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Physique Numérique — Semaine 7

Rappel de la semaine 6

O Schéma adaptatif. Gravitation. Ex.3. Lagrange.

Plan de la semaine 7

O Chapitre 3. Probleme a valeurs aux bords.

O Section 3.3. Forme variationnelle. Equation de Poisson. Elements finis.
L Assemblage de la matrice et du membre de droite.

O Exercice 4. Electrostatique dans la matiere. Géomeétrie cylindrique.

[ Section 3.2 Différences finies

L Méthodes itératives: Jacobi, Gauss-Seidel, SOR, ...
0 Exemples en 2D
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Documentation

Lecture pour la Semaine #7 (8): Notes de
cours

o Section 3.3 Elements Finis

o (Section 3.2 Différences Finies)

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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3.3 Eléments finis

Ch. 3 Problémes a valeurs aux bords

lllustration sur un probleme électrostatique, 1D, géométrie

cartésienne

Exercice 4. electrostatique avec diélectrique, 1D, géométrie

cylindrigue
1000
La présentation sera =00l
faite au tableau noir, _
pour le cas de E
. : > 0
I’électrostatique =
avec charges libres, e
sans diélectrique -500¢
-1000
0
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Elements finis - Poisson
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Forme variationnelle
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Elements finis — intégration par parties
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Elements finis linéaires 1D

A\ J

Figure 3.4 —Fonctions de base A, (x) et représentation (approximation)

d’une fonction ¢@(x) par ces éléments finis.
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Elements finis — fonctions de base
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Conditions aux limites
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Questions algorithmiques

o |l est fortement recommandé de proceder a 'assemblage de
la matrice et du membre de droite intervalle par intervalle

o dA; dA; A dA;
A = H—A, L dr
! /a. dr dzx - dz
T '
b, = / LA, dx P A, dz .
Jz, €0
o Boucle sur les intervalles k
/ (k) (k+1) \
A = AL—I— (k) . ]./h-,!,; —I/hk
(k+1) —1/hy 1/hs
b, = bp+ hy Pp(mk}‘l‘(l—P)p(%kf”Q})
QED Ztg

I Thi1/2
bre1r = bpyr + g (pp( k1) + (1 —P)p(—”

o~ -

=0 2;[]

)
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Elements finis 1D
Cas de I'équation de Poisson 1-D

(:12(}5 I
cla £0
Elements finis - Poisson
1000 , |
500+

plsy [V/m?’]
o
< __
>

-500¢

-1000 ' ' ' '
0 002 004 006 008 0.1
x [m]
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Elements finis linéaires 1D

5)( 10‘3 Elements finis - Poisson
n=100 pack
E O
_e_
5 . . . |
0 0.02 0.04 0.06 0.08 0.1

x[m]

La méthode des éléments finis permet naturellement
d'utiliser des maillages non-equidistants ...
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Elements finis linéaires 1D

Elements finis - Poisson

n=15 pack n=100 pack

= 0.5¢ n=15 uniforme |}

.
~ =

0 0.02 0.04 0.06 0.08 0.1
x [m]

... Ce qui améliore la convergence numerique
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FAQ — Elements finis - 1

L’équation différentielle de Poisson est du 2¢ ordre (elle fait
intervenir d?¢/dx?).

Or, on a trouvé une solution numérique qui est une fonction
linéaire par morceau, dont la 1® derivée est discontinue aux
points de maillage, et donc dont la 2° dérivée est nulle presque
partout, sauf aux points de maillage ou elle est infinie !!!

Comment peut-on pretendre avoir résolu I'équation
differentielle?

Pourquoi prendre des fonctions de base linéaires par morceau?
¢ =~ b =2;d; Ajx

dop/dx = 2 ;¢p; dA;/dx

d?pp/dx? =% ¢; d?A;/dx? 22772
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FAQ — Elements finis - 2

En fait, on peut montrer que, malgre ce probleme, la
solution numeérique tend vers la solution exacte dans le
sens gue la norme de la difféerence entre les deux tend
vers zero lorsque le maillage devient de plus en plus fin:

xb
im | (¢n(x) = () dx = 0

Choisir des fonctions de bases autres que linéaires par
morceau est possible. De fagcon générale, plus 'ordre du
polyndbme par morceau est élevé, plus I'ordre de
convergence sera éleve.

Dans lI'exercice 4, vous verifierez empiriquement l'ordre
de convergence de la solution numeérique.
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FAQ-Elements finis - 3

o Comment vérifier que I'équation différentielle est bien
satisfaite?
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Ex. 4. Electrostatique avec charges libres dans le vide
et charges de polarisation dans la matiére diélectrique,

dans un cylindre

— 3
E
=
g 2 <
]
=
1
=R
0
0.4 0.5

Densité de charges libres py,(r)/€o et constante
diélectrique €,.(r).
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Electrostatique dans la matiére, inhomogene
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Electrostatique dans le vide.
Forme variationnelle: un petit quiz...

Eq. de Laplace: V2¢(Y) =0,vX e Q|
o Conditions aux limites: ¢()‘(’) =V ()?), VX e 0Q)

dzc,l')
Cas 1D, cartésien: 73 = 0,Vx€lab[¢(a) =V, dp(b) =V,

Forme variationnelle apres intégration par parties:

J”dn de
dx dx

dx =0,vn Soitg=d—77

a dx

b d d
@f g%dx=0,‘v’g @d—f=o,\1x 27272727277
a
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3.2 Différences finies — Eq. De Poisson

Cas du vide:

Eq. de Laplace: V2¢(Y) =0,vX e Q|
o Conditions aux limites: ¢()‘(’) =V ()?), VX e 0Q)

Différences finies, cf. Annexe (A.7)
0 1 | |
or? ;. /2 (i-1.4k = 20ijk + Cit1k)

Cas 3D, cas hx—hy—hz:
Di ik — G (Pic1jk + itk + Cii—1k + Cijt1k + Cijk—1+ Qi jkt1)

Le potentiel en chague point de maillage est la moyenne
des valeurs du potentiel aux plus proches voisins
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Méthodes itératives — 1: Jacobi

Initialiser les valeurs aux points intérieurs de maillage ¢
a des valeurs arbitraires et les valeurs aux points sur les
bords selon les conditions aux limites.

Calculer le résidu r (*)

Boucle iteration numeéro [, (while r>p)
o Boucle sur les points de maillage intérieurs (i,},k)

1
(1+1) _ (1) (1) (1) (1) (1) (1)
D = g(¢i+1,j,k R ol A S A o i,j,k—l)

o Boucle sur les points de maillage intérieurs (1,j,k)
Calculer le residu r (*)

1
Pix _g(¢ii1,j,k + & ik +¢i,j,k+1j

(*) Par exemple,  — max; ; ,
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Methodes itératives — 2: Gauss-Seidel

Initialiser les valeurs aux points intérieurs de maillage ¢
a des valeurs arbitraires et les valeurs aux points sur les
bords selon les conditions aux limites.

Calculer le résidu r (*)

Boucle iteration numeéro [, (while r>p)
o Boucle sur les points de maillage intérieurs (i,},k)

1
(1) () (1+1) ) (1+1) () (1+1)
D = g( ik TP ikt Dk TP ik TPkt i,j,k—l)

o Boucle sur les points de maillage intérieurs (1,j,k)
Calculer le residu r (*)

1
Di _6(¢iﬂ,j,k + @ a1 +¢i,j,k+1i

(*) Par exemple,  — max; ; .
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Accélération des méthodes itératives -

Gauss-Seidel avec Surrelaxation (SOR)
Initialiser toutes les valeurs aux points de maillage, ¢,
Calculer le résidu r

Boucle while r>p
o Boucle sur les points de maillage (i,},k)

. 1
™ _ (1) (1+1) (1) (1+1) (1) (1+1)
Dk = E( ik TP ik T Dk Th ik TPkt i,j,k—l)

(I+1) _ 4(1) (%) (1)

i =0 ta (¢i,j,k _¢i,j,k)

o Boucle sur les points de maillage (1,},k)
Calculer le residu r

a=1 . Gauss-Seidel; 1<a<?2 : surrelaxation
Converge si O<a<2 testons!
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Accélération des méthodes itératives -

Jacobi avec Surrelaxation (SOR)
Initialiser toutes les valeurs aux points de maillage, ¢,
Calculer le residu r

Boucle while r>p
o Boucle sur les points de maillage (i,},k)

. 1
™ _ (1) (1) (1) (1) (1) (1)
Dk = g( ik TP ik T Dk TP ik TPt i,j,k—l)

(I+1) _ 4(1) (%) (1)

B _¢i,j,k+a(¢i,j,k_¢i,j,k)

o Boucle sur les points de maillage (1,},k)
Calculer le residu r

a=1 : Jacobi; 1<« : surrelaxation: DIVERGE!!!!
testons! La preuve formelle cf. 4.1.3 pour le cas 1D spatial.
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Exemple:
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2D,

1
0.9
0.8

0.71
0.67

—

E 05}

)

0.4}

0.3
0.2
0.1

électrodes rectangulaires

Contours of § GSSOR h=0.0125 ¢=1.9 nit=252

- .
LUJM

U

0

0 0.2 0.4 0.6 0.8

—_—

x [m]
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Optimisation de SOR -1

Laplace GSSOR precision=0.001 2 D
1500 . . . .
N=160
@ 1000}
e’
©
2
o
Z 500+

Niter dépend de la taille du maillage N et de «
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Optimisation de SOR - 2

Laplace GSSOR precision=0.001

1.97

optimum o
—_— [N N —_—
o)) ~ o0

N
%))

-
O-h

001 002 003 004 0.05 0.06

1/N

La valeur optimale de o dépend de N
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Optimisation de SOR - 3 2D NxN

Laplace GSSOR precision=0.001

LAPLACE GS prec=1e-3 a=1.0 200
6000 ‘ ‘
3
5000 € 150l
/,/ g -7 )
4000/ 5 L
6 /// g 7 ’
_% 3000| 8100/
Ju «”
2000} 2 o7
i S 50 o
1000 - z A
/x/ bl ’
0% ‘
0 >, 0 1 0 50 100 150 200
N x10 N

Le nombre d'itérations requises pour une précision donnée augmente
lineairement avec la taille du maillage (N) /orsqu’on choisit chaque fois le
parametre « a l'optimum

Alors que sans SOR, Niterations augmente quadratiquement (N?)

SOR diminue le « colt » de I'algorithme d’'un ordre de grandeur! Chaque
itération colte ~N? opérations, donc le co(t total N* (sans SOR) = N3 (avec
SOR a optimal)
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Champ électrique — Effet de pointe

Contours of |[E| GS h=0.0025 ¢=1.8 nit=113
0.1 ‘ . ;

0.09}
0.08f
0.07}
0.06]

E 005

=~

0.04H

0.031

0.021

0.011

L'intensité du champ E est tres grande aux angles de la surface...
... en fait, le champ E est singulier aux angles de la surface
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Champ E - effet de pointe numérique

Laplacien 2-D
Probleme des différences finies sur un maillage cartésien pour des
surfaces non alignées avec les lignes de coordonnées

Contqlurs of |[E| GSSOR h=0.00625 a=1.9 nit=147

140

120
0.8

1100

0.6

180

y [m]

160

0.4

40

0.2

20
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Champ électrique — Loi de Gauss
Champ ¢électrique — Loi de Faraday

Simulations faites en cours et démos au tableau
Quizz

Q

a
a
a

U

Que vaut V3¢ sur 0 2
Que vaut E sur 0C2 ?

Ou sont les chargesp()_() ?

Le champ E est nul en dehors de la boite. Donc la somme des
charges a l'intérieur est nulle. Vrai ou faux?

Si V, =-V,, alors Q, =—Q, . Vrai ou faux?

Si on déeplace une électrode, par exemple (a), en gardantVa etVb
constants, les charges sur les électrodes changent-elles? Et

comment? (1): SeulementQ_? (2)Q, et Q, avec Q, +Q, =const
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