
Exemple de questions de programmation, PHYS-231, 2024/25

January 22, 2025

Questions de programmation

1. La fonction f suivante prend en entrée deux tableaux numpy bidimensionnels a et b. Expliquez brièvement ce qu’elle
retourne. Proposez une ligne de code qui effectue le même calcul de manière plus efficace.

def f(a, b):

K, L = a.shape

M, N = b.shape

assert L == N

r = []

for k in range(K):

r.append([])

for m in range(M):

t = 0

for l in range(L):

t += a[k, l] * b[m, l]

r[k].append(t)

return r

Solution: f calcule le produit matriciel abT . Cela peut être réalisé de manière plus efficace en utilisant la ligne
de code suivante : np.dot(a, b.T).

2. L’extrait de code suivant implémente la mise à jour des paramètres W1 et W2 d’un modèle après une itération de
descente de gradient.

W_2 -= learning_rate * gradient_W1(W_1, W_2)

W_1 -= learning_rate * gradient_W2(W_1, W_2)

En supposant que les deux fonctions gradient W1 et gradient W2 calculent correctement les gradients et que les
variables sont initialisées de manière appropriée, ce code est-il correct ? Justifiez brièvement.

Solution: Le code n’est pas correct, car W1 devrait être mis à jour en utilisant l’ancienne valeur de W2, et non
sa valeur après un pas de gradient.

3. Le code suivant calcule les k = 2 vecteurs propres de X associés aux k plus grandes valeurs propres. Complétez la
dernière ligne.

import numpy as np

matrix = np.random.randn(10, 10)

eigenvalues, eigenvectors = np.linalg.eig(matrix)

sorted_indices = np.argsort(eigenvalues)[::-1]

eigenvalues_sorted = eigenvalues[sorted_indices]

eigenvectors_sorted = eigenvectors[:, sorted_indices]

k = 2

eigenvectors_top_k = ...

Indication : [::-1] inverse l’ordre d’une liste ou d’un tableau.

1

Solution:

eigenvectors_top_k = eigenvectors_sorted[:, :k]

4. La fonction suivante calcule le déterminant d’une matrice de manière récursive :

import numpy as np

def determinant_recursive(matrix):

if len(matrix) == 1:

return matrix[0][0]

if len(matrix) == 2:

return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0]

det = 0

for i in range(len(matrix)):

minor = matrix[1:, :i] + matrix[1:, i+1:]

det += ((-1) ** i) * matrix[0][i] * determinant_recursive(minor)

return det

Une erreur est rencontrée lorsque vous utilisez la fonction ci-dessus. Quelle ligne pose problème ? Expliquez brièvement
pourquoi.

Solution: La ligne

minor = matrix[1:, :i] + matrix[1:, i+1:]

provoque une erreur. En effet, les matrices extraites n’ont pas les bonnes tailles pour être additionnées.

Remarque additionnelle : l’idée ici est que les tableaux doivent être concaténés, par exemple en utilisant np.concatenate.

Page 2

