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Physique Numérique – Semaine 3

Swiss Plasma Center

Rappel des concepts introduits en semaine 2

❑ Cas de l’oscillateur harmonique

❑ Analyse de stabilité de Von Neumann: croissance / décroissance de l’erreur

❑ Solution analytique du schéma d’Euler explicite 

Plan de la semaine 3

❑ Suite de l’analyse de stabilité: croissance / décroissance de l’énergie 

mécanique

❑ Schémas symplectiques: Euler-Cromer, Verlet

❑ Exercice 3: pendule de longueur variable – phénomènes non linéaires
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #3: Notes de cours

❑ Chapitre 2, section 2.4.4, Section 2.7

http://moodle.epfl.ch/mod/resource/view.php?id=8220

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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◼ 2.4 Oscillations - Analyses de stabilité numérique

Rappel semaine 5
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2.4.3 Stabilité. Oscillations, (dé)croissance

exponentielle. Sol. Analytique des Eqs. Discrètes.
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2𝑛/2

En posant 𝜔0 = 𝑘/𝑚 = fréquence propre

Paramètre crucial
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2.4.4 Euler expl. osc. harmo. Conservation Emec 1
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2.4.4 Euler expl. osc. harmo. Conservation Emec 2
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◼ Le schéma d’ Euler explicite est toujours instable lorsqu’il est 
appliqué à l’oscillateur harmonique. La norme de l’erreur augmente 
à chaque pas de temps

◼ L’amplitude des oscillations croît exponentiellement, avec un taux 
de croissance proportionnel à t

◼ L’énergie mécanique n’est pas conservée, mais croît 
exponentiellement, avec un taux de croissance proportionnel à t

◼ Paramètre numérique crucial: 0t

❑ 0t << 1 veut dire plusieurs pas temporels par période

◼ Amélioration des schémas numériques nécessaire!

❑ Euler – Cromer ~t (*)

❑ Stormer-Verlet ~(t)2

❑ Runge-Kutta ordre 4 ~(t)4

◼ (*) changement apparemment minime, mais… (demo)

2.4 Oscillateur harmonique. Conclusions

Symplectiques: Emec=const en moyenne

Swiss Plasma Center
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2.7.1 Euler-Cromer: déjà un grand progrès!

◼ Les schémas d’Euler-Cromer et de Verlet seront 
présentés au tableau et seront illustrés par des 
simulations numériques.

FIG. 2.8 FIG. 2.9

Swiss Plasma Center



2.7.1 Euler-Cromer («symplectique»)

◼ Pour la force de portance de Magnus, comme pour la force de 

Lorentz due au champ magnétique, l’accélération en x dépend de 

vz, et l’accélération en z dépend de vx.

◼ Le schéma d’Euler-Cromer, s’écrit, pour la particule dans un champ 

magnétique selon z:

◼ (Euler explicite: vx,n)

◼ Vous pouvez essayer ce schéma pour le problème de Magnus 

(Ex.1)
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◼ En combinant Euler-Cromer « A » et « B » pour deux demi-pas
de temps, on aboutit au schéma de Verlet. La dérivation sera 
présentée au tableau.

2.7.1 Euler-Cromer: pied gauche ou pied droite 

d’abord?

Swiss Plasma Center
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2.7.2 Verlet

◼ Généralisé ici à une force dépendant explicitement du temps

◼ L’algorithme est conditionellement stable pour l’oscillateur 
harmonique (il y a une limite de stabilité, t max, cf plus loin)

◼ Il est d’ordre 2 en t: erreur ~(t)2

◼ Une seule évaluation de F par pas temporel

◼ Peut être utilisé pour de longues simulations sans qu’il y ait 
accumulation systématique d’erreurs sur la conservation de 
l’énergie

◼ S’applique en principe bien aux systèmes conservatifs
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2.7.2 Verlet

◼ Généralisé ici à une force dépendant explicitement du temps

◼ L’algorithme est conditionellement stable pour l’oscillateur 
harmonique (il y a une limite de stabilité, t max, cf plus loin)

◼ Il est d’ordre 2 en t: erreur ~(t)2

◼ Une seule évaluation de F par pas temporel

◼ Peut être utilisé pour de longues simulations sans qu’il y ait 
accumulation systématique d’erreurs sur la conservation de 
l’énergie

◼ S’applique en principe bien aux systèmes conservatifs

(2.103)
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Verlet – oscillateur harmonique

◼ Même t=0.2

Swiss Plasma Center
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◼ Conservation du « volume » dans l’espace de phase (x,v)

Euler-Cromer et Verlet sont symplectiques

Analogie:

Ensemble d’orbites dans 

l’espace de phase

Ecoulement fluide

Symplectique

Incompressible



Orbites dans l’espace de phase

Swiss Plasma Center 15

positions d’équilibre

Petits mvmts, 

fréquence propre 

indépendante de 

l’amplitude

lg /

Grands mvmts,

Période 

dépendant de 

l’amplitude

Petits mvmts, 

fréquence propre 

imaginaire 

→ instable 

(physiquement!)

lgi /
Orbites piégées

Orbites 

passantes



Formulations alternatives de Verlet - 1

◼ Verlet «leapfrog» (saute-mouton)

Swiss Plasma Center 16
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Formulations alternatives de Verlet - 2

◼ Stormer - Verlet

Swiss Plasma Center 17
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Cet algorithme date de 1907 (Stormer)
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2.7.3 Stabilité du schéma de Verlet

◼ On montre (preuve au tableau) que le schéma de Verlet

est stable pour le problème de l’oscillateur harmonique, 

à la condition que:

où 0 est la fréquence propre (physique!) du système:

N.B.: Il en est de même pour Euler-Cromer.

Swiss Plasma Center 18

𝜔0 = 𝑘/𝑚

𝜔0Δ𝑡 ≤ 2



2.7.4 Extension du schéma Verlet à des 

forces dépendant de la vitesse et du temps

Swiss Plasma Center
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Exercice 2: pendule de longueur variable
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➢ Petits mouvements. Mode propre et 

fréquence propre.

➢ Grands mouvements. Fréquence

dépendant de l’amplitude

➢ Rétractation du fil. Basculement

oscillation → rotation.

➢ Oscillation du fil. Résonance 

paramétrique. Doublement de période.

➢ Mouvement chaotique. Instabilité des 

orbites. Non-convergence numérique.

➢ Sections de Poincaré.

Pendule avec oscillation verticale


