Lecture 3: Mechanical and chemical equilibrium

Goal: Energy minimization models

* Biological systems as minimizers
« Entropy and hydrophobicity

PBOC Chapter 5.2, 5.5.1

Announcement: Video-recorded lecture next week.



Basic facts about cells

Previously: Prokaryotes and Eukaryotes
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Energy 1n the cell

Active vs passive processes
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Biological systems as minimizers

Passive processes can be modeled by minimizing free energy

What determines the shape of a red blood cell?

Given a particular oxygen partial pressure in the lungs, what is the
fractional binding occupancy of the hemoglobin within red blood cells?
How much force is required to package the DNA within the capsid of a
bacteriophage?

What fraction of Lac repressor molecules in an E. coli cell are bound to
DNA and what is the probability that one such molecule is bound
specifically?

Useful simplification: many chemical and mechanical systems
can be treated as if they are close to an equilibrium state.



Biological systems as minimizers
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Biological systems as minimizers

How to find minimum energy states? Probabilities?

1. ldentify the states.
2. Determine free energy of each state.



Biological systems as minimizers

polar residues

hydrophobic residues

unfolded polypeptide

Protein folding

free energy lowered by sequestering
hydrophobic residues

polar residues participate
in hydrogen bond network

folded conformation in
aqueous environment

Number of possible 3D
conformations is so large that a
random search would take a long

time:

100-monomer chain
6100 = 6.5 x 1077

One structure per femtosecond
2 x 10°° years
Age of universe ~100 years



Biological systems as minimizers

Cells as minimizers Lwé% sede ¢ am > pow

changes in area difference between two leaflets of bilayer
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states: membrane shapes satisfying geometric constraints (constant area, constant volume)
energy: mechanical (elastic) energy of deformation
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Biological systems as minimizers

Deformation enerqy: Macroscopic spring-mass system
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Biological systems as minimizers

How do we know? Force-extension mechanics

Tractor beam Optical tweezers
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Biological systems as minimizers

Biopolymer mechanics: optical potential well
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Biological systems as minimizers

Biopolymer mechanics: optical potential well
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Including entropy

Thermal fluctuations

the equilibrium state of a system is the one out of all states
available to the system that minimizes the free energy
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Including entropy

System microstates
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Including entropy

System microstates
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Including entropy

System microstates
DNA-binding protein

binding region
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1D - lattice model of DNA/protein complexes

protein binding to DNA



Including entropy

System microstates

lattice model of DNA/protein complexes

N boxes, Ny proteins (indistinguishable) N > I\(? . O Sifosfﬁf\(\ 3§u \Box.
~C-10  wman.

How many accessible states? W (N, NT)

Write down the entropy.

protein binding to DNA
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Including entropy

System microstates
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protein binding to DNA



Including entropy

Hydrophobicity: Toy model
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Including entropy

Hydrophobicity: Toy model

What is the fre\e energy cost?

a hydrophobic molecule prevents water molecules from hydrogen bonding



Including entropy

Hydrophobicity: Toy model
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Biological systems as minimizers

Protein folding: HP model

free energy lowered by sequestering )

hydrophobic residues ﬁ%’% mg%h%‘ T’i

AIa Val Met Leu
Phe
polar residues participate
in hydrogen bond network i %f_,j
folded conformation in Ser Thr Glu

aqueous environment

In Asp

coarse-grained model



Biological systems as minimizers

Protein folding: HP model

toy HP model: W s s 6 s
6 monomers on a 2 s 4 34 states
3x2 lattice ; g g s 3 number of unique structures: 3
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sequences: 2° = 64
. interaction model: assign energy penalty
sequence HPHPHP - .- .- for H-P or H-solvent interactions (---)
energy : 7e : 7e : 7e
weights o7 e e i Given an HP sequence, which of the
: ' possible structures minimizes the total

free energy?
sequence PHPPHP
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Biological systems as minimizers
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Lecture 3: Mechanical and chemical equilibrium

Many processes can be modeled using free
energy minimization

* hydrophobic effect

* protein folding

* protein-ligand binding

« protein-DNA binding

 polymer (1D) or membrane (2D) bending

Model ingredients: energies associated with
states, number of states



Lecture 4: Biological membrane elasticity

Goal: Calculate energy cost for bending membranes
away from their equilibrium configurations

» The nature of biological membranes
» Springiness of membranes

PBOC Chapter 11.1, 11.2



