
Physique Numérique – Semaine 8

Swiss Plasma Center

Rappel de la semaine 7

❑ Section 3.3. Forme variationnelle. Equation de Poisson. Eléments finis.

❑ Assemblage de la matrice et du membre de droite.

❑ Section 3.2 Différences finies

❑ Méthodes itératives: Jacobi, Gauss-Seidel, SOR, …

Plan de la semaine 8

❑ Exercice 4. Elements finis. Forme var. coord. cylindriques r→ 0

❑ Section 3.2 Différences finies

❑ Méthodes itératives: Jacobi, Gauss-Seidel, SOR: coût de l’algorithme

❑ Electrostatique 2D 

❑ Chapitre 4 Intégration spatio-temporelle

❑ Section 4.1 Advection-Diffusion

❑ Différences finies explicite à 2 niveaux

❑ Limite de stabilité: critère CFL
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #8: Notes de cours

❑ Section 3.2 Différences Finies

❑ Section 4.1 Advection-Diffusion

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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3.2 Différences finies – Eq. De Poisson

◼ Différences finies, cf. Annexe (A.7)

◼ Eq. de Laplace:                

◼ Le potentiel en chaque point de maillage est la moyenne

des valeurs du potentiel aux plus proches voisins

( ) = |,02 xx




◼ Cas 3D, cas hx=hy=hz : 

( ) ( ) = xxVx


,❑ Conditions aux limites:                

◼ Cas du vide:                
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◼ Exemple: 2D, électrodes rectangulaires
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Méthodes itératives – 1: Jacobi

◼ Initialiser les valeurs aux points intérieurs de maillage ijk

à des valeurs arbitraires et les valeurs aux points sur les 

bords selon les conditions aux limites.

◼ Calculer le résidu r (*)

◼ Boucle itération numéro l, (while r>p)

❑ Boucle sur les points de maillage intérieurs (i,j,k)

❑ Boucle sur les points de maillage intérieurs (I,j,k)

◼ Calculer le résidu r (*)

(*) Par exemple, ( )1,,,1,,,1,,
6
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Methodes itératives – 2: Gauss-Seidel

◼ Initialiser les valeurs aux points intérieurs de maillage ijk

à des valeurs arbitraires et les valeurs aux points sur les 

bords selon les conditions aux limites.

◼ Calculer le résidu r (*)

◼ Boucle itération numéro l, (while r>p)

❑ Boucle sur les points de maillage intérieurs (i,j,k)

❑ Boucle sur les points de maillage intérieurs (I,j,k)

◼ Calculer le résidu r (*)

(*) Par exemple, ( )1,,,1,,,1,,
6
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◼ Initialiser toutes les valeurs aux points de maillage,  ijk

◼ Calculer le résidu r

◼ Boucle while r>p

❑ Boucle sur les points de maillage (i,j,k)

❑ Boucle sur les points de maillage (I,j,k)

◼ Calculer le résidu r

→ a=1 : Gauss-Seidel; 1<a<2 : surrelaxation

→ Converge si 0<a<2        testons!

Accélération des méthodes itératives -

Gauss-Seidel avec Surrelaxation (SOR)
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◼ Initialiser toutes les valeurs aux points de maillage,  ijk

◼ Calculer le résidu r

◼ Boucle while r>p

❑ Boucle sur les points de maillage (i,j,k)

❑ Boucle sur les points de maillage (I,j,k)

◼ Calculer le résidu r

→ a=1 : Jacobi; 1<a : surrelaxation: DIVERGE!!!!

→ testons! La preuve formelle cf. 4.1.3 pour le cas 1D spatial.

Accélération des méthodes itératives -

Jacobi avec Surrelaxation (SOR)
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Optimisation de SOR - 1

◼ Niter dépend de la taille du maillage N et de a

2D
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Optimisation de SOR - 2

◼ La valeur optimale de a dépend de N

2D
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Optimisation de SOR - 3

◼ Le nombre d’itérations requises pour une précision donnée augmente 
linéairement avec la taille du maillage (N) lorsqu’on choisit chaque fois le 
paramètre a à l’optimum

◼ Alors que sans SOR, Niterations augmente quadratiquement (N2)

◼ SOR diminue le « coût » de l’algorithme d’un ordre de grandeur! Chaque 
itération coûte ~N2 opérations, donc le coût total N4 (sans SOR) → N3 (avec 
SOR a optimal)

2D NN 

Swiss Plasma Center 11



Champ électrique – Effet de pointe

L’intensité du champ E est très grande aux angles de la surface…

… en fait, le champ E est singulier aux angles de la surface
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Champ E – effet de pointe numérique
Laplacien 2-D

Problème des différences finies sur un maillage cartésien pour des 

surfaces non alignées avec les lignes de coordonnées
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Champ électrique – Loi de Gauss

◼ Simulations faites en cours et démos au tableau

◼ Quizz

❑ Que vaut              sur            ?

❑ Que vaut              sur            ?

❑ Où sont les charges              ?

❑ Le champ     est nul en dehors de la boîte. Donc la somme des 

charges sur les électrodes est nulle. Vrai ou faux?

❑ Si                  , alors                   . Vrai ou faux?

❑ Si on déplace une électrode, par exemple (a),  en gardant                

constants, les charges sur les électrodes changent-elles? Et 

comment? (1):  Seulement      ?  (2)                 avec                                          

❑ …

2 
E



)(x



E


ba VV −= ba QQ −=

ba VV et  

aQ ba QQ et  const=+ ba QQ
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Advection: 

◼ Transport (de matière, ou de chaleur, ou…)

◼ Illustration: particules de fumée emportées par le vent

◼ Décrite par un champ de vitesse v (vitesse d’advection)

◼ Flux (#particules par unité de surface et par unité de temps)

4.1 Advection - Diffusion

Diffusion: 

◼ Transport (de matière, ou de chaleur, ou…)

◼ Illustration: particules de fumée emportées même en 

l’absence de vent

◼ Description microscopique: mouvement Brownien

◼ Description macroscopique: coefficient de diffusion D

◼ Flux

Ԧ𝑗 = 𝑛 Ԧ𝑣

Ԧ𝑗 = −𝐷∇𝑛
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Conservation de la quantité transportée: 

◼ Décrite par une équation de continuité

Equation d’advection-diffusion

Equation d’Advection-Diffusion: 

𝜕n

𝜕t
+ ∇ ⋅ Ԧj = 0

𝜕n

𝜕t
+ ∇ ⋅ 𝑛 Ԧ𝑣 − 𝐷∇𝑛
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Advection
◼ Transport d’une quantité scalaire             , p.ex. la densité

◼ Quantié conservée au cours du mouvement → éq. de continuité   

◼ Avec le flux                , dans un écoulement. (p.ex.   vitesse du vent)     

◼ Dans le cas incompressible, cela donne:

◼ Dans le cas incompressible 1D, v=const:

◼ Avec la condition initiale 

◼ La solution exacte est 

◼ … une simple translation de la condition initiale, à la vitesse v

),( txf
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f

donné )()0,( 0 xfxf =
 )(),( 0 vtxftxf −=
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Advection - Schéma explicite à 2 niveaux

◼ Discrétisation {xi, tj}

◼ Différences finies
t
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
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◼ Paramètre CFL (Courant, Friedricks, Lewy)
x

tv




=
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◼ Paramètre CFL (Courant, Friedrichs, Lewy)

◼ On verra que ce schéma est instable si >1 ou si <0

◼ On verra aussi que ce schéma, lorsqu’il est stable, 

introduit de la diffusion non-physique («diffusion 

numérique»)

Advection – Schéma explicite 2 niveaux
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Testons le schéma explicite 2 niveaux pour 

l’advection!

◼ (Démos)

◼ (Testons empiriquement la limite de stabilité)
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◼ Différences finies, explicite 2 niveaux, u=+1
❑ Forward (t)

❑ Backward (x)

4.1.1 Advection

=0.16
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◼ Différences finies, explicite 2 niveaux, u=-1
❑ Forward (t)

❑ Backward (x)

Advection 
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◼ Différences finies, explicite 2 niveaux, u=-1
❑ Forward (t)

❑ Forward (x) (UPWIND)

Advection 
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◼ Différences finies, explicite 2 niveaux, u=1
❑ Forward (t)

❑ Forward (x) (UPWIND) CFL=1.2 nx=64

Advection 

◼ Le schéma est instable pour |CFL|>1.0
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◼ Différences finies, explicite 2 niveaux, u=1
❑ Forward (t)

❑ Forward (x) (UPWIND) CFL=1.2 nx=128

Advection 

◼ Le schéma est instable pour |CFL|>1.0
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4.1.1- 4.1.2

Advection et Diffusion

Différences finies Schéma explicite 2 niveaux

(CFL)

Flux de matière:

Conservation de la masse (Eq. Continuité):

Cas 1D, incompressible, D=const, v=const :

t

j

j+1

i+1i-1 i

x

Ԧ𝑗 = 𝑓 Ԧ𝑣 − D ∇𝑓
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◼ Différences finies, explicite 2 niveaux. Diffusion seule

Diffusion. Instabilité

Croissance exponentielle dans le temps d’une 

perturbation de courte longueur d’onde ( 2 points de 

maillage par longueur d’onde)
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Advection et diffusion. Différences finies. 

Schéma explicite 2 niveaux. Critères de stabilité 

numérique.

Courant-Friedrichs-Lewy

La démonstration sera présentée ultérieurement. Voir Notes de Cours 4.1.3

Swiss Plasma Center 28



◼ Evolution de la variance: (a) solution analytique, (1) solution 
numérique avec schéma explicite à 2 niveaux et advection 
upwind, (2) advection centrée

◼ Le surcroît de diffusion est un artefact dû à la diffusion 
numérique créée par le schéma de l’advection upwind

Advection-Diffusion. Diffusion 

numérique
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4.1.2 Advection et Diffusion - résumé

Schéma différences finies explicite 2 niveaux

◼ Il peut y avoir instabilité numérique!

◼ Le schéma explicite upwind pour l’advection stabilise, 
mais introduit de la diffusion numérique

◼ Conditions de stabilité

Paramètre CFL :
Courant-Friedrichs-Lewy
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Euler ou Lagrange? Radar ou mouchard?

Lagrangien, Langevin: Pas 

de diffusion numérique

Pas de limite de stabilité 

CFL! (t arbitraire)

Comparaison entre schéma numérique «Eulérien» 

et schéma numérique «Lagrangien» ou «particle»

Eulerien, différences finies 

explicite 2 niveaux

Limite de stabilité

Diffusion numérique
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Langevin: pas de 

diffusion numérique

Pas de limite de stabilité 

CFL! (t arbitraire)
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