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6 Schéma de Crank-Nicolson. Equation de Schrödinger. Oscil-
lateur harmonique. Barrière et effet tunnel.

On étudie, dans le cadre de la mécanique quantique, le mouvement d’une particule de masse m
soumise à un potentiel V unidimensionnel donné par (voir Fig. 1) :
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Le domaine est x ∈ [xL, xR], avec des conditions aux limites de type bords fixes. Dans tout
cet exercice, on choisira des unités normalisées de telle sorte que ℏ = 1 et m = 1. Les paramètres
xL, xR, xa, xb, V0 et ω0 sont les donnés physiques du problème. Cette forme de potentiel permet
d’étudier un oscillateur harmonique (en posant V0 = 0, xa = xb = 0,) et une barrière de potentiel
(en posant xa ̸= 0, xb ̸= 0, V0 > 0).

Figure 1 – Potentiel V (x).

La particule est initialement décrite par un paquet d’onde d’enveloppe Gaussienne, Eq.(4.116)
des notes de cours :

ψ(x, 0) = C exp(ik0x) exp[−(x− x0)
2/(2σ2)] , k0 = n2π/L , (2)

centrée en x = x0, d’écart-type σ = σnormL, et avec un nombre d’onde central k0 = 2πn/L,
où x0, σnorm et n sont des nombres donnés et L = xR − xL. La constante C sera calculée
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numériquement de telle sorte que la probabilité initiale totale soit égale à 1 :∫ xR

xL

|ψ(x, 0)|2dx = 1 , (3)

Du point de vue physique, les buts de cet exercice sont (1) d’illustrer le mouvement quan-
tique d’une particule dans un potentiel harmonique, et de le comparer avec celui qu’aurait une
particule classique ; (2) d’illustrer et quantifier le comportement fondamentalement différent
d’une particule quantique lors de certaines situations, comme le franchissement d’une barrière
de potentiel par effet tunnel.

Du point de vue numérique, le but de cet exercice est de résoudre l’équation de Schrödinger,
Eq.(4.79) du cours, en se basant sur le schéma semi-implicite, Eq.(4.90), discrétisé avec des
différences finies spatiales sur un maillage régulier, voir Eqs.(A.7) et (4.99-4.100).

6.1 Calculs Analytiques [4pts]

Dans le cas d’un oscillateur harmonique (V0 = 0, xa = xb = 0, xL = −1, xR = 1), calculer
le mouvement xclass(t) et la quantité de mouvement pclass(t) qu’aurait une particule classique
placée initialement (t = 0) à la position x = x0 et avec la quantité de mouvement p = p0, avec
x0 et p0 donnés.

6.2 Formulation et Programmation [5pts]

Télécharger et étudier le code Exercice6 2025 student.zip. Pour faciliter le calcul avec des
nombres complexes, la librairie complex de C++ est utilisée.

Le programme attend comme paramètres d’entrée xL, xR, définissant le domaine ; V0, xa,
xb, ω0 définissant le potentiel ; x0, σnorm et n définissant la fonction d’onde initiale ; le nombre
d’intervalles du maillage nx, le nombre de pas de temps nsteps et le temps final tfin définissant
les paramètres numériques.

Compléter l’algorithme semi-implicite et implémenter quelques observables physiques. Cette
partie inclut notamment les étapes suivantes :

(i) la construction et l’écriture des matrices H, A et B en incluant les conditions aux limites
ψ(xL, t) = ψ(xR, t) = 0 ∀t dans les matrices A et B ;

(ii) l’écriture de la fonction d’onde initiale et sa normalisation, Eqs.(2, 3) ;

(iii) le calcul des probabilités qu’on trouve la particule à gauche Px<0(t), respectivement à
droite de la barrière Px>0(t) ;

(iv) le calcul de l’énergie de la particule, moyenne de l’Hamiltonien :

E(t) = ⟨H⟩(t) =
∫ xR

xL

ψ∗(x, t)H(x)ψ(x, t)dx ; (4)

Indication : pour toutes les intégrales selon x, utiliser la règle des trapèzes.

(v) le calcul de la position moyenne de la particule ⟨x⟩(t) :

⟨x⟩(t) =
∫ xR

xL

ψ∗(x, t)xψ(x, t)dx ; (5)

(vi) le calcul du x2 moyen de la particule ⟨x2⟩(t) :

⟨x2⟩(t) =
∫ xR

xL

ψ∗(x, t)x2ψ(x, t)dx ; (6)
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(vii) le calcul de la quantité de mouvement moyenne de la particule ⟨p⟩(t) :

⟨p⟩(t) =
∫ xR

xL

ψ∗(x, t)

(
−iℏ∂ψ(x, t)

∂x

)
dx ; (7)

Indication : prendre les différences finies centrées, (∂ψ/∂x)i = (ψi+1 − ψi−1)/(2hx), où
hx est la distance entre deux points de maillage, pour tous les points intérieurs. Pour les
points de maillage des extrémités gauche et droite du domaine, prendre les différences
finies “forward” et “backward”, respectivement.

(viii) le calcul du p2 moyen de la particule ⟨p2⟩(t) :

⟨p2⟩(t) =
∫ xR

xL

ψ∗(x, t)

(
−ℏ2

∂2ψ(x, t)

∂x2

)
dx ; (8)

Indication : prendre les différences finies centrées, (∂2ψ/∂x2)i = (ψi+1 − 2ψi +ψi−1)/h
2
x,

pour tous les points intérieurs. Pour les points de maillage des extrémités gauche et droite
du domaine, mettre 0.

(ix) le calcul des incertitudes de la position et de la quantité de mouvement :

⟨∆x⟩(t) =
√
⟨x2⟩(t)− ⟨x⟩2(t) ; (9)

⟨∆p⟩(t) =
√
⟨p2⟩(t)− ⟨p⟩2(t) . (10)

N.B. : Votre rapport doit contenir une brève description de l’implémentation des
points ci-dessus.

La résolution du système algébrique linéaire, AΨt+∆t = BΨt (voir Notes de Cours après
l’Eq.(4.100)), est déjà programmée dans le code C++.

6.3 Oscillateur Harmonique [20pts]

On prend xL = −1, xR = 1, V0 = 0, xa = 0, xb = 0, ω0 = 100, x0 = −0.5, σnorm = 0.04,
n = 16, et tfin = 0.08.

(i) Mouvement quantique et comparaison avec mouvement classique [8pts] On
prend les paramètres numériques nx = 512, nsteps = 800. Effectuer une simulation et
illustrer le résultat obtenu : |ψ(x, t)|, Re(ψ(x, t)), ainsi que les graphes de la position
moyenne ⟨x⟩(t) et de la quantité de mouvement moyenne ⟨p⟩(t), comparés au mouvement
de la particule classique xclass(t), repsectivement pclass(t).

(ii) Vérification des propriétés physiques [4pts] Vérifier si la probabilité totale reste
toujours égale à 1, et si la valeur moyenne de l’énergie (Hamiltonien) reste constante.
Vérifier que le principe d’incertitude de Heisenberg est satisfait :

⟨∆x⟩(t) · ⟨∆p⟩(t) ≳ ℏ/2, ∀t. (11)

(iii) Convergence numérique [8pts]. Faire deux études de convergence numérique. La
première, avec nx = 512 fixé, en variant nsteps, pour illustrer la convergence avec ∆t.
La deuxième, avec nsteps = 800 fixé, en variant nx, pour illustrer la convergence avec hx.
On prendra comme quantité dont on étudie la convergence, la position moyenne au temps
final, ⟨x⟩(tfin).
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6.4 Barrière de Potentiel et Effet Tunnel [16pts]

Maintenant, on considère V0 ̸= 0, xa = −0.5, xb = 0.5. La fonction d’onde initiale est la
même que dans la partie précédente (x0 = −0.5, σnorm = 0.04, n = 16).

(i) [8pts] On définit la probabilité de transmission de la particule, Px>0(ttrans), en choisissant
un temps ttrans ≈ 0.035 tel que le paquet d’onde initial se soit scindé en deux paquets
distincts. Calculer Ptrans pour différentes valeurs de V0 et représenter les résultats en
fonction de ⟨E⟩/V0.

(ii) [8pts] Illuster l’évolution de la fonction d’onde |ψ(x, t)| dans trois cas représentatifs sui-
vants : V0 > ⟨E⟩, V0 ≈ ⟨E⟩, et V0 < ⟨E⟩. Tracer également Px<0(t) et Px>0(t) dans chacun
des cas et discuter les résultats, notamment encomparant qualitativement avec le résultat
qu’on attendrait de la mécanique classique.

6.5 Suppléments facultatifs

— Changer la forme du potentiel.
— Changer la fonction d’onde initiale. En particulier, dans le cas de l-oscillateur harmonique,

choisir σ de sorte à initialiser un état quasi-classique (Eq.(4.124) des notes de cours) et
vérifier que ⟨∆x⟩(t) reste constant.

— Détecteur de particule. On place un détecteur de particules dans la partie droite du
système. Si, en t = tdetect, celui-ci signale la présence de la particule, le paquet d’onde
est alors instantanément “réduit” : la fonction d’onde ψ(x, tdetect) est alors subitement
multiplié par un fonction f(x) : ψ̂(x, tdetect) = Df(x)ψ(x, tdetect), avec

f(x) =


0 x < 0

sin2
(

πx
2xda

)
0 ≤ x < xda

1 xda ≤ x < xdb

cos2
(

π(x−xdb)
2(xR−xdb

)
xdb ≤ x < xR

(12)

avec xda et xdb donnés, et D est tel que
∫ xR

xL
|ψ̂(x, tdetect)|2dx = 1. Effectuer une paire

de simulations (1) dans le cas où on ne détecte pas la particule, et (2) dans le cas où on
détecte la particule en t = tdetect donné, et comparer les résultats des deux cas.

6.6 Rédaction du rapport en LATEX

Rédiger un rapport de maximum 8-10 pages, figures comprises, répondant aux ques-
tions ci-dessus sont présentées et discutées.

6.7 Soumission du rapport en format pdf et du fichier source C++

(a) Préparer le fichier du rapport en format pdf RapportExercice6_Nom1_Nom2.pdf

(b) Préparer le fichier source C++ Exercice6_Nom1_Nom2.cpp

(c) Déposer les fichiers sur Moodle avec ce lien.
En plus des points attribués ci-dessus pour les différentes parties de l’exercice, [5pts] sont
attribués à la qualité générale et la participation.
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