
Physique Numérique – Semaine 10

Swiss Plasma Center

Rappel de la semaine 9

❑ 4.1 Advection-Diffusion

❑ Limite de stabilité: critère CFL

❑ 4.2 Ondes

❑ Différences finies explicite à 3 niveaux

❑ Limite de stabilité: critère CFL

❑ Ex.5 - Vague dans un océan de profondeur variable

Plan de la semaine 10

❑ 4.2 Ondes

❑ Analyse de stabilité de Von Neuman: critère CFL

❑ Modes propres, fréquences propres. Excitation résonante.

❑ Tsunamis. Quelle équation?

❑ 4.3 Schrödinger

❑ Schéma semi-implicite de Crank-Nicolson
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #10: Notes de cours

❑ Section 4.2 Ondes

❑ Section 4.3.1 Schrödinger. Schéma semi-

implicite
http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Advection et diffusion. Différences finies. 

Schéma explicite 2 niveaux. Critères de stabilité 

numérique.

Courant-Friedrichs-Lewy

La démonstration sera présentée ultérieurement. Voir Notes de Cours 4.1.3
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◼ Schéma différences finies explicite 3 niveaux

Ondes – schéma numérique

Discrétisation {(xi,tj)}

t
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Ondes en milieu homogène, 1D

◼ Quelques démonstrations en «live»

❑ Initialisation: immobile, progressive, rétrograde

❑ Conditions aux limites: fixes, «libres», sortie

❑ Réflexions

❑ Superpositions

❑ Ondes stationnaires, modes propres, 

fréquences propres

❑ Excitation résonante
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Modes propres, fréquences propres

◼ Mode propre: mvmt particulier du système homogène 

(i.e. SANS excitation extérieure) pour lequel TOUS les 

degrés de liberté oscillent à la même fréquence, appelée 

fréquence propre.

◼ De démonstrations seront faites en simulation.

◼ Principe de superposition: la somme algébrique de 2 

modes propres est également solution du système 

homogène.
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Modes et fréquences propres – Solution générale
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Modes et fréquences propres – Solution générale

2

2
2

u
k


= Relation de dispersion

La solution générale s’écrit

Les conditions initiales et aux bords déterminent les constantes d’intégration.

P.ex., onde purement progressive →

Ainsi, la méthode de séparation des variables permet de trouver non 

seulement des ondes stationnaires, mais aussi des ondes propageantes

(*)
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Signes de  et de k … ? De C dans R…

Swiss Plasma Center

La solution physique s’obtient en prenant la partie réelle de la 

représentation complexe. 

En poursuivant notre exemple de l’onde progressive, en posant

on obtient

Il reste donc bien 2 constantes d’intégration réelles.

On peut faire le même type d’analyse, en partant de l’Eq.(*) de la page 

précédente, pour d’autres situations, p.ex conditions aux limites 

Dirichlet ou Neumann → onde stationnaire, quantification. (voir

Exercice 5). 
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Modes et fréquences propres – conditions aux 

bords
◼ Pour l’exercice 5, on prend des conditions aux bord fixe 

(Dirichlet) à gauche et «libre» (Neumann) à droite.

◼ On applique ces conditions aux bords à la solution 

générale. 

◼ Cela conduit à une quantification des fréquences 

possibles, appelées fréquences propres.

◼ La fonction spatiale correspondant à chaque fréquence 

propre est appelée fonction propre ou mode propre.
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Modes et fréquences propres – superposition

La fonction propre correspondant à cette fréquence propre n est: 

)(exp )(sinˆ),( tixkAtxf nnnn −=

C |ˆ|ˆ = ni

nn eAA
 Dépendance spatiale 

de la fonction propre

Dépendance temporelle 

de la fonction propre: 

oscillation à la fréqeuce n

L’équation d’onde étant linéaire, toute superposition linéaire de solutions est 

aussi une solution. Ainsi, la solution générale (mais satisfaisant les 

conditions aux bords) peut s’écrire comme superposition de modes propres: 




=

−=
1

)(exp )(sinˆ),(
n

nnn tixkAtxf 

Les coefficients (complexes) An sont déterminés par les conditions initiales
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Superposition de modes propres – conditions 

initiales
◼ Dans cet exemple, on prend des conditions aux initiales au repos. 
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De la 2e éq, satisfaite pour tout x, on tire : 
nnn  == 1)(cos0)(sin

Et donc, on peut écrire la 1e Eq: )( )(sin|ˆ|
1
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n
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

=



Les n|An| sont donc les coefficients de la série de Fourier de finit
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Démonstrations (simulations 

«live»)
◼ www.falstad.com

❑ Math and Physics aplets

◼ loadedstring

◼ Recherche de modes propres et fréquences 

propres par excitation résonante

Swiss Plasma Center 13
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◼ Recherche de modes propres

Ondes - excitation

lr xx

u

−
=


 4

lr xx

u

−
=


 6.3
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◼ 4.2.2 Stabilité du schéma différences finies 

explicite 3 niveaux pour l’équation d’ondes

Ondes – instabilité numérique

10 2  Condition de stabilité CFL

01.1=
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Ondes – instabilité numérique

◼ Le mode instable est une oscillation dans 

l’espace (avec 2 pts de maillage xi par 

longueur d’onde) et le temps (2 pts de 

maillage tj par période) dont l’amplitude 

croît exponentiellement

◼ On fera la démonstration au tableau du 

critère de stablilité CFL: analyse de Von 

Neumann – voir aussi section 4.2.2
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( ) ( ) ( ) ( ) ( ) ( )( )

)43.4(

,,,,12, 11

2

1

2

1 ninininini txftxftxftxftxf −+−+ ++−− 

Ondes – Analyse de stabilité Von Neumann

t

x

( ) ( )  )26.4(C,,Cˆ,exp ˆ, −=  Rkftxkiftxf nini

Ansatz: on cherche une solution de (4.43) de type ondulatoire, avec la 

possibilité d’avoir une amplitude exponentielle dans le temps

On définit le «gain» G: ( ) ( ) ti

nini eGtxfGtxf −

+ == ,,, 1

Condition de stabilité:  ,,1 kG
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Analyse de stabilité de Von Neumann
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Ondes, schéma explicite 3 niveaux -

stabilité

◼ 2 points de maillage par longueur d’onde, c’est bien ce 

que l’on a observé sur les simulations instables!

stable 1,1 Si
22 = G

instable 1,1sinpour  alors,,1 Si 22 −= G

2/xk =
22

1sin 2 
 =


=

xk

=  /2k x= 2
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Exercice 5: ondes, milieu inhomogène 

Swiss Plasma Center

◼ Equations

◼ Solution analytique approximative: méthode WKB 

(Wentzel, Kramers, Brillouin)

◼ Simulations numériques et comparaison
20



Equations en eaux peu profondes
◼ Voir Annexe E des Notes de Cours + au tableau
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Présentation au tableau
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Profondeur variable h0(x)
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propagation du 

tsunami?
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26 December 2004, 7h55 (WIB)

The Earth shakes
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26 décembre 2004, 7h58 (WIB)

http://www.psychceu.com/tsunami/animation.sm.gif
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◼ Cette usine électrique flottante (3000 tonnes) s’est retrouvée à 
6 km à l’intérieur des terres – Banda Aceh, Indonésie
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Profondeur variable h0(x)
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◼ 4.3 Schrödinger
❑ Corpusculaire, ondulatoire, probabiliste

4.3 Mécanique Quantique - Schrödinger

Particule 

libre:

Particule 

dans un 

potentiel 

V(x):
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◼ Solution Eq. Schrödinger

❑ Propagateur (opérateur d’évolution temporelle)

❑ Propriété: unitarité (conservation de la probabilité)

◼ 4.3.1 Schéma numérique semi-implicite

❑ Crank-Nicolson

◼ Discrétisation temporelle, pas de temps uniforme t

( ) ( )txHt
i

ttx ,exp,  



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
−=+
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






 
+ H

ti

2
exp


Appliquant l’opérateur des 2 côtés,

Et développant au 1er ordre de exp
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◼ Discrétisation spatiale, maillage uniforme x

◼ Approximation par différences finies de l’opérateur différentiel 

spatial:
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+



Opérateur A. Partie implicite: 

il faut inverser l’opérateur

Opérateur B. Partie explicite: 

il faut appliquer l’opérateur

Ainsi, l’opérateur Hamiltonien H peut s’écrire comme une matrice H.

Appliquer l’opérateur H sur  revient à multiplier la matrice H par le 

vecteur  constitué des valeurs de  aux points de maillage xj . 

De même, les opérateurs A et B deviennent des matrices A et B.

(4.90)

Swiss Plasma Center 32



tNNN

N

ttNNN

N

dBaB

cB

aB

cBdB

dAaA

cA

aA

cAdA









































=









































−−−

−

+−−−

−

1

0

12

2

0

00

1

0

12

2

0

00

...

...

......

......

...

...

......

......









❑ Le schéma de Crank-Nicolson a les bonnes propriétés suivantes:

➢ Il conserve la probabilité totale

➢ … et l’énergie

… à la précision machine! 

➢ Preuve: au tableau

tdxtx =
+

−
,1),(

2



( ) tEdxtxHtxtHtE == 
+

−
),0(),(),()()( * 

Explicite. B Y . Multiplication 

matrice vecteur

Implicite.  A Y=… . Résolution 

d’un système algébrique linéaire

(4.99)

❑ Schéma de Crank-Nicolson, semi-implicite: A Y|t+t = B Y|t
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(4.99)

❑ Schéma de Crank-Nicolson, semi-implicite: A Y|t+t = B Y|t

❑ Conditions aux limites, cas d’un puits de potentiel infini dans [xL,xR]:
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Les éléments des matrices  et des vecteurs «…» sont inchangés.

Le système «…» est en fait équivalent à celui résultant de la discrétisation sur 

le domaine [xL+x,xR--x], dans lequel on aurait “oublié” d’appliquer les 

conditions aux limites.

Autrement dit, si vous «oubliez» d’appliquer les conditions aux limites sur le 

système (4.99), c’est comme si vous aviez en fait résolu le problème sur le 

domaine [xL-x,xR-+x] avec ses conditions aux limites.
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◼ Les observables de la mécanique quantique

Produit scalaire: dxtxtx ),(),(),( *  
+

−
=

Opérateur adjoint:  = ,),,(),( que  tel, **

Opérateur hermitien: =*

Opérateur unitaire: 1* =

Observable: décrit par un opérateur hermitien (= auto-adjoint)

Par exemple: V
m

Hipx +−=−= 2
2

2
,,,1





sont des observables

Propriété: toutes les valeurs propres d’ un opérateur hermitien sont réelles 
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◼ Interprétation probabiliste, moyennes et écart-types

dxtxxtxtx ),(),()( * 
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◼ Propriétés

tEtE = ),0()(

Probabilité totale conservée: 

Valeur moyenne de l’énergie conservée:

tdxtxtx =
+

−
,1),(),(* 

𝑝2 𝑡 = ∫ 𝜓∗ 𝑥, 𝑡 −ℏ2
𝜕2𝜓 𝑥, 𝑡

𝜕𝑥2
dx
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◼ Paquet d’onde Gaussien: on initialise l’état de la 

particule par une onde plane dont l’amplitude est 

modulée par une fonction Gaussienne

◼ Simulons la particule libre (V=0)

𝜓(𝑥, 0) = 𝐶𝑒𝑖𝑘0𝑥𝑒− 𝑥−𝑥0
2/2𝜎2
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◼ Exemples 

❑ 4.3.2 Particule libre

Etalement du paquet d’onde.

Effet de la dispersion, pas de diffusion! 

(Etalement n’est pas ~           )t
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◼ Quiz 

Comment faire partir le paquet d’onde vers la gauche 

(onde rétrograde)?

On remarque que l’Eq. de Schrödinger est du premier 

ordre en dérivée temporelle (
𝜕𝜓

𝜕𝑡
), et non du 2e ordre 

comme les ondes classiques (d’Alembert), (
𝜕2𝑓

𝜕𝑡2
)

Il n’y a donc qu’ une seule condition initiale à imposer : 

𝜓(𝑥, 0) connu ⇒ 𝜓 𝑥, 𝑡 connu ∀𝑡

Dans le schéma numérique, on n’initialise pas 𝜓 𝑥,−Δ𝑡
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◼ Propagation

◼ Etalement

t
m

k
xtx

dxtxxtxtx

0

*
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1)0()(
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t
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◼ Principe d’incertitude de Heisenberg

◼ Peut se comprendre à l’aide de la transformée de 

Fourier

❑ Des démonstrations seront présentées au cours

❑ Preuve mathématique formelle:

https://brilliant.org/wiki/heisenberg-uncertainty-principle/

2/))((  px

Swiss Plasma Center 41

https://brilliant.org/wiki/heisenberg-uncertainty-principle/

