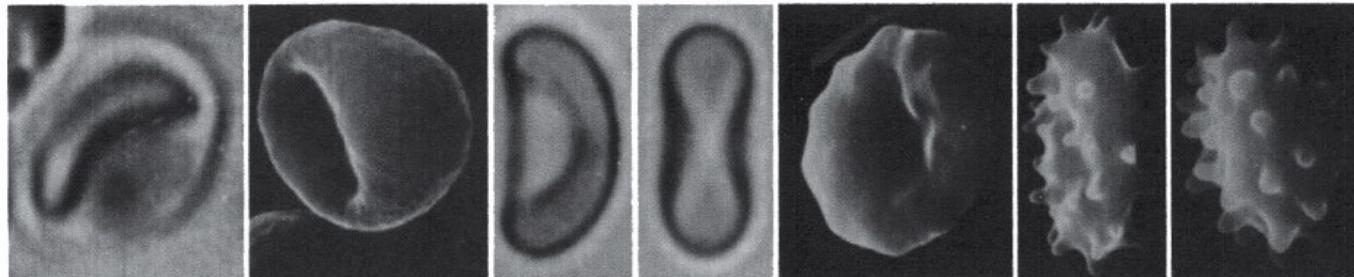
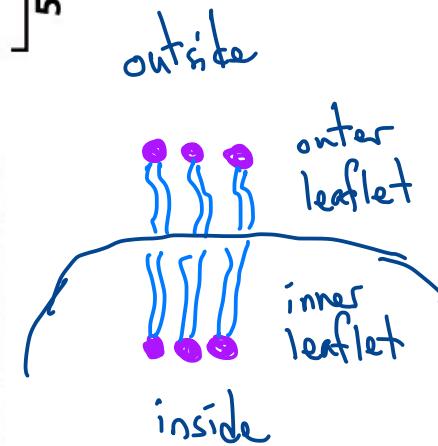
Biological systems as minimizers

Cells as minimizers length scale: nm \rightarrow μm

numerical
model



experimental
images



changes in area difference between two leaflets of bilayer

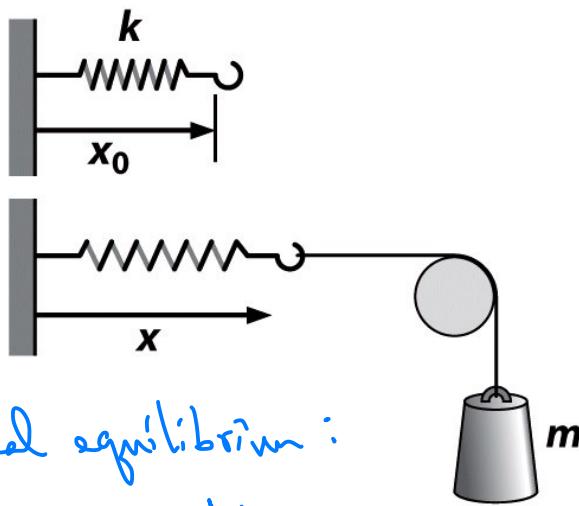
$$A_{\text{outer}} - A_{\text{inner}}$$

states: membrane shapes satisfying geometric constraints (constant area, constant volume)
energy: mechanical (elastic) energy of deformation

Energy minimization offers a suitable model for red blood cell shape.

Biological systems as minimizers

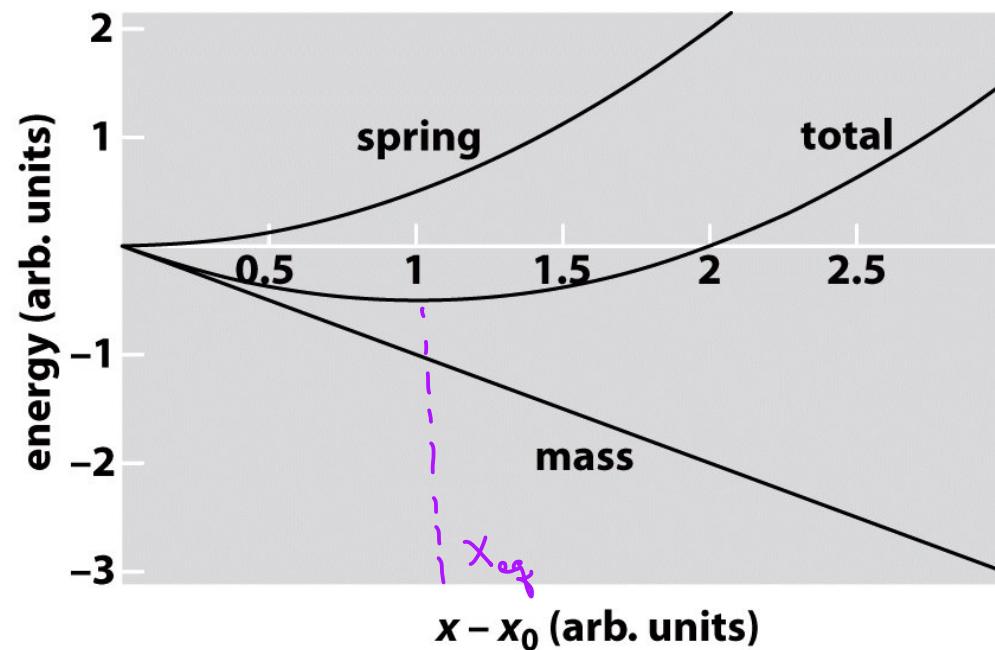
Deformation energy: Macroscopic spring-mass system



$$U(x) = \underbrace{\frac{1}{2}k(x - x_0)^2}_{\text{PE of spring}} - \underbrace{mg(x - x_0)}_{\text{PE of weight}}$$

+

-

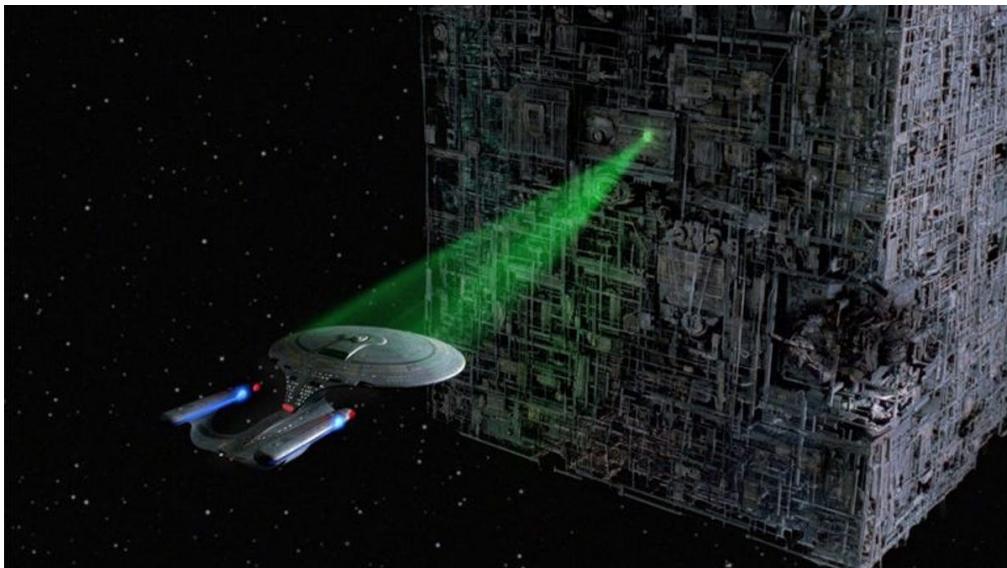


$$\frac{dU}{dx} = 0 = k(x_{eq} - x_0) - mg$$

$$x_{eq} = \frac{mg}{k} + x_0$$

Biological systems as minimizers

How do we know? Force-extension mechanics



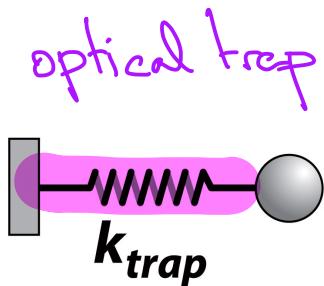
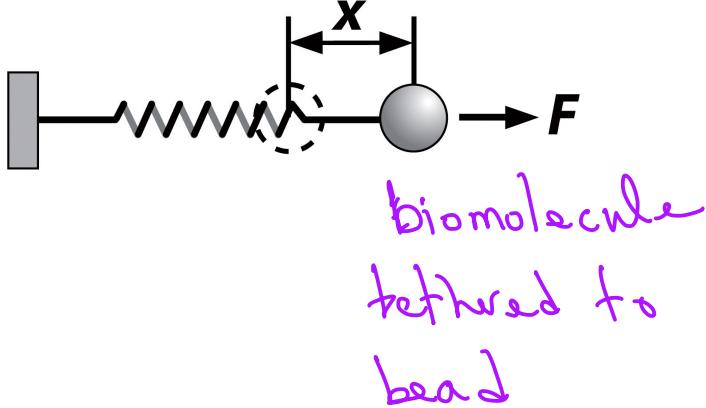
Tractor beam

Optical tweezers

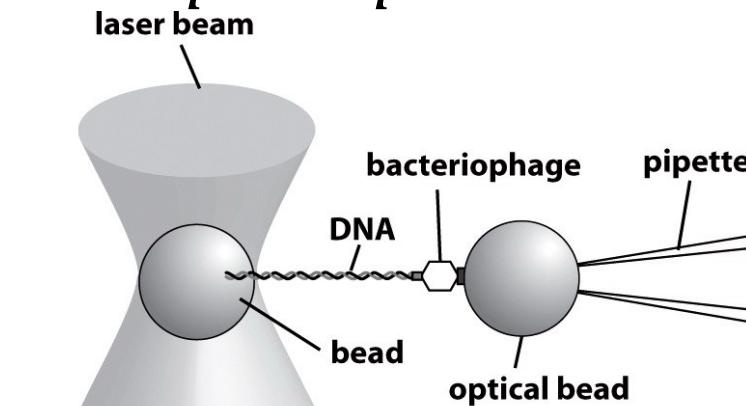
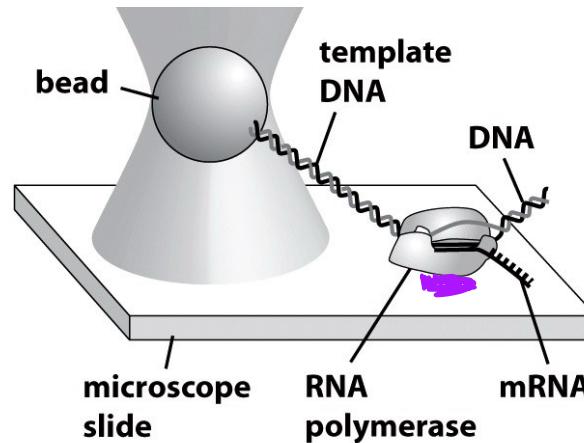
Nobel Prize 2018 Arthur Ashkin

Biological systems as minimizers

Biopolymer mechanics: optical potential well



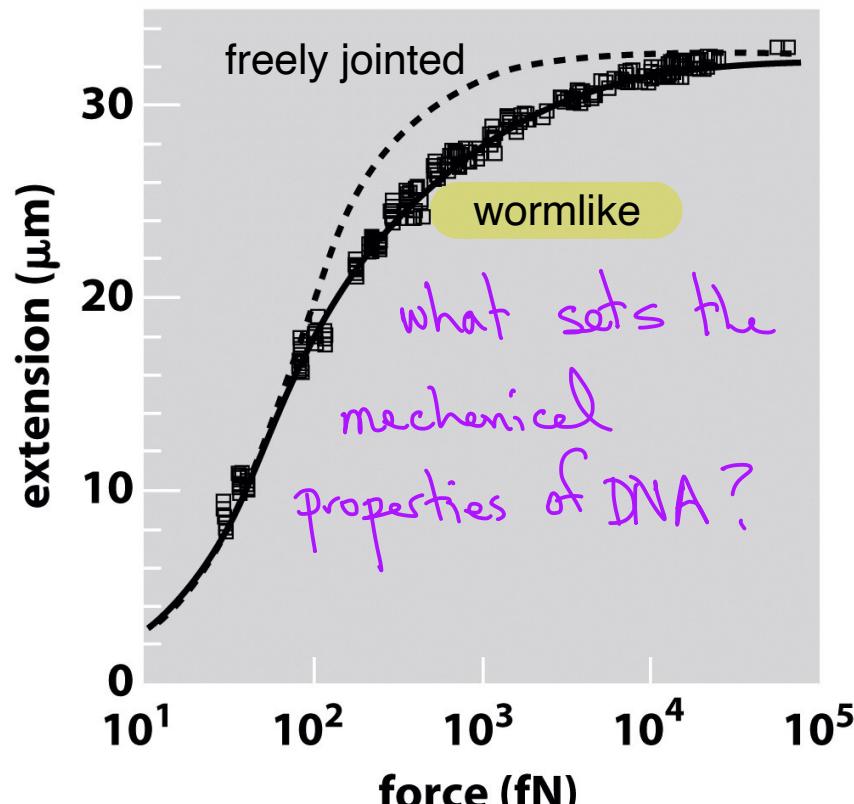
$$U(x) = \frac{1}{2}k_{trap}x^2 - Fx$$



transcribes DNA

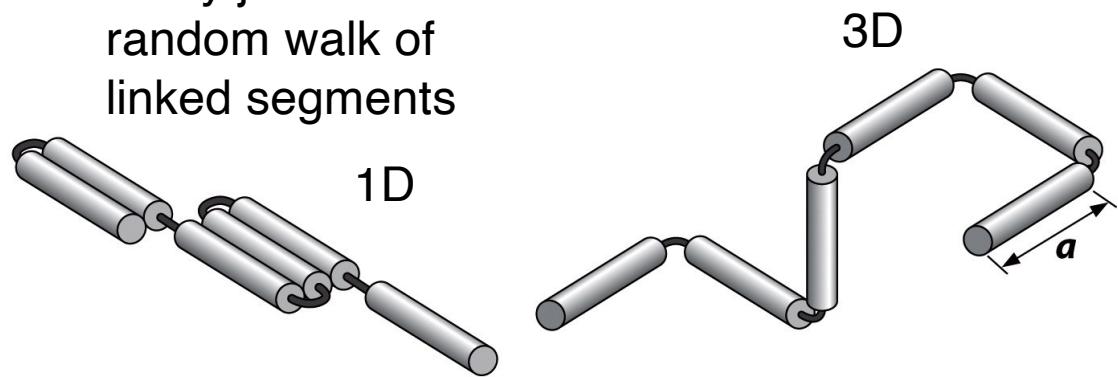
Biological systems as minimizers

Biopolymer mechanics: optical potential well

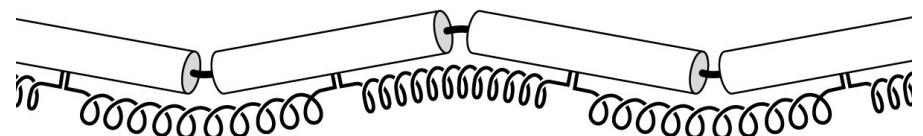


pulling on DNA

freely jointed chain:
random walk of
linked segments



wormlike chain: random walk of
linked segments with bending energy



distinguish physical polymer
models.

Including entropy

Thermal fluctuations

the equilibrium state of a system is the one out of all states available to the system that minimizes the free energy

$$\text{Free energy} = \text{internal energy} - \text{temperature} \times \text{entropy}$$

$$G = U - TS$$

- even though it is called G , this is the Helmholtz free energy (PBoC)

Including entropy

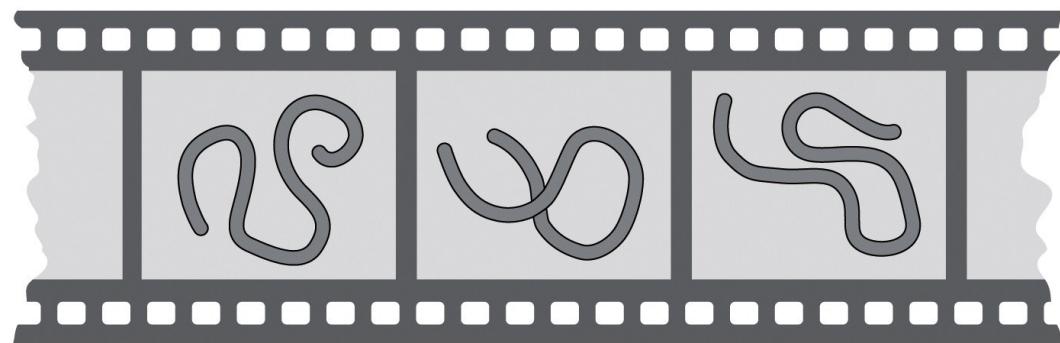
System microstates

DNA conformations

$$S = k_B \ln W$$

entropy

of accessible microstates



MICROSTATE 1

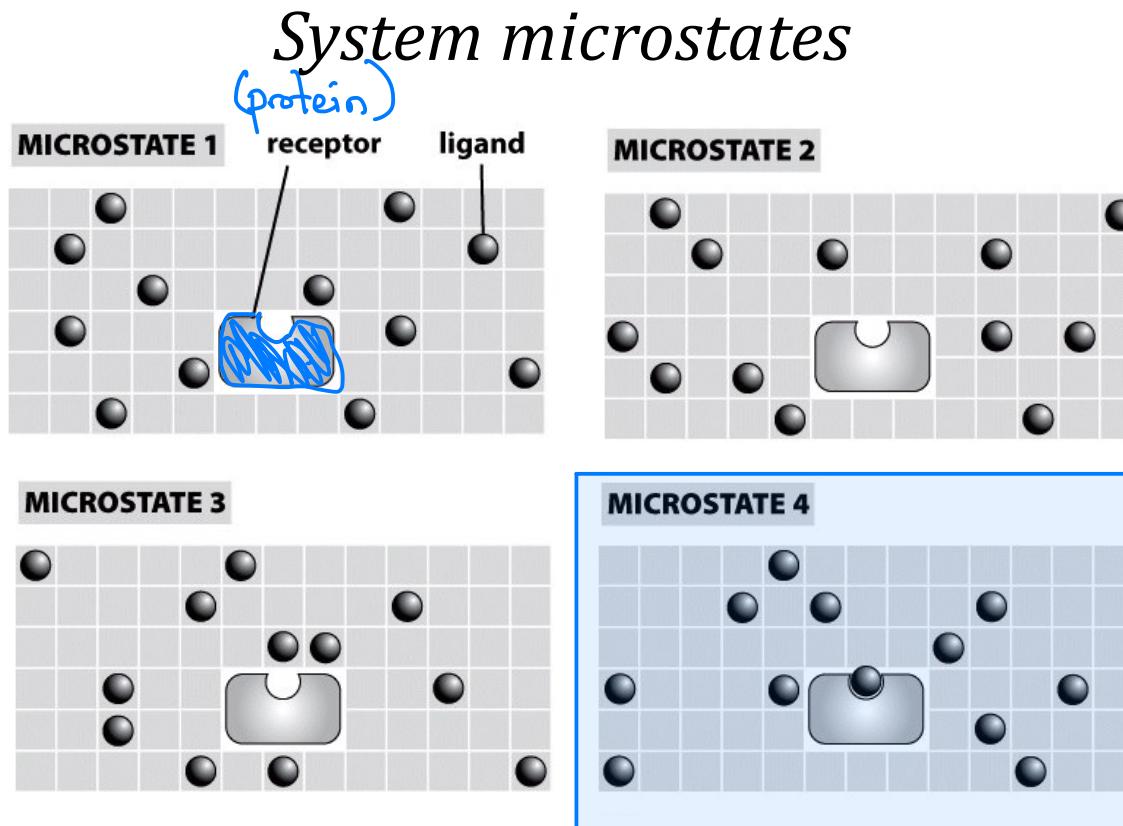
MICROSTATE 2

MICROSTATE 3 etc.

entropy is maximized by macroscopic states that have the largest number of microstates.

Including entropy

Lattice model

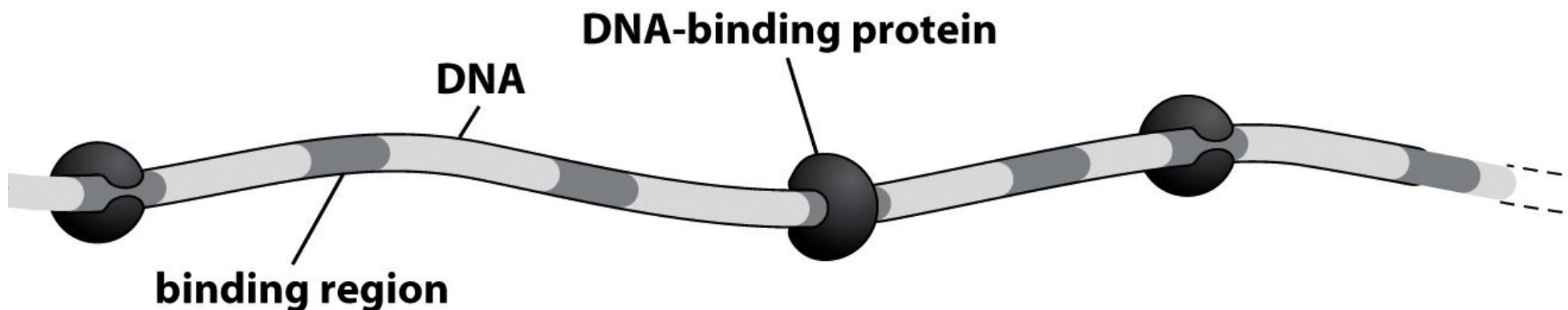


ligand binding to receptor protein

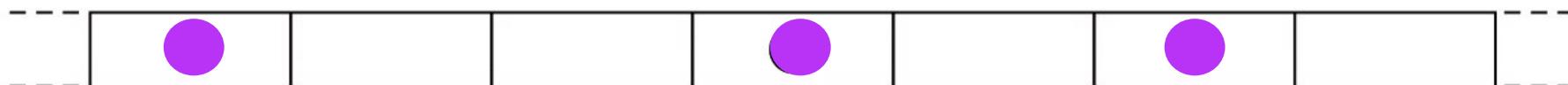
ligand is bound to protein
(probability depends on energy of binding,
temperature of system)

Including entropy

System microstates



each box is a binding site, protein can bind DNA

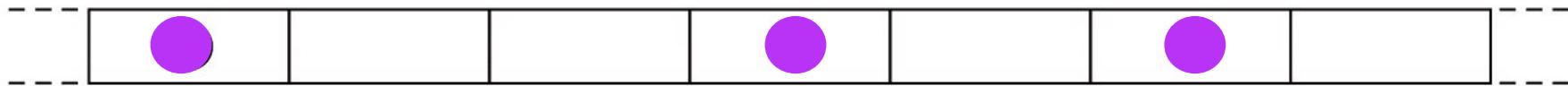


1D- **lattice model of DNA/protein complexes**

protein binding to DNA

Including entropy

System microstates



lattice model of DNA/protein complexes

N boxes, N_p proteins (indistinguishable) $N > N_p$. One protein per box.
 $\sim 5-10$ min.

How many accessible states? $W(N, N_p)$

Write down the entropy.

protein binding to DNA

N boxes, N_p proteins (indistinguishable)

N possible choices for where we put the first protein

$N-1$ choices for the second protein

$N-2$ choices for the third protein

number of ways to place N_p proteins:

$$N \cdot (N-1) \cdot (N-2) \cdots \cdot (N-N_p+1)$$

indistinguishability: overcounted. divide by the number of rearrangements of the N_p proteins within the occupied sites. $N_p!$

states: $W(N; N_p) = \frac{N \cdot (N-1) \cdot (N-2) \cdots \cdot (N-N_p+1)}{N_p \cdot (N_p-1) \cdots} = \frac{N!}{N_p! (N-N_p)!}$

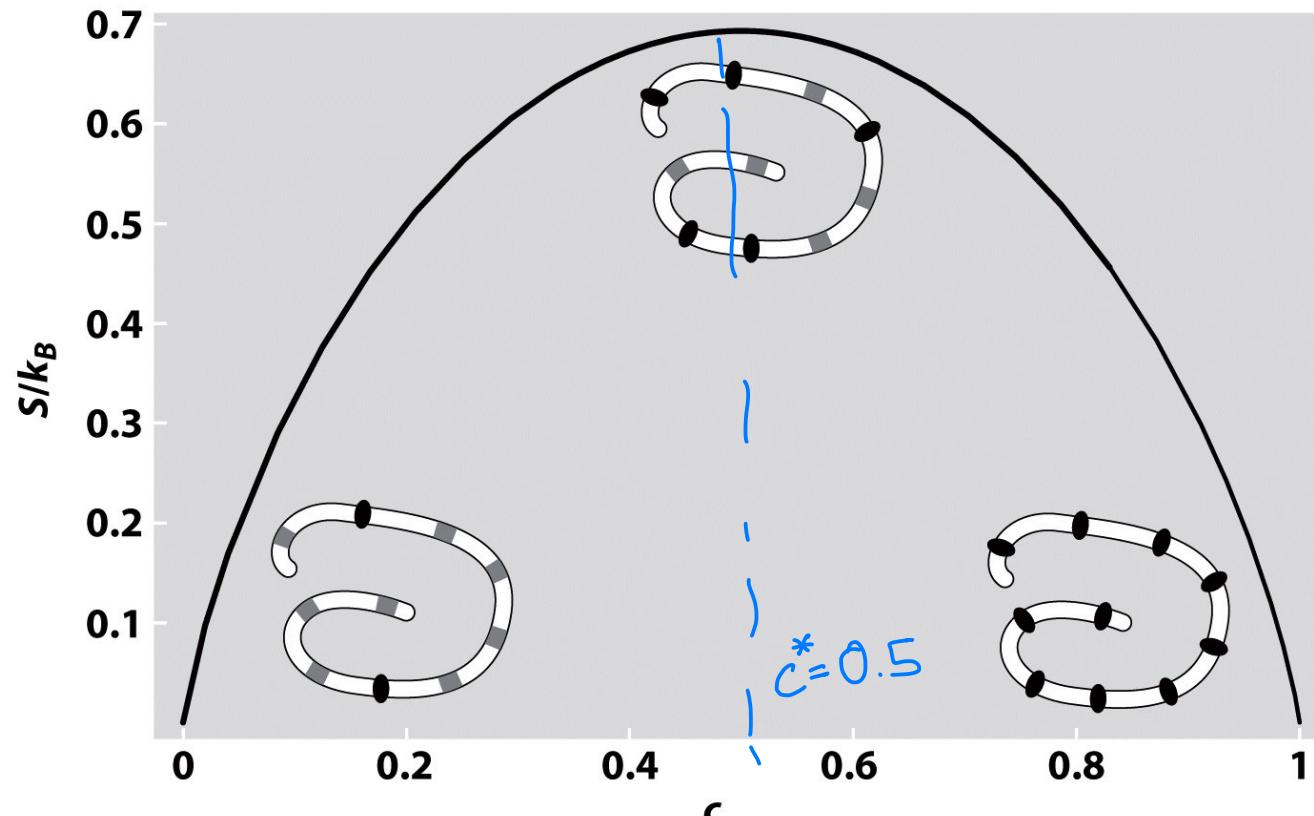
entropy: $S = k_B \ln W = k_B \ln N! - k_B \ln N_p! - k_B \ln (N-N_p)!$

Stirling approximation: $\ln N! \approx N \ln N - N$ for large N (p. 280)

$$\Rightarrow S = -k_B N [c \ln c + (1-c) \ln (1-c)] \quad \text{where} \quad c = \frac{N_p}{N}$$

Including entropy

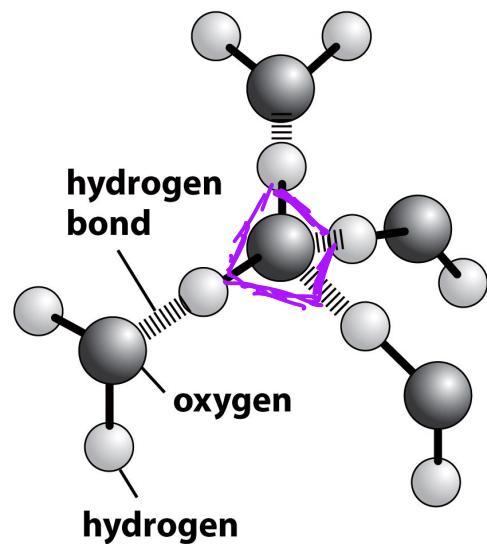
System microstates



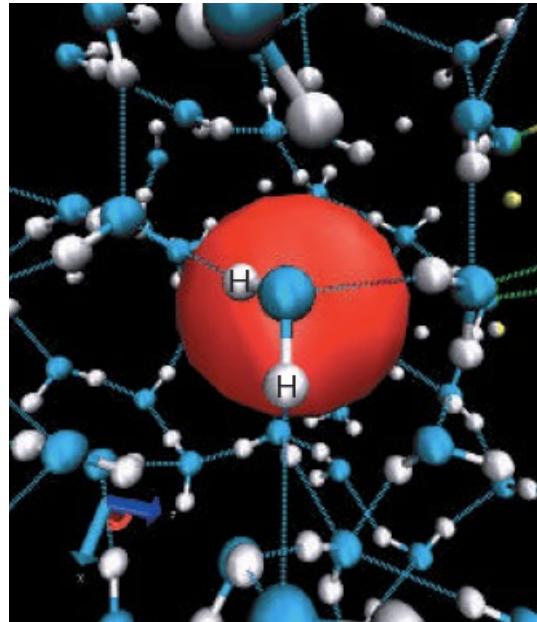
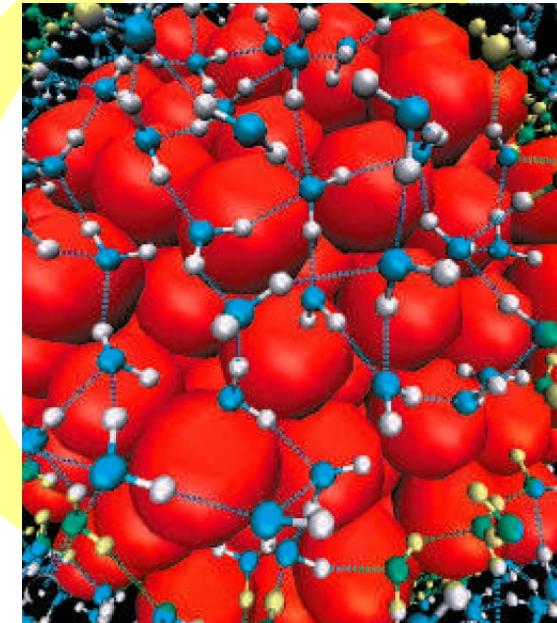
protein binding to DNA

Including entropy

idealized H-bonding network



Hydrophobicity: Toy model



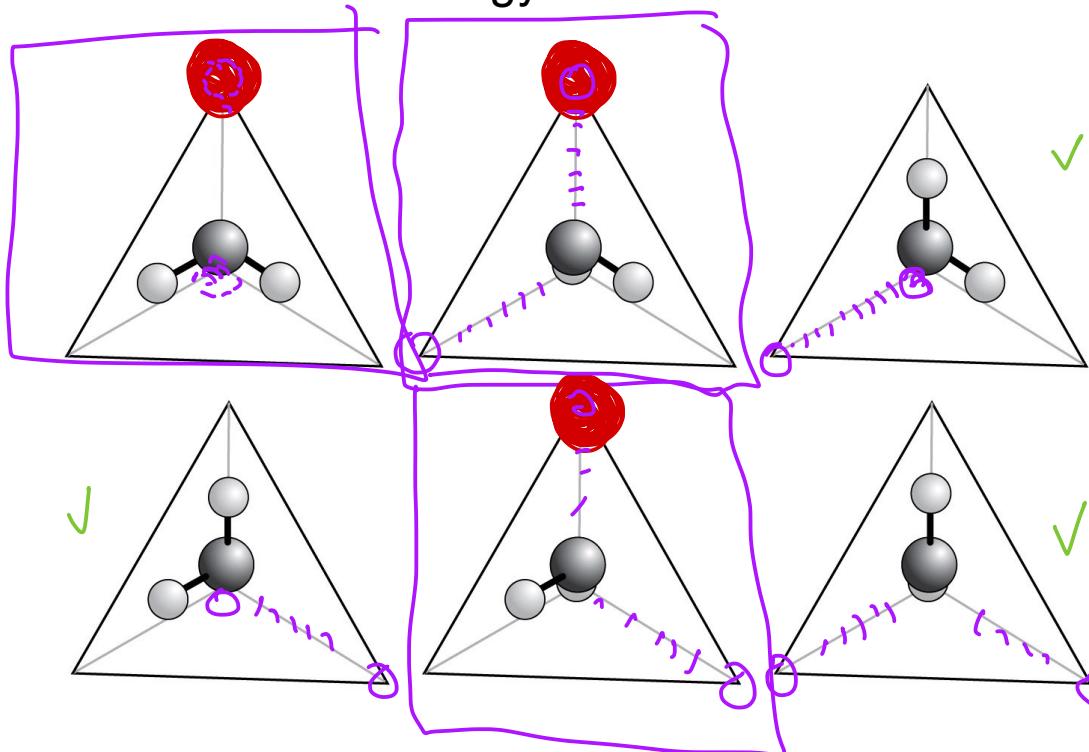
Hydrophobicity can drive molecules together.

a hydrophobic molecule prevents water molecules from hydrogen bonding

Including entropy

Hydrophobicity: Toy model

What is the free energy cost?

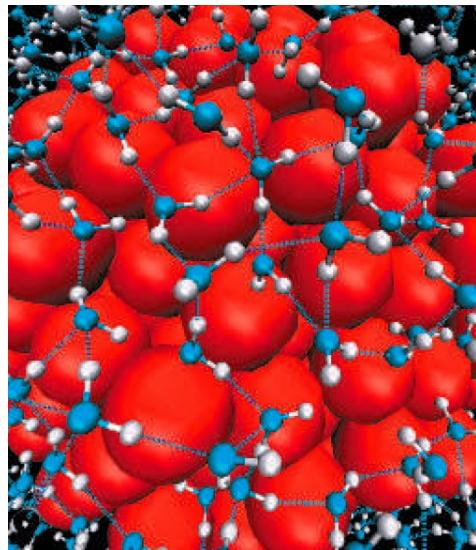


a hydrophobic molecule prevents water molecules from hydrogen bonding

Including entropy

Hydrophobicity: Toy model

What is the free energy cost? Entropy loss per H_2O molecule, assuming only microstates w/ 2 H-bonds



$$\Delta S_{\text{hydrophobic}} = k_B \ln 3 - k_B \ln 6 = -k_B \ln 2$$

$\underbrace{}$ $\underbrace{}$
constrained unconstrained

Entropic cost of hydrophobic inclusion:

$$\Delta G_s(n) = n k_B T \ln 2$$

n water molecules
adjacent to hydrophobic

Assume 10 H_2O molecules/ nm^2 . Entropic energy per area:

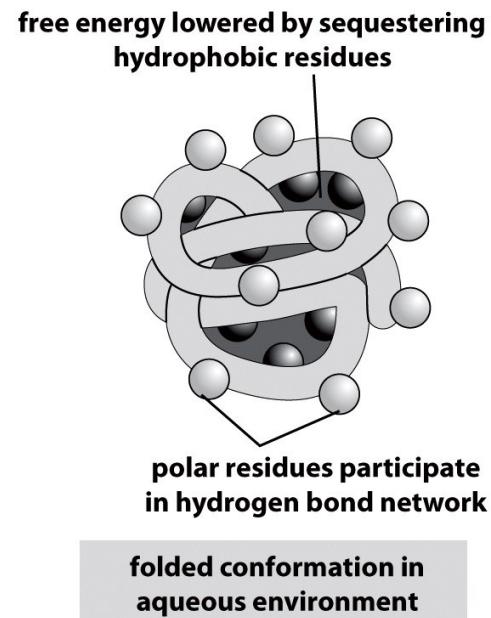
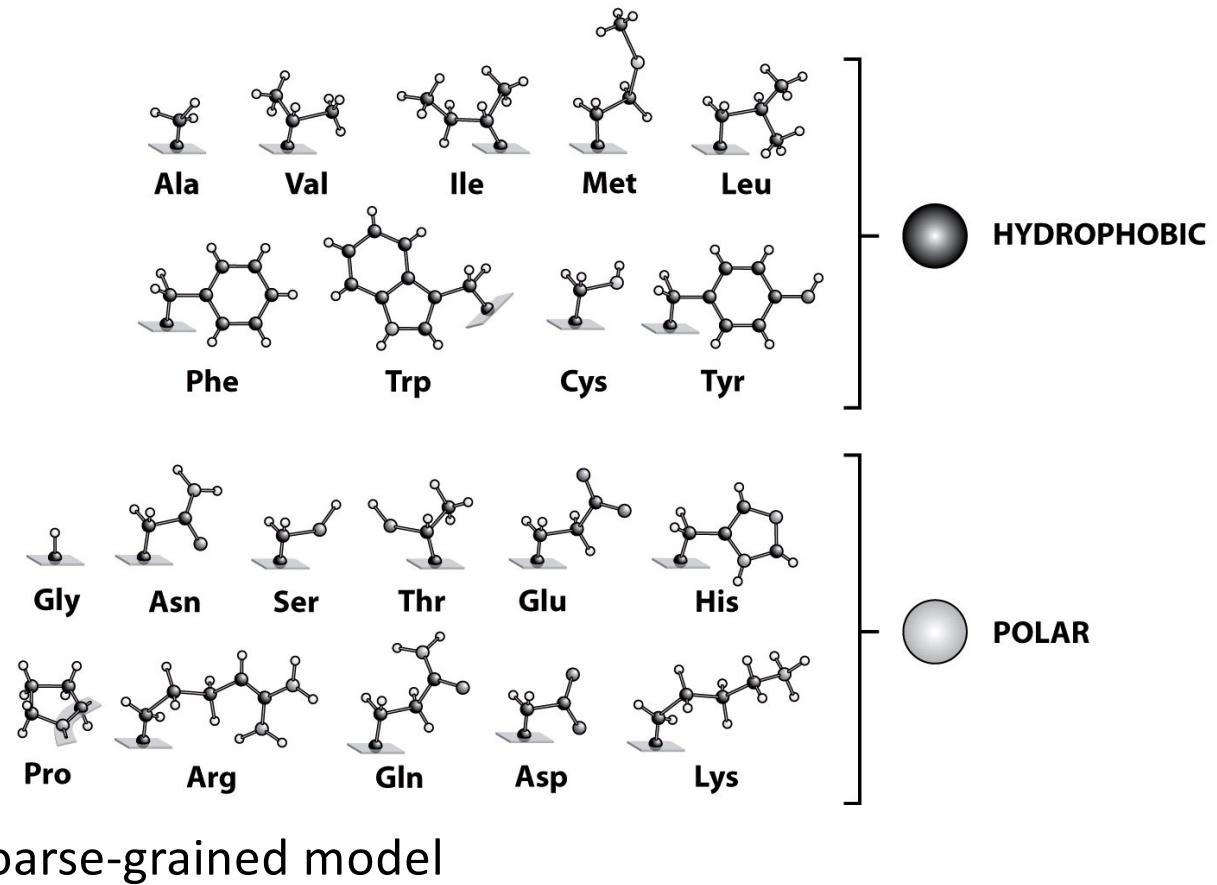
$$\frac{\Delta G_s}{A} = 10 \cdot k_B T \cdot \ln 2 = 7 \text{ k}_B T / \text{nm}^2 \Rightarrow 70 \text{ k}_B T \text{ to dissolve}$$

hydrophobic molecule $A = 10 \text{ nm}^2$

a hydrophobic molecule prevents water molecules from hydrogen bonding

Biological systems as minimizers

Protein folding: HP model



Biological systems as minimizers

Protein folding: HP model

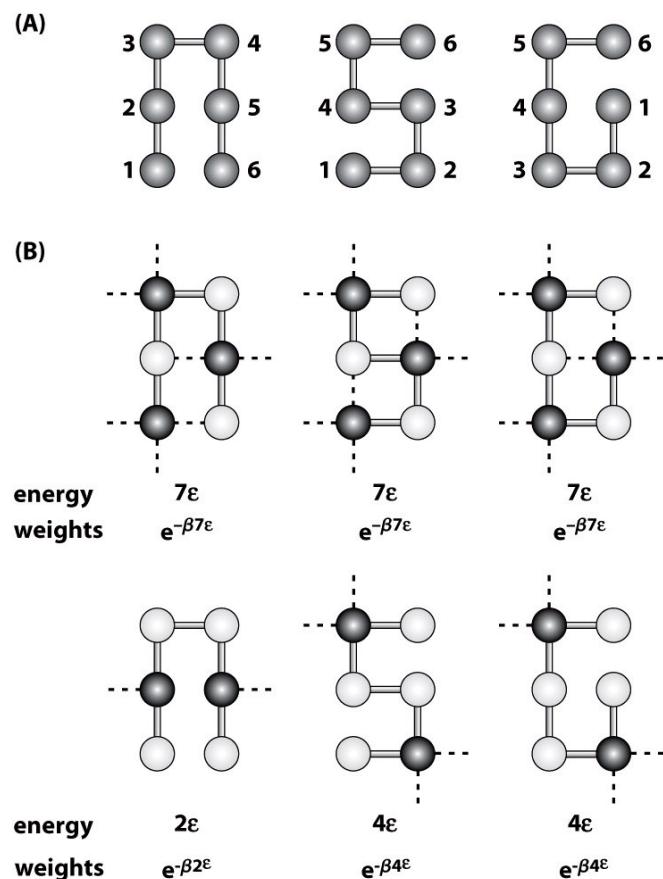
toy HP model:

6 monomers on a
3x2 lattice

sequences: $2^6 = 64$

sequence HPHPHP

sequence PHPPHP



states

number of unique structures: 3

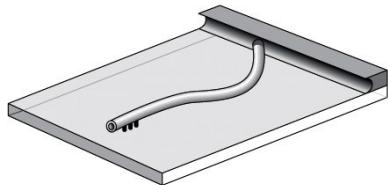
interaction model: assign **energy** penalty
for H-P or H-solvent interactions (---)

Given an HP sequence, which of the
possible structures minimizes the total
free energy?

Biological systems as minimizers

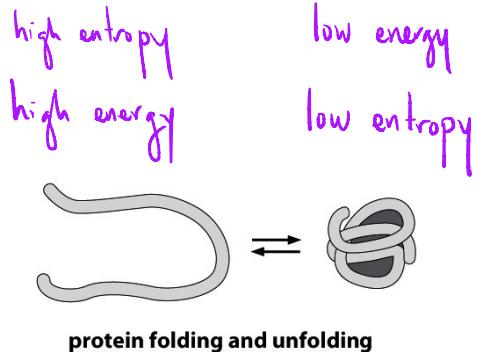
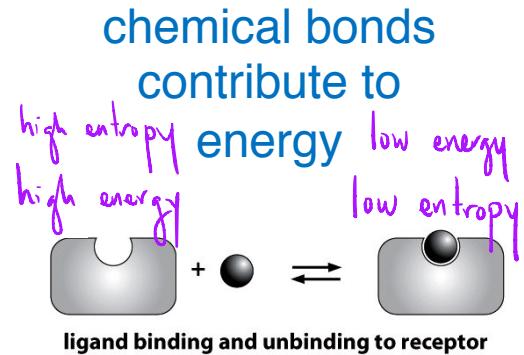
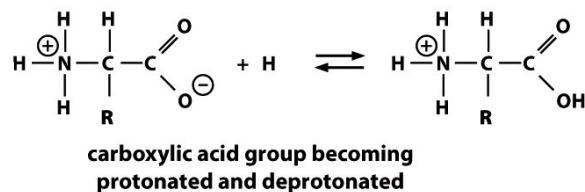
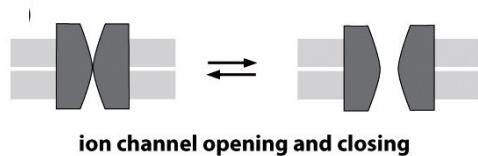
Proteins as minimizers

mechanical
energy + entropy



microtubule growing against a barrier

deformation
contributes to
energy



chemical energy + entropy

Lecture 3: Mechanical and chemical equilibrium

Many processes can be modeled using free energy minimization

- hydrophobic effect
- protein folding
- protein-ligand binding
- protein-DNA binding
- polymer (1D) or membrane (2D) bending

Model ingredients: energies associated with states, number of states

Lecture 4: Biological membrane elasticity

Goal: Calculate energy cost for bending membranes away from their equilibrium configurations

- The nature of biological membranes
- Springiness of membranes

PBOC Chapter 11.1, 11.2