Exemple de questions de programmation, PHYS-231, 2024 /25

January 22, 2025

Questions de programmation

1. La fonction f suivante prend en entrée deux tableaux numpy bidimensionnels a et b. Expliquez brievement ce qu’elle
retourne. Proposez une ligne de code qui effectue le méme calcul de maniére plus efficace.

def f(a, b):
K, L = a.shape
M, N = b.shape
assert L ==
r =[]
for k in range(K):
r.append([])
for m in range(M):
t=0
for 1 in range(L):
t += alk, 1] * b[m, 1]
r[k] . append(t)
return r

Solution: f calcule le produit matriciel ab”. Cela peut étre réalisé de maniere plus efficace en utilisant la ligne
de code suivante : np.dot(a, b.T).

2. L’extrait de code suivant implémente la mise a jour des parametres Wi et Wy d’un modele apres une itération de
descente de gradient.

W_2 -= learning_rate * gradient_W1(W_1, W_2)
W_1 -= learning_rate * gradient_W2(W_1, W_2)

En supposant que les deux fonctions gradient W1 et gradient W2 calculent correctement les gradients et que les
variables sont initialisées de maniére appropriée, ce code est-il correct ? Justifiez brievement.

Solution: Le code n’est pas correct, car W7 devrait étre mis a jour en utilisant ’ancienne valeur de W5, et non
sa valeur apres un pas de gradient.

3. Le code suivant calcule les k& = 2 vecteurs propres de X associés aux k plus grandes valeurs propres. Complétez la
derniere ligne.

import numpy as np

matrix = np.random.randn(10, 10)

eigenvalues, eigenvectors = np.linalg.eig(matrix)
sorted_indices = np.argsort(eigenvalues) [::-1]
eigenvalues_sorted = eigenvalues[sorted_indices]

eigenvectors_sorted = eigenvectors[:, sorted_indices]

k=2
eigenvectors_top_k = ...

Indication : [::-1] inverse 'ordre d’une liste ou d’un tableau.

Solution:

eigenvectors_top_k = eigenvectors_sorted[:, :k]

4. La fonction suivante calcule le déterminant d’une matrice de maniere récursive :

import numpy as np

def determinant_recursive(matrix):
if len(matrix) ==
return matrix[0] [0]
if len(matrix) ==
return matrix[0] [0] * matrix[1][1] - matrix[0] [1] * matrix[1] [0]
det = 0
for i in range(len(matrix)):
minor = matrix[1:, :i] + matrix[1:, i+1:]
det += ((-1) ** i) * matrix[0] [i] * determinant_recursive(minor)
return det

Une erreur est rencontrée lorsque vous utilisez la fonction ci-dessus. Quelle ligne pose probleme ? Expliquez brievement

pourquoi.

Solution: La ligne
minor = matrix[1:, :i] + matrix([1:, i+1:]

provoque une erreur. En effet, les matrices extraites n’ont pas les bonnes tailles pour étre additionnées.

Remarque additionnelle : 'idée ici est que les tableaux doivent étre concaténés, par exemple en utilisant np. concatend

Page 2

