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Physique Numérique — Semaine 4

Rappel des concepts introduits en semaine 2

O Schéma de Verlet et ses variantes
Q Critere de stabilité (cas oscillateur harmonique)

Plan de la semaine 3

O Retour sur Ex.1: convergence Euler semi-implicite d’ordre 2

0 Démonstration (simulations): convergence d’ordre 2 pour Verlet
O Démonstration (simulations): limite de stabilité de Verlet

O Pendule — phénomenes non linéaires

O Sections de Poincaré

O Chaos. Equations, expériences et simulations.

O Schémas de Runge-Kutta ordre 2 et 4
O Algorithme a pas de temps adaptatif
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Documentation

Lecture pour la Semaine #3: Notes de cours
o Chapitre 2, Section 2.7.3, 2.8, 2.9, (2.10.3)

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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2.7.3 Stabilité du schéma de Verlet

On montre (preuve au tableau) que le schéma de Verlet
est stable pour le probleme de l'oscillateur harmonique,
a la condition que:

wolAt < 2

ou w, est la frequence propre (physique!) du systeme:

wo =/ k/m

N.B.: Il en est de méme pour Euler-Cromer.
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=PrL

2.7.4 Extension du schéma Verlet a des
forces dépendant de la vitesse et du temps

Soit le cas

%F(x, v, t) =alx,vt) =a(x,t) +a(v,t)

Xj+1

177

1
= X; +vjAt +§a(xj,vj,tj

Vi FV;+ %a(xj V. t.)At

1
Viy1 =V + E(al(xj' tj) + a1 (Xj41,

M Swiss Plasma Center
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tiy1)) At + ay
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Euler semi-implicite: convergence

Retour sur I'Exercice 1: pourquoi le schéma d’Euler semi-implicite
converge a l'ordre 2 en At, alors que les schémas d’Euler explicite et

implicite convergent a l'ordre 1 en At ?
—> preuve au tableau

8 Convergence
10°¢ T -
Euler explicit
: Euler implicit ™
6L
107 ¢ :
S
= 1042-
102+ Euler semi-implicit
10011 o .......10
10 10

At

M Swiss Plasma Center
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RK2 = Runge-Kutta
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Pendule double articulé

Dans I'expérience montrée en classe, le pendule
est constitué de deux tiges rectilignes rigides.

Chaos dans un systeme conservatif (« Hamiltonien »)
o Simulation numérique et experience

o Régimes périodique (petits mouvements, linéarisation des
équations), multi-périodique, chaotique

Chaos et imprédictabilité
Chaos et sensibilité aux conditions initiales

M Swiss Plasma Center
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Equations du pendule double articulé

Cas de deux tiges rigides uniformes

6, ( '9:1 \

)

1| e
i |- (5 + C + CF - BE) / (AB - C?)
0, | (-4 @ m@+ CE - AF) [ (AB-(?) |

A = (m1/2+ '??I-Q)L%

B = myl3/3

C (mao/2) L1 Lo cos(fo — 01)
D = (ma/2)L1Lasin(fy — 61)
E = (m1/2+mg)L1gsinty
F = (mg/2)Lagsin

Ne sont pas sous une forme symplectique!

® Swiss Plasma Center 7
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Pendule double - simulationnsm=2m:=1, L;=2L,=1

RK. 6,,=3.1 4?e-005 (—)20=I3.1 42e-00§ ®,,=0 ©,,=0

CO,I ®

0 2

10" ¢

(6,0,
3

4
f [Hz]

Faible amplitude (petits mouvements): le mouvement est une
superposition des deux modes propres linéaires. L'analyse spectrale des
signaux montre la présence des deux frequences propres.

® Swiss Plasma Center 8
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Pendule double - simulations

RK. 910=F).31 42 920=.0'31 42 oa1q=0 ®,,=0

1 m=2m=1L=2L7=1

£y (1.2)
= (12)
E (5,0) (0.3)
— e @1 32
S 'r'-+-lﬂ-n
0 2 6 8

4
f [HZz]

Pour une amplitude plus grande (n/10), le spectre montre de multiples
frequences. Les fréquences présentes sont mo,+nw,, avec |m|+|n|=1,3,5,...

M Swiss Plasma Center
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Pendule double - simulations

RK. 910=9.6283 920:.0'6283 0)10.=0 ®,,=0

@ = = = =
1 m, 2 m,, N L1 2 L2 N

f7t(6,,0,)|

4
f [Hz]

Amplitude 2r/10. Frequences observées mm,+nw,, avec |m|+|n|=1,3,5,7,,...

® Swiss Plasma Center 10
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Pendule double - simulations

RK. 6, ,=1 .I414 6,,=1.41 4. ®,,=0 ®,,=0 |

s m1=.2 m2=.1 L1=.2 L2=.1
10* |
—_— 2
8“—10 B
&
E |
| L
10° |
10 '
0 5 10 15

f [HZz]
Amplitude 0.45 = . Une forét de pics...
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Pendule double - simulations

RK. 6, ,=1 '.477 6,,=1 '477. ®,,=0 ®2O=0.

m=2m=1L=2L7=1

10" 1§ w
» !‘Mﬂm

10" ¢

o)l

|fft(6

-2
0 5 £ [Hz] 10 15

10

Amplitude a peine encore un peu plus élevée (0.47 =n): CHAOS! Plus de
structure fréquencielle (« bruit »)!

B Swiss Plasma Center 12
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« Signature » du chaos

Sensibilité extréme aux conditions initiales:

o Soit deux conditions initiales differentes. Le
mouvement est dit chaotigue si, aussi petite que
soit la difference entre les deux conditions
Initiales, il y a un temps t fini au-dela duquel les
orbites respectives des deux mouvements
s’ecartent exponentiellement 'une de 'autre.
L’'exposant de I'exponentielle est appelé exposant
de Lyapounov.

® Swiss Plasma Center 13
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Sensibilité aux conditions initiales

0,(0)=0.5n

"> Pente = exposant
de Lyapunov
/

= Distance entre 2 orbites /
;. . . . /
= Régime chaotique : divergence exponentielle’
= Reégime non chaotique: pas de divergence exponentielle

B Swiss Plasma Center 14
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Chaos et imprédictabilité

W, =1.5716,,=1.571 0,,=0 ©,,=0

101

oF 0,(0)=n/2

0,(0)=n/2 + 107

-10F
8,(0)=n/2 + 10°7"°
-201
-30+
-40F
S0+
-60+

70t

-80|

0 2 10 15
t

10-19; taille atome, 10-1#: taille 10 noyaux atomiques!
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Sections de Poincaré

Longues simulations

Représentation de toute l'orbite: pas toujours
informative (I'espace de phase est 4D dans le
cas du pendule articulé)

Une Section de Poincaré est une intersection
de l'orbite avec une surface de I'espace de
phase

Par exemple {(01,04,0,)(t) | 6,(t)=0}

® Swiss Plasma Center 16
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Sections de Poincaré — pendule double
9.(0)70.37m

5

0,(0)=10"%x

4x10

’ ! ' '
LN iy [N )
L T T T

o, [S’W]

Petits mouvements

M Swiss Plasma Center
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0,(0)=0.33n

o, [S-W]

Multi-périodique

o, s

Ka

20

05 0

15

10

101

-15

-20

-10

o, [S'W]

Chaotique
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Sections de Poincaré — pendule excité

Excitation par une perturbation sinusoidale (point d’attache mobile, ou
couple appliqué)
-—> Expérience: pendule avec point d’attache en mvmt circulaire

Section de Poincaré: on représente une projection dans un plan de
'espace de phase, p.ex. (angle, vitesse angulaire) pour I'Ex.3, a
chaque période de I'excitation. - lllustration au tableau

o Hint: prenez At=(2rn/Q)/nper, nper=nombre de pas de temps par
période, et mettez sampling=nper en input du code: 'output
contiendra ainsi directement les coordonnées des sections de
Poincare.

Cas sans amortissement: chaque condition initiale produit une section
de Poincaré différente. L'ensemble des sections de Poincaré présente
une topologie de surfaces imbriquées, de chaines d’ilots, et de
régions stochastiques signalant la présence de chaos.

® Swiss Plasma Center 18
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Sections de Poincaré pendule simple, excitation verticale

VV Pendule g/I=1 v=0 Q=1 A=0.5
2.5 | |

1 T

L +*

PR LY '?‘oxw +, :

o ST R RN e,

L BN TE eI T
R PR e W A N S e

2
1.5

. e
03&"?‘3. IR AR
't ;’,f xt‘;‘:‘.g* R
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Sections de Poincaré pendule simple, excitation verticale zoom

VV Pendule g/I=1 v=0 Q=1 A=0.5

111

1.05

0.95
0.9%
0.85

0.8

0.75
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Sections de Poincaré pendule simple, excitation verticale zoom

VV Pendule g/I=1 v=0 Q=1 A=0.5

1.03

1.02

1.01

*
’:. ;"’3’. 0“‘0’ ¢ ‘ “‘%' N4

».,.{,,‘ &" + * 04

‘, .
.

2

et “4
1

e

+
#
........... .

-
bl

0.99

0.98
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Pendule excité er amorti - attracteurs

Section de Poincaré: on représente une projection
dans un plan de I'espace de phase des positions a
chaque periode de l'excitation.

Attracteur: toute condition initiale (dans un domaine
appelé « bassin d’attraction ») conduit a une section
de Poincaré de structure similaire.

Attracteur « etrange »: cas chaotique.

o L' «étrangeté» vient du fait que (1) des conditions initiales
meéme infinitésimalement voisines conduisent en un temps
relativement court a des orbites qui divergent
exponentiellement 'une de l'autre; (2) des conditions
initiales méme tres eloignées I'une de l'autre conduisent au
meéme attracteur pour des temps longs.

B Swiss Plasma Center 22
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Galerie d’attracteurs étranges

VV Pendule g/1=9.8 v=0.1 ©2=3.13 A=5.886

10

-3 -2 -1 0 1 2 3
0
VV Pendule Ressort r0=1 k=1e+003 v=0.5 ©0=2.08 A=10
9 T T . .
a8 ‘.;"wq....\‘n._ R ]
v - Km

L Fls .

7Ll A

W
\“_,
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Galerie (suite)
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Simulation numérique de systemes

en régime chaotique

La sensibilité extréme aux conditions initiales,
avec divergence ~ exp (A t) conduit a
I'impossibilite de converger
numeriguement la solution pour des
tempst>~1/4

Cependant:

o La structure de I'espace de phase (p.ex. I'étendue
de la zone stochastique et/ou la forme de
I'attracteur étrange) converge numériguement

® Swiss Plasma Center 25



dy
pra f(yt)
At kletf%yi’ti)
Yia =Y TAt f(Yi T f(yi’ti)’tiﬂlz) =K, = At T{y; +0.5Kk,, 1, +O'5At)
2 Yia=Yi T kz
. e \\ I
77 R y: {5///: Runge-Kutta ordre 2

" K, Voir les Notes de Cours,

Yiss2 pour une généralisation

Y,

2

ti } ti+1/2 ti+1 At
pente f(y,,t;) pente (Y, 4,,8.1,) = f()’i "‘? f(y; ’ti)’ti+l/2j
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Pour ’Exercice 3. Runge-Kutta ordre 4 (2.8)

Y,

Y, t k3 __________________ VA \
/ aw;
/ // / // \//
/ / 2
- s

//// ////:/’(3,3//.//\ > k4
/ 7 - //
///// /// /// > k3
/ - P
yi"'kzl2 "‘““““Z—;‘— . \ kz
vy, -
N s i
4 ) ) )

Y,

ti ti+1/2 ti+l

Yiu =Y, +%(k1 +2k, + 2k, +k, ) (2.138)
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Gravitation - 1 corps

Comete de Halley

Orbite elliptigue fortement excentrique
[ ol Tmin=29.6. T=75.986 ans

Unités astronomiques (UA):
o Demi arand axe orbite terre (150 mio km)

Halley RK4

x [UA]

Intégration numerique avec Runge-Kutta d’ordre 4 et pas temporel At constant
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Halley, Verlet, 1000 ans

Halley Verlet
10 _ _ \
At=0.01 0.005 0.0025
5r -:—:-'—"._—-"::—"':.r_—g _____ _
S of -
==
0.9 Halley Verlet Halley Verlet B
At=0.01 :
30.95— | | |
% 0 -25 -20 1
z x [UA]
€1.05 0.005
o
= 0.0025
S-14F '
13 50 100 150
t[UA] 0 50 tan] 100 150

Précession non physique.

Bonne conservation de Emec en moyenne sur de longs temps.
Mauvaise lorsque r=r.;,, (accelération maximale).

La période obtenue converge en At?, mais pas tres grande précision.

M Swiss Plasma Center
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Schémas a pas de temps adaptatif

On a constate que l'erreur était importante aux
Instants ou le corps est fortement accéléré

Raffiner le At a ces instants, augmenter At
autrement... comment faire ceci avant de connaitre
la solution?

Algorithme de At adaptatif: a chaque pas de temps,
comparer les resultats obtenus apres

0 a) 1 pas de At

0 b) 2 pas de At/2

En supposant une loi de convergence pour
I'algorithme de base utilisé, on peut en déduire quel

At choisir, i.e. controler l'algorithme.
(développements au tableau)
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n
=
"1
—

Schéma a pas de temps adaptatif

A

L AN

L t+At/2 1AL

Chacune des fleches symbolise un pas complet d’'un algorithme de base:
par exemple les 4 étapes d’'un schema Runge-Kutta du 4e ordre.

On veut choisir At de telle sorte que d soit inférieur a une valeur donnée ¢

d<e
¢ joue le role d’'un paramétre de contrdle de l'algorithme, et n'est PAS la
précision obtenue sur y a la fin de la simulation. Cette derniere doit étre
obtenue par une étude de convergence: lim g - 0
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Halley, Runge-Kutta 4e ordre, At variable

Halley RK4 variable At

10 \ \ |
5L RK4 A t var, nsteps=4889 _
<
S5 0
p-
09 Halley VV const At & RK4 var At
- Verlet A t= conat nsteps= 100000 10 Halley RK4
-1 | | | |
) -25 -20 -15 10° Ly a m 2 ; : el
— /
< 11 | x [UA] W/I/\M / ﬂ |/ y/
=) RK4 A t var, nsteps=4889 = f ( \
é 8107} :
E .12 | = | :
4.3 107}
RK4 A t var, nsteps=1737
1.4 : : : : 107 : : :
0 200 400t [an]GOO 800 1000 0 200 400 600 800 1000

t [an]
Runge-Kutta a une tendance a long terme de diminuer E, .

Le pas At variable permet une tres grande efficacité
Convergence tres rapide
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Halley, Verlet, Runge-Kutta 4, At fixe ou
variable, convergence de la période

Halley RK4 & VWV

2

10

error on T [year]

T
~
~.

RK4

O 4

adapt At N 1/N

. | oded5 N\
10"+~ Cadapt At %,

NN NG

10-8 i i I \\u i || i \;\ i R |
10° 10 10° 10
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steps

Pour 5000 pas de
temps, on est 10
millions de fois plus
précis avec le schéma
adaptatif qu’avec At
fixe!
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En résumeé:

= Verlet conserve bien E, .. en moyenne sur de longues
périodes, mais donne une précession non physique.

= Runge-Kutta 4e ordre: converge tres rapidement la
période, la distance maximale, etc, mais dimunution
séculaire non physique de E,,..

= Un algorithme a pas At adaptatif est de plusieurs
ordres de grandeur plus efficace qu’a At fixe.
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