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Physique Numérique — Semaine 8

Rappel de lasemaine 7

O Section 3.3. Forme variationnelle. Equation de Poisson. Eléments finis.
O Assemblage de la matrice et du membre de droite.

[ Section 3.2 Différences finies
O Méthodes itératives: Jacobi, Gauss-Seidel, SOR, ...

Plan de la semaine 8

O Exercice 4. Elements finis. Forme var. coord. cylindriques r-> 0
O Section 3.2 Différences finies

0 Meéthodes itératives: Jacobi, Gauss-Seidel, SOR: codt de I'algorithme
U Electrostatique 2D

O Chapitre 4 Intégration spatio-temporelle
0 Section 4.1 Advection-Diffusion

O Differences finies explicite a 2 niveaux

O Limite de stabilité: critere CFL
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Documentation

Lecture pour la Semaine #8: Notes de cours
o Section 3.2 Différences Finies
o Section 4.1 Advection-Diffusion

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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3.2 Différences finies — Eq. De Poisson

Cas du vide:

Eq. de Laplace: V2¢(Y) =0,vX e Q|
o Conditions aux limites: ¢()‘(’) =V ()?), VX e 0Q)

Différences finies, cf. Annexe (A.7)
0 1 | |
or? ;. /2 (i-1.4k = 20ijk + Cit1k)

Cas 3D, cas hx—hy—hz:
Di ik — G (Pic1jk + itk + Cii—1k + Cijt1k + Cijk—1+ Qi jkt1)

Le potentiel en chague point de maillage est la moyenne
des valeurs du potentiel aux plus proches voisins
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Exemple:
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Méthodes itératives — 1: Jacobi

Initialiser les valeurs aux points intérieurs de maillage ¢
a des valeurs arbitraires et les valeurs aux points sur les
bords selon les conditions aux limites.

Calculer le résidu r (*)

Boucle iteration numeéro [, (while r>p)
o Boucle sur les points de maillage intérieurs (i,},k)

1
(1+1) _ (1) (1) (1) (1) (1) (1)
D = g(¢i+1,j,k R ol A S A o i,j,k—l)

o Boucle sur les points de maillage intérieurs (1,j,k)
Calculer le residu r (*)

1
Pix _g(¢ii1,j,k + & ik +¢i,j,k+1j

(*) Par exemple,  — max; ; ,
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Methodes itératives — 2: Gauss-Seidel

Initialiser les valeurs aux points intérieurs de maillage ¢
a des valeurs arbitraires et les valeurs aux points sur les
bords selon les conditions aux limites.

Calculer le résidu r (*)

Boucle iteration numeéro [, (while r>p)
o Boucle sur les points de maillage intérieurs (i,},k)

1
(1) () (1+1) ) (1+1) () (1+1)
D = g( ik TP ikt Dk TP ik TPkt i,j,k—l)

o Boucle sur les points de maillage intérieurs (1,j,k)
Calculer le residu r (*)

1
Di _6(¢iﬂ,j,k + @ a1 +¢i,j,k+1i

(*) Par exemple,  — max; ; .
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Accélération des méthodes itératives -

Gauss-Seidel avec Surrelaxation (SOR)
Initialiser toutes les valeurs aux points de maillage, ¢,
Calculer le résidu r

Boucle while r>p
o Boucle sur les points de maillage (i,},k)

. 1
™ _ (1) (1+1) (1) (1+1) (1) (1+1)
Dk = E( ik TP ik T Dk Th ik TPkt i,j,k—l)

(I+1) _ 4(1) (%) (1)

i =0 ta (¢i,j,k _¢i,j,k)

o Boucle sur les points de maillage (1,},k)
Calculer le residu r

a=1 . Gauss-Seidel; 1<a<?2 : surrelaxation
Converge si O<a<2 testons!
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Accélération des méthodes itératives -

Jacobi avec Surrelaxation (SOR)
Initialiser toutes les valeurs aux points de maillage, ¢,
Calculer le residu r

Boucle while r>p
o Boucle sur les points de maillage (i,},k)

. 1
™ _ (1) (1) (1) (1) (1) (1)
Dk = g( ik TP ik T Dk TP ik TPt i,j,k—l)

(I+1) _ 4(1) (%) (1)

B _¢i,j,k+a(¢i,j,k_¢i,j,k)

o Boucle sur les points de maillage (1,},k)
Calculer le residu r

a=1 : Jacobi; 1<« : surrelaxation: DIVERGE!!!!
testons! La preuve formelle cf. 4.1.3 pour le cas 1D spatial.
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1500

No. iterations

—
o
o
o

()]
o
o

Optimisation de SOR -1

Laplace GSSOR precision=0.001

N=160

2D

Niter dépend de la taille du maillage N et de «

B Swiss Plasma Center



1)

PF

2

Optimisation de SOR - 2

Laplace GSSOR precision=0.001

1.97

optimum o
—_— [N N —_—
o)) ~ o0

N
%))

-
O-h

001 002 003 004 0.05 0.06

1/N

La valeur optimale de o dépend de N
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Optimisation de SOR - 3 2D NxN

Laplace GSSOR precision=0.001

LAPLACE GS prec=1e-3 a=1.0 200
6000 ‘ ‘
3
5000 € 150l
/,/ g -7 )
4000/ 5 L
6 /// g 7 ’
_% 3000| 8100/
Ju «”
2000} 2 o7
i S 50 o
1000 - z A
/x/ bl ’
0% ‘
0 >, 0 1 0 50 100 150 200
N x10 N

Le nombre d'itérations requises pour une précision donnée augmente
lineairement avec la taille du maillage (N) /orsqu’on choisit chaque fois le
parametre « a l'optimum

Alors que sans SOR, Niterations augmente quadratiquement (N?)

SOR diminue le « colt » de I'algorithme d’'un ordre de grandeur! Chaque
itération colte ~N? opérations, donc le co(t total N* (sans SOR) = N3 (avec
SOR a optimal)
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Champ électrique — Effet de pointe

Contours of |[E| GS h=0.0025 ¢=1.8 nit=113
0.1 ‘ . ;

0.09}
0.08f
0.07}
0.06]

E 005

=~

0.04H

0.031

0.021

0.011

L'intensité du champ E est tres grande aux angles de la surface...
... en fait, le champ E est singulier aux angles de la surface
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Champ E - effet de pointe numérique

Laplacien 2-D
Probleme des différences finies sur un maillage cartésien pour des
surfaces non alignées avec les lignes de coordonnées

Contqlurs of |[E| GSSOR h=0.00625 a=1.9 nit=147
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Champ électrique — Loi de Gauss

Simulations faites en cours et démos au tableau
Quizz

Q

a
a
a

U

Que vaut V3¢ sur 0 2
Que vaut E sur 0C2 ?

Ou sont les chargesp()_() ?

Le champ E est nul en dehors de la boite. Donc la somme des
charges sur les électrodes est nulle. Vrai ou faux?

Si V, =-V,, alors Q, =—Q, . Vrai ou faux?

Si on déeplace une électrode, par exemple (a), en gardantVa etVb
constants, les charges sur les électrodes changent-elles? Et

comment? (1): SeulementQ_? (2)Q, et Q, avec Q, +Q, =const
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4.1 Advection - Diffusion

Advection:

Transport (de matiére, ou de chaleur, ou...)

lllustration: particules de fumée emportées par le vent
Décrite par un champ de vitesse v (vitesse d’advection)
Flux (#particules par unité de surface et par unité de temps)

_ | j=nv
Diffusion:
Transport (de matiere, ou de chaleur, ou...)

lllustration: particules de fumée emportées méme en
I'absence de vent

Description microscopigue: mouvement Brownien
Description macroscopique: coefficient de diffusion D

Flux j’ — —DVn
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Equation d’advection-diffusion

Conservation de la quantité transportée:
Décrite par une équation de continuité

on +V-7=0
ot =

Equation d’Advection-Diffusion:

arl+v (nv — DVn)
It nv n

B Swiss Plasma Center
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Advection

Transport d’'une quantité scalaire f (X,t), p.ex. la densité
Quantié conservée au cours du mouvement - €q. de continuité

of 2
. ot )
Avec le flux J — f vV , dans un écoulement. (p.exV vitesse du vent)
Dans le cas incompressible, cela donne: of _
NEOMPIEsS] CL@W-V)f =0
Dans le cas incompressible 1D, v=const: ot
of of
—+V—=
ot  oX

Avec la condition initiale  f (x,0) = f,(x) donné
La solution exacte est  f (x,t) = f,(X—Vvt)
... une simple translation de la condition initiale, a la vitesse v
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Advection - Schéma explicite a 2 niveaux

Discrétisation {x;, t;} {
Différences finies +1 ¢
ot At j-1
of fi,j B fi_l,j . I-1 | I+1
A= - backward”
OX AX

of of VAL \
raaral I D (Dl B

Parametre CFL (Courant, Friedricks, Imﬂ = VA—At
X
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Advection — Schéma explicite 2 niveaux

fijrn = Jfij—0(fij — fi-1j)

Parametre CFL (Courant, Friedrichs, Lewy)

At
8 =1v——m
| v Ax

On verra que ce schéma est instable si B>1 ou si B<0

On verra aussi que ce schéma, lorsqu’il est stable,
introduit de la diffusion non-physique («diffusion
numerique»)
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Testons le schéma explicite 2 niveaux pour
Padvection!

(Démos)
(Testons empiriguement la limite de stabilité)

m Swiss Plasma Center 20



4.1.1 Advection

Différences finies, explicite 2 niveaux, u=+1
o Forward (t)
o Backward (x)

B Swiss Plasma Center
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Advection

Différences finies, explicite 2 niveaux

o Forward (t)
o Backward (x)

Adv-Diff FD expl 0 =0 p=-0.16

t=1

1 s |

7/ || t=0

x Iml

B Swiss Plasma Center
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Advection

Différences finies, explicite 2 niveaux, u=-1
o Forward (t)

. Forward (x) (UPWIND) Jfij+1 = fz';—ﬁ (fz'.j‘_g) st 7 >0
figt1 = Ity — fig) st 3 <0

Adv-Diff FD expl upwind a=0 p=-0.16

1F t=0 g

o 0.6}

n/n
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Advection

Différences finies, explicite 2 niveaux, u=1
o Forward (t)

o Forward (x) (UPWIND) nx=64

Adv-Diff FD expl 1 a=0 B=1.2 t=4.35

-4 ‘ ‘
-2 -1 0 1 2
X [m]

Le schéma est instable pour |CFL|>1.0
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EPFL

Advection

= Différences finies, explicite 2 niveaux, u=1
o Forward (t)

4 Forward (x) (UPWIND)

5 Advection FD explicite 3=1.2

t=4.2 t=4.4

o) r 0 1
x [m]

= Le schéma est instable pour |CFL|>1.0

B Swiss Plasma Center
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Advectlon et Diffusion
4.1.1-4.1.2 /

/, \\

Flux de matiére: ]_) f I}i\y/—\ D Yf : f

Conservation de la masse (Eg. Continuité): ) +V - j — ()
ot
Cas 1D, incompressible, D=const, v=const :
9, 9, oA
ot ox ox

Différences finies Schema explicite 2 niveaux

fagrio= iy 8= fi-iy) + o (fmip— 2fit L)
It

o 0 = ,Uﬂ (CFL) _ DAt
—0—0 Ax “T A

-1 i 1+

J+1
J

yanY
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Diffusion. Instabilité

Différences finies, explicite 2 niveaux. Diffusion seule

-2

Adv-Diff FD expl 1 0=0.525 p=01=1.5

-2

-

X [Em]

Adv-Diff FD expl 1 «=0.525 =0

N

_ 05
-
= ol AR Iq‘
-05
_'l L
1% 0.5 1 15
5 |

Croissance exponentielle dans le temps d’'une
perturbation de courte longueur d’'onde ( 2 points de
maillage par longueur d’'onde)
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Advection et diffusion. Différences finies.

Schéma explicite 2 niveaux. Critéres de stabilité
numérique.

At
Ax

-

A
A
ek
&0
|

v CFL

Courant-Friedrichs-Lewy

La démonstration sera présentee ultérieurement. Voir Notes de Cours 4.1.3
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Advection-Diffusion. Diffusion

numérique

0.2

Adv-Diff FD expl 1&2 «=0.256 p=0.32

0 0.1 0.2 0.3 0.4 0.5
t[s]

Evolution de la variance: (a) solution analytique, (1) solution
numerique avec schéma explicite a 2 niveaux et advection
upwind, (2) advection centree

Le surcroit de diffusion est un artefact du a la diffusion
numeérique creée par le schéma de I'advection upwind

B Swiss Plasma Center

29



1)
U
1
r

Schéma différences finies explicite 2 niveaux

4.1.2 Advection et Diffusion - résumé

on on 9%n
— +v— — D— = 0]. 4.19
or " or T U o2 (4.19)
. At DAt
Parameétre CFL: [ = VA ==
Courant-Friedrichs-Lewy L L
nijr1 = N — By —ni_1,) +a(ni_1; — 21 +nig1 )

Il peut y avoir instabilité numérique!

Le schéma explicite upwind pour I’advection stabilise,
mais introduit de la diffusion numérique

Conditions de stabilité

1
‘Ogﬁgl\ 0§OK§§
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Euler ou Lagrange? Radar ou mouchard?

Comparaison entre schéma numérique «Eulérien»
et schéma numérique «Lagrangien» ou «particle»

Adv-Diff FD expl 1 «=0.102 3=0.16 v=1 D=0.1 Monte Carlo - Langevin N=100000 v=1 D=0.1

FD 2-level explicit
«=.1p=.16

et
L
A
4—'*’*'%*
_.+~+"MC Langevin
N=100000

t[s] X ) ) /- ) x [m]

Lagrangien, Langevin: Pas
de diffusion numeérique
Pas de limite de stabilité
CFL! (At arbitraire)

Eulerien, différences finies
explicite 2 niveaux

Limite de stabilité
Diffusion numérique
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Adv-Diff FD expl 1 «=0.102 p=0.16 v=1 D=0.1 Monte Carlo - Langevin N=100000 v=1 D=0.1

x [m]

25
a
E———
15 ]
5 e Langevin: pas de
i "1 diffusion numérique
~_TEEET 1 Pas de limite de stabilité
CFL! (At arbitraire)
00 1 2 3 4 S5 6
t[s]
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