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Physique Numérique — Semaine 10

Rappel de la semaine 9

d 4.1 Advection-Diffusion
Q Limite de stabilité: critere CFL
Qd 4.2 Ondes
Q Différences finies explicite a 3 niveaux
O Limite de stabilité: critere CFL
O Ex.5 - Vague dans un océan de profondeur variable

Plan de la semaine 10

0 4.2 Ondes
O Analyse de stabilité de Von Neuman: critere CFL
O Modes propres, fréquences propres. Excitation résonante.
O Tsunamis. Quelle équation?
0 4.3 Schrodinger
O Schéma semi-implicite de Crank-Nicolson
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Documentation

Lecture pour la Semaine #10: Notes de cours
o Section 4.2 Ondes

o Section 4.3.1 Schrodinger. Schéma semi-
implicite
http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Advection et diffusion. Différences finies.

Schéma explicite 2 niveaux. Critéres de stabilité
numérique.

At
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ek
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v CFL

Courant-Friedrichs-Lewy

La démonstration sera présentee ultérieurement. Voir Notes de Cours 4.1.3
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Ondes — schéma numérique

Schema différences finies explicite 3 niveaux
0 f SO f

2 — U 2 Discrétisation {(xi,tj)}
, 1 , P (A21)
f_} — h_2 (fj—l — Ef_-j + fj_|_1_) + ()(\h-z) A21]
@it D€ 2f (0t )+ i tui D, wz )+t )
(At)? o (Ar)?

o
N\
e

v
X
N
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Ondes en milieu homogeéne, 1D

Quelgues demonstrations en «live»

o Initialisation: immobile, progressive, retrograde
o Conditions aux limites: fixes, «libres», sortie
o Réflexions

o Superpositions

d

Ondes stationnaires, modes propres,
fréequences propres

o Excitation résonante
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Modes propres, fréquences propres

Mode propre: mvmt particulier du systeme homogene
(i.,e. SANS excitation exterieure) pour lequel TOUS les
degrés de liberté oscillent a la méme frequence, appelée
fréequence propre.

De démonstrations seront faites en simulation.

Principe de superposition: la somme algebrique de 2
modes propres est également solution du systeme
homogene.
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Modes et fréquences propres — Solution générale

o2 2
()—f — -'g_{_.g()—f Séparation des variables  f (X,t) = A(X)B(t)
ot? 3;1‘2 :
d A 1 d B 1d°A
i ( )=u’ > (X)
A dx
fct(t) = fct(x) = const =C
d’ d?
— B(t) C B(t)|B(t) est fonction propre de I'opérateur —
t? de valeur propre C dt*
B(t) = Be | = —w’Be™" = CBe™ = C = -’
d 2
d 2 2 A(X) est fonction propre de l'opérateur ——
dT A(x) = U2 A(X) de valeur propre — @” / U° dx’

A(X): Aeikx :>_k2Aeikx _ (a) u ) ey
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Modes et fréquences propres — Solution générale

k2_a)_2
=

La solution générale s’écrit

w
Relation de dispersion w= *ku, k=4—
y

, A —iwt qwt 1kx —ikx
flx,t) = (Ae™™" + Be' )(CE?R—I—DE “") *)
— AE?(LI_“’JLF) n Béi.(—k'x—wt) 4 é&(kar—l—wt) 4 Dﬁi(—km—l—wt)

Les conditions initiales et aux bords determinent les constantes d’intégration.
P.ex., onde purement progressive - flz,t) = Flz — ut), Y, Vt,

B=0, C=0 = flx,t) = Aetk(x=$) 4 Pe—ik(z=$1)

Ainsi, la methode de séparation des variables permet de trouver non
seulement des ondes stationnaires, mais aussi des ondes propageantes
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Signes de m et de k ... ? De C dans R...

La solution physique s’obtient en prenant la partie réelle de la
représentation complexe.
En poursuivant notre exemple de I'onde progressive, en posant

§ = ko — wt, A=a+1b, D =d+ig
on obtient
fla,t) =
(a+d)cosE+ (g —b)sing = Acos€ + Bsiné = Ay cos(€ + o) .

Il reste donc bien 2 constantes d’intégration réelles.

On peut faire le méme type d’analyse, en partant de I'Eq.(*) de la page
préceédente, pour d’autres situations, p.ex conditions aux limites
Dirichlet ou Neumann - onde stationnaire, quantification. (voir
Exercice 5).
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Modes et fréquences propres — conditions aux
bords

Pour I'exercice 5, on prend des conditions aux bord fixe
(Dirichlet) a gauche et «libre» (Neumann) a droite.

On applique ces conditions aux bords a la solution
generale.

Cela conduit a une quantification des fréquences
possibles, appelées fréquences propres.

La fonction spatiale correspondant a chaque frequence
propre est appelée fonction propre ou mode propre.
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Modes et fréquences propres — superposition

La fonction propre correspondant a cette fréquence propre o, est:

f,(61) = A sin(k,x) exp(—im,t)

|
ﬁh = A1 |ei(ﬂn < C Dépendance spatiale Dépendance temporelle
de la fonction propre  de la fonction propre:
oscillation a la frégeuce o,

L'équation d’onde étant linéaire, toute superposition linéaire de solutions est
aussi une solution. Ainsi, la solution genérale (mais satisfaisant les
conditions aux bords) peut s’écrire comme superposition de modes propres:

F(xt) =3 A sin(k,x) exp(—io,t)

Les coefficients (complexes) A, sont déterminés par les conditions initiales
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Superposition de modes propres — conditions
initiales
Dans cet exemple, on prend des conditions aux initiales au repos.

(
o0

(£ (x,0) = f._. (X) 3| A, cos(@,)sin (k,X) = fi (X)
1 Too=0 Te .
. ot (x.0)= —| A, |sin(k,xX)a,sin(¢p,) =0

De la 2¢ €q, satisfaite pour tout x, on tire : Sin(@,) =0=cos(p,) =tl=0,

Et donc, on peut écrire la 1¢ EQ: Zan | A1 | sin (kn X) = finit (X)
n=1

Les o,|A,| sont donc les coefficients de la série de Fourier de f,;,
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Démonstrations (simulations

«live»)
www.falstad.com
o Math and Physics aplets

loadedstring
Recherche de modes propres et fréquences
propres par excitation resonante

B Swiss Plasma Center
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- €xcCitation

Ondes
= Recherche de modes propres
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Ondes — instabilité numérique

4.2.2 Stabilité du schema difféerences finies
explicite 3 niveaux pour I’équation d’ondes

Condition de stabilit¢ CFL | < 132 <1 ; At
T T — U—
CFL B=1.01 L
2 . :
5l t=2.32.
t=2.2?h “
1+ | 1
. =i 1[p=101
0.5 || |
“h 1 \
o ‘|' ||V'ﬂ “ 1‘1‘
* J|| V V
-0.5
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Ondes — instabilité numérique

_e mode Instable est une oscillation dans
‘espace (avec 2 pts de maillage x; par
ongueur d’'onde) et le temps (2 pts de
malillage t par periode) dont 'amplitude
croit exponentiellement

On fera la démonstration au tableau du
critere de stablilité CFL: analyse de Von
Neumann — voir aussi section 4.2.2

B Swiss Plasma Center
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Ondes — Analyse de stabilit¢ Von Neumann

.
O O 3_”%
(1 'B ,f X1, ‘ﬂ- Xi_1 1

(4.43)

Ansatz: on cherche une solution de (4.43) de type ondulatoire, avec la
possibilité d’avoir une amplitude exponentielle dans le temps

f(x,t)=fexpli(kx —at ), f eCkeR, weC (4.26)
On définitle «gain» Gt f(x,t  )=Gf(x,t ) G=e

17 °n+l 17°n

Condition de stabilité: \G\s 1LVK, Vo
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Ondes, schéma explicite 3 niveaux -
stabilité

A
f'), — U—

Ax

Si % <1, |G =1= stable

Si 8% >1, alors,poursin® @ =1, G < —1=>instable

0 =KAx/?2 Sinm:b%x:z

2
k=2714 = |A=2AX

2 points de maillage par longueur d’'onde, c’est bien ce
gue I'on a observe sur les simulations instables!
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_Exeteice 5::ondes, milicu inhemogene

-

-

= Equations ) I
= Solution analytique approximative: méthode WKB
(Wentzel, Kramers, Brillouin)

= Simulations numérigues et comparaison
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Equations en eaux peu profondes
Voir Annexe E des Notes de Cours + au tableau

surface océan perturbée

/
surface océan au repos

- fond océan

B Swiss Plasma Center
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dv

Po—=—VP+p,0 (E3
dt
oh _
—+V- (hV) =0 (E4) 1D — o(vxh) — a_h
ot OX ot
Hypotheses:
- fluide parfait, incompressible a<<l
-1D dv,
- Eaux peu profondes: hy << 1 at <<

- Petites perturbations -> linéarisation
h(x,t) = h, (x) + sh(x, t)
V(x,1) =0+ (x,1)
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Présentation au tableau
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Profondeur variable h(x) u(z) = /gho(x)
Vitesse de propagation variable u(x)

£ on-Ut () < (3)=0 (A)

ot Laquelle de ces
équations est

82 O correcte?

—oh——u (x)— =0(B)

ot° OX Cela fait-il une
différence sur la

L 0 propagation du

Eéh PV (UZ(X) 5h): 0 (C) tsunami?
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26 December 2004, 7h55 (WIB)
The Earth shakes

%UMEN V TSUNA

,(/M i, Pliakt dave Picins.

> ! (B |2 v v Y
r i USRS\ ) b
“« C\ _ A lil ey
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26 décembre 2004, 7h58 (WIB)
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2004 Sumatra Earthquake 010 min
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26



=PrL

Indian Ocean tsunami 2004
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—

= usin électrique flottante (3000 tonnes) s’est retrouvée a
6 km a l'intérieur des terres — Banda Aceh, Indonésie
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Profondeur variable hO(X] u(r) = \/ gho(z)
Vitesse de propagation variable u(x)

£ on-Ut () < (3)=0 (A)

ot

0° 0

aTéh—&(u (x)— j 0 (B)
0° 0°

—ah—— (u*(x)oh)=0 (C)

Laquelle de ces
équations est
correcte?

Cela fait-il une
différence sur la
propagation du
tsunami?
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4.3 Mécanique Quantique - Schrodinger

4.3 Schrodinger
o Corpusculaire, ondulatoire, probabiliste [v(Z,1)]?

Particule rj — hlz W()_{’ t) - exp(i (kX _ a)t))
libre: E=Aw V(—)Ik
p <> —1AV 9 <~ —lw
| ot

Particule - 6

dans un E < Ih&

potentiel H

V(X): l _ /(\l//) .
p° S o1 V/4 h°

E=—+V(X) i — Vy +V
2m ot 2m v v
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Solution Eqg. Schrodinger
U(x, t) = exp (%tﬂ ) U(z,0)
13

— _/

o Propagateur (opérateur d’évolution temporelle)
o Propriété: unitarité (conservation de la probabilite)

4.3.1 Schéma numérigue semi-implicite

o Crank-Nicolson
Discrétisation temporelle, pas de temps uniforme At

w(X,t+ At) = exp[— % At H )z//(x, t)

_ , I At
Appliquant 'opérateur eXp| + Py H | des 2 cotés,

Et developpant au 18" ordre de exp

B Swiss Plasma Center

31



1)
U
1
r

[1+l§HjW(x,t+At)=[l—%—Hj (x,t)] (.90

h 2
— —— _/ — —~ _/
Opérateur A. Partie implicite: Opérateur B. Partie explicite:
il faut inverser I'opérateur il faut appliquer I'opérateur

Discrétisation spatiale, maillage uniforme Ax

Approximation par différences finies de I'opérateur différentiel
spatial: )
0w, Vi~ 2W+V¥, 2

Av2 |j_ 2 +O(AX )

OX (Ax)

Ainsi, 'opérateur Hamiltonien H peut s’écrire comme une matrice H.

Appliquer 'opérateur H sur w revient a multiplier la matrice H par le
vecteur y constitué des valeurs de y aux points de maillage ; .

De méme, les opérateurs A et B deviennent des matrices A et B.
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0 Schéma de Crank-Nicolson, semi-implicite:

AVY|, =B Y|
dA, CcA Yo dB, cB, Yo
aA, | aB
CAL L | - .. CBy_,
ahA, , dA \wy, LAt aBy_, dBy, \wy,

Implicite. A W=... . Résolution
d’'un systeme algébrique linéaire

Explicite. B ¥ . Multiplication
matrice vecteur

O Le schéma de Crank-Nicolson a les bonnes propriétés suivantes:

> |l conserve la probabilité totale

foo\w(x,t)\zdx 1, vt

> ... etlénergie

E(t)=(H)(t) =] w (x)H((x.1))dx=E(0), vt

... a la précision machine!
» Preuve: au tableau

B Swiss Plasma Center
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O Schéma de Crank-Nicolson, semi-implicite:
P AW, =B Y|

O Conditions aux limites, cas d’un puits de potentiel infini dans [x,,Xg]:

w(X,,t)=0,w(X;,1)=0,Vvt
1

s 1 0 0
% /97% Yo /dB/o 980/ VO/
%‘4 c% ~ o O (yBN)Z (4.99)
aA)/z d%l 4 EY A aB/v(z d%—l %1
7

7 7 7
0 1 0 1 0

Les éléments des matrices et des vecteurs «...» sont inchanges.

Le systeme «...» est en fait équivalent a celui résultant de la discrétisation sur
le domaine [x +4x,Xg -4X], dans lequel on aurait “oublie” d’appliquer les
conditions aux limites.

Autrement dit, si vous «oubliez» d’appliquer les conditions aux limites sur le
systeme (4.99), c’est comme si vous aviez en fait résolu le probléme sur le
domaine [x -4X,Xg +4X] avec ses conditions aux limites.

~—+
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Les observables de la mécanique quantique

Produit scalaire: (17,) = jjwn*(x,t)w(x,t) dx

Opérateur adjoint: Q" telque (Qn, ) =", Qw),Vn, Vi
Opérateur hermitien: Q =Q
Opérateur unitaire: Q Q=1

Observable: décrit par un opérateur hermitien (= auto-adjoint)

2
Par exemple: 1, X, p = _ihﬁ, H = _;Z_VZ +V sont des observables
m

Propriété: toutes les valeurs propres d’ un opérateur hermitien sont réelles
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Interprétation probabiliste, moyennes et écart-types

(X)(t) = f:w*(x,t)xw(x,t) dx  (p)(t) = f:l//*(x,t)(— i7 aW(X’t)jdx

OX

() =[x dx (p?)O) = j*:w*(x,t)(—;f ‘gi?’t)jdx

(A () = (x*)(®) - (%) (1) (Ap) ) =(p*)(O)—(p)" )

Et)=(H)(1) = v (x)H(w(x1))dx
, 0% (x, t)) i

Propriétés CRIOESRCL) (‘h ox?
Probabilité totale conservee: f:z//*(x, Dy (x,t)dx =1 Vvt

Valeur moyenne de I'énergie conservée: E(t) = E(0), Vt
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Paguet d’'onde Gaussien: on initialise I'etat de la
particule par une onde plane dont 'amplitude est
modulée par une fonction Gaussienne

l/)(x, 0) — Ceikoxe—(x—xo)z/zgz

Simulons la particule libre (V=0)

B Swiss Plasma Center
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Exemples
o 4.3.2 Particule libre

Schroedlnge-r semi- |mp||::|te n= 16 o=6.4

|3 f?@%

2 D-mnmmm*le‘%p I|:1 |I||+]|I|.L HLFI,E% |
|4+ l'l‘l'l'!fl#

-0.5¢ 'r lall hi_ "

0.5 ‘ t=100

150 0 5'0}( 100 150
Etalement du paquet d’'onde.
Effet de la dispersion, pas de diffusion!

(Etalement n’est pas ~\/E )

B Swiss Plasma Center
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Quiz

Comment faire partir le paquet d’'onde vers la gauche
(onde rétrograde)?

On remarque que I'Eq. de Schrodinger est du premier
ordre en dérivée temporelle (aa—f), et non du 2¢ ordre

2
comme les ondes classiques (d’Alembert), (37)

Il N’y a donc qu’ une seule condition initiale a imposer :
Y(x,0) connu = YP(x,t) connu Vt

Dans le schéma numérique, on n’initialise pas y(x, —At)
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Propagation
<X>(t) :jz/(x,t) X (X, t) dx

<x>(t)=<x>(0)+h—k°t
m

Etalement

h*t?

m’c?

<AX > () =< AX > (O)\/1+

W Swiss Plasma Center

<x>

<A X>

200

160+

100

S50

20

Libre n=32 nx=1024

analytique ..

—

rd
-

At= 0125 -
0.25

~05
e
1.0

20
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Libre n=32 nx=1024

anallytique\ ,
At= 0125
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(AX)(AD) > 71/ 2

Peut se comprendre a I’aide de la transformée de
Fourier

o Des démonstrations seront présentées au cours

o Preuve mathématique formelle:
https://brilliant.org/wiki/heisenberg-uncertainty-principle/
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