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Physique Numérique — Semaine 14

Rappel de la semaine 13

Q 4.3 Schrodinger.
O Crank-Nicolson: conservation exacte de I'énergie moyenne.
O Particule dans un potentiel V(x), effet tunnel, résonance
O Détecteur de particule
A Particule dans un potentiel V(x): Oscillateur harmonique, états quasi-
classiques (cohérents)

Plan de la semaine 14

0 4.3 Schrodinger
U Heisenberg et Fourier
O Etats stationnaires (ou «propres»), énergies «propres.
O Particule dans un potentiel V(x) périodique. Gaps.

O Physiqgue numérique des plasmas de fusion (en bref)

0 Exercice 6: a rendre AUJOURD’HUL.
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Physique Numérique — Semaine 14
Evaluation approfondie des cours: jusqu’au 8 juin
5 minutes a la fin du cours

» Aller sur la page d’accueil de Moodle (PAS sur celle du cours)
> Aller a la case «Evaluation approfondie»
» Sélectionner le cours PHYS-210 SP24 et compléter le feedback

W Swiss Plasma Center
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Documentation

Lecture pour la Semaine #14: Notes de cours
o Section 4.3.4 Oscillateur harmonique
o Section 4.3.5 Etats stationnaires (propres)

http://moodle.epfl.ch/mod/resource/view.php?id=8220

B Swiss Plasma Center
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Exercice 6 5000

2 sessions: 14, 21 mal
Délai de rendu

[

—

E2-<faar —> mercredi 28 mai 2025

3e session, 28 mai : “rattrappage”

W Swiss Plasma Center
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Détection ou non ...

Barrier 6=4.3 V0=1.02E0 n=32 Re(y(x,t))
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Etats cohérents ou semi - classiques

Harmo V0=5.5E0 n=4 |(x,t)| mo V0=5.5E0 n=24 Re(v(x,t))
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X X
Etats dits «quasi-classiques», tels que leur incertitude Ax est constante
au cours du temps. Il s’agit de paquets d’'ondes gaussiens avec

Ax = \Jh/2 mw,
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Etats cohérents ou semi - classiques

Harmo Vo=5'5Eo n=24
I/ \ T T l —
;7\ hot “
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! \ I 3
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Heisenberg

(AX)(AD) > 71/ 2

Peut se comprendre a I’aide de la transformée de
Fourier

o Des démonstrations seront présentées au cours

o Preuve mathématique formelle:
https://brilliant.org/wiki/heisenberg-uncertainty-principle/
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Heisenberg et Fourier

Principe d’incertitude de Heisenberg et transformées de Fourier

1 TR A ikx
w(X,1) =ijw(k,t)ek dk 7 (k,t)estla T.F.en x de w(x,1)

N.B.: On peut ensuite faire la T.Fent de yw(k,t).Cependant, dans
la suite, nous omettrons la dépendanceent.

Theorem (Fourier-Heisenberg): (AX)(AK) >1/2

oy 1 T A kX 1A oy
= Iky e™ dk “r
X J2n LO 4 Ikys estla T.F.en xde Pw
Z £ - 1 4 _ _' i 2 _ 2 2
On définit I'opérateur k = —i— et (AKk ) (t) = <k >(t) — (k)" (t)

Quantique Ona p =%k, donc: (AX) (Ap) > h / 2
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Limite classique

1 < 1V
Thm Ehrenfest: <=-?~ _ __%%
dt da
d<ax> P
= <= >
dt m

dV(x)> ” dv ({x))

| En général
dx dx

Particule classique #1 d'énergie
Epass1 =<H >=<p*/2m+V(x) >
Particule classique #2 de quantité de mvmt

Dclass2 =<D >

Eclass,l + Eclass,z pclass,l + pclass,z

B Swiss Plasma Center
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Schrodinger stationnaire

4.3.5 Etats d’énergie bien déterminée:
p (X, 1) =Y (X)exp(-lat)|  H=E/n

Eqg. de Schrodinger stationnaire

hZ

Vi +Vy =Ey| |H(y)=Ey
- 2m
Les énergies possibles de la particule sont les valeurs propres de ’Hamiltonien.

Les fonctions propres correspondantes sont appelées états propres.

Discrétisation  Xic 1=1-N ¥ =¥(x))

H _ Les énergies possibles de la particule sont
¥ =EY, g |
) approximées par les valeurs propres de la matrice

H résultant de la discrétisation de I’Hamiltonien.
Les états propres sont a rOX|mes ar les
vecteurs propres de H. (n),
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Principe de superposition

Solution Générale de Schroedinger = superposition d’'états propres:
w(X,t) =D c W, (X)exp(—iEt/h)

|c,,|%: probabilité que Ta particule soit dans I'état no n

D’ou une autre méthode, dite spectrale, de résolution de Schroedinger:
o Opérateur H : calcul des fonctions et valeurs propres {¥, (x), E,;}
o > Matrice H : calcul des valeurs et vecteurs propres {¥,,(x;), E,}

o Calculdes ¢ = ILP*n (X (X,0)dx > ¢ = X; ¥ ) (x;,0)
(projection sur les états propres)
o La solution numérique est:

l/)(xi» tj) — Zn Cntpn(xi) eXp (_ lETn tj)

Voir aussi http://falstad.com/gm21d/
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Puits

Particule dans un puits de potentiel de profondeur finie

Schr.stat. Puits \-“D:— 100

Schr.stat. Puits ‘\.*'D:—’l[][]

.
-100 ; k

Fic. 4.25 Spec
(a droite) pour une

Vo = —100, entre = =

Dopres
articule confinée dans un puits de potentiel de profondeur [IRge,
U.5 et # =405 (lignes traitillées).

Seul un nombre fini de \)&Ieurs négatives de I'énergie est possible:
«spectre discret». Etat fundamental E>min(pot)

La particule a une probabilité de présence non nulle en dehors du puits

Etats d’énergie positive: «spectre continu»
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Potentiel périodique

Particule dans un potentiel péeriodigue. Solide
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Retour vers Schroedinger dépendant du temps

Placons un paquet d’'onde initial dans un potentiel
périodique

Observons comment ce paquet d'onde se propage dans
le systeme

Le premier paquet d’'onde a une énergie inférieure aux
maxima du potentiel

Le deuxieme paquet d’'onde a une energie supérieure aux
maxima du potentiel

... QUIZ: qui va gagner la course?
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Potentiel périodique
Energie inférieure aux maxima de V

9y Paquet d’onde initial:
V(z) = Vpsin (npﬁt;) _ sy
L _ iKgX A—(X=X) /20

w(X,0) =Ce™"e

27N

1 S S

. Energie (esp.math.) de

Periodic V=500 n =40 n=12 E=358

ZEE]—-HWM M[MhM i

200

;; 100} \, la particule
>-1oo- - <E> :(l//’ H(W))

K

” 2m

-200}
-300}
-400}
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Potentiel périodique
La particule arrive quand méme a avancer!

Periodic V=500 n =40 n=12 E=358

il
il

L W M i @. M

Paquet d'onde initial n=12

Periodic V0=500 nv=40 n=12 E=358

]
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V(x)

1000

500

-500,
-2

Physique Numérique I-II semaine 28

= Energie supérieure aux maxima de V, ... et pourtant la
particule n’arrive pas a avancer!

Periodic V=500 n =40 n=20 E=988

<E>

L'énerige de la particule est bien

supérieure au maximum du
potentiel.

Periodic VD=50

0.025

0.02
0.015
0.01

0.005

Re(y(x.1))

0.5 1 1.5

Pourquoi la particule
n’arrive-t-elle pas a
avancer ?

18
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Physique Numérique I-II semaine 28

Longueur d’'onde = 2 x périodicité du potentiel

Paquet d’onde initial n=20 Periodic V=500 n =40 n=20 E=988
F - = !

‘WM @ |
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Schr.stat. Periodic VO=500 nv=40

2000

o
T
. ! “#
15001+ Bande de conduction : .;'
- Y :.Q:’
L L.
1000 | Bande intedite (gap) A’
L0
Y
) p /““‘I
i s |
007! Bande de valence . oo™ |
- - l
_ |
0 |

0 1|0 2|0 3|0 40 5|O 60
On est autour du mode n=40 - gap

La vitesse de groupe est nulle au voisinage du gap -2 le
paquet d'onde a une vitesse nulle



Energie encore plus élevee, au dessus du gap




Physique Numérique des Plasmas
de Fusion — Quelques Illustrations

Les méthodes numériques vues dans ce cours sont
toutes utilisées dans les codes de simulation des
plasmas ... avec des variantes...

... et d’autres méthodes aussi...

m Swiss Plasma Center 22
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Magnetic confinement: tokamak

B field line

magnetic surface

—

1 -t
:Eé: S
.y gy
L 1 ~
R
:1

EEIaN,
......

Larmor l

radius p, T%
particle /

trajectory

helical torsion(rotationd

1 transform)of B field linesis

essential to confine particles

VB and curvaturedrifts

__Trapped
particle

| Passing
particle

m  Strasbourg September 16 2009
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Complexity: many nonlinearities

transformer

Neutral

/ Beams
induction RF

/ fusion
current drive

/ A
plasma current j, I _|a particles

N
operational

e limits
equilibrium X
_ macroscopic .~
coils stgbility L

microscopic

configuration B(X) tability

Geometry of magnetic configuration is an essential feature of fusion plasma physics

m  Strasbourg September 16 2009 24
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Timescales in magnetic fusion plasmas

machine i
et energy lon electron
ifetime  1ShOt .\ rnement tUrbulence cyclotron cyclotron

t[s]

<<

10° 10°  10° 10> 10° 107%

Physics spans several orders of magnitude

Direct Numerical Simulation (DNS) of “everything” is unthinkable
o Need to separate timescales using approximations

o How to integrate all phenomena in a consistent manner?

m  Strasbourg September 16 2009 25
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Kinetic effects: wave-particle interaction

Surfers with velocity too different
from the phase velocity of the
wave will not ride the wave

Surfers with velocity just below the
phase velocity of the wave will be
accelerated

-> momentum and energy transfer

particlesif of /ov <0
i I\ VvV | Collisionless Landau damping

@l K
= General: distribution function in 6D phase space f (X,V;t)
= To be solved with consistent electromagnetic fields E()*(,t)’ |§()*(,t)

\ Net energy transfer from the wave to the
|
|

m  Strasbourg September 16 2009 26
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Gyrokinetic model

Assume Wy pylence << Won cyclotro

Average out the fast motion of
the particle around the guiding

center

Fast parallel motion, slow phase space dimension reduction
perpendicular motion (drifts) 6D --->5D

Strong anisotropy of turbulent f.(q,p;t) > fs(ﬁj,ﬁ;t)

perturbations (// vs perp to B)

S
w = v + (es/cmg) A
1= mgvy /2By

k// Zonal Flows jon-driven kL electron-driven

< P [
< <« »

| >
10 10° 10t 102 10  10* KkIm™]

m  Strasbourg September 16 2009 27
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Gyrokinetic equations

Dfs 0fs dR Of,  dudf,
Dt — ot dt OR = dt Ou

1)

= 0

It is an advection equation along nonlinear characteristics:

) o m _ _
CZ_}; — b — (A2 4 — b (e,V (W) + ma’b-Vb + 1V By)

AN Fo

parallel motion magnetic and ExB nonlinearities  curvature and grad-B

(FAST) parallel velocity T drifts —
nonlinearity (SLOW)
di B* X 7
dt —  m.BF (esV{(¥)e + AV By)
sB) '\mirror term
dp

= 0 : conservation of the magnetic moment

B* = By + (Bou/Q)V xb
(R, w, 1. &, t) = ¢ —uAj/c :generalized potential

dt

28
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Gyrokinetic perturbed field equations

Poisson (or: quasi-neutrality) equation, here with Boltzmann electrons
linearized ion polarization density, long wavelength approx. ~O(k, p,,)?

_0(5¢—5_¢>—VL° —OVJ_5¢ :<&1i>
AN

BQ.
€ J _ I
s D
5’16 &‘Iip gyro-center perturbed ion density
[6p3do7de

= I 1d07de : flux-surface-averaged potential

Ampere’s law, here neglecting 6B, and expanding ~O(k, p,,)?

I A
(pu pmj&w a-pIV.oA)= (</J,,.> <51/,,e>>

gyro-center perturbed ion and electron currents

Integral — partial differential system of equations, inhomogeneous, linear

m  Strasbourg September 16 2009 29
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Lagrange “PIC”: essential steps

D: solve fields

m  Strasbourg September 16 2009
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Euler (“Vlasov”) (“continuum”)

D: solve fields

v C: f,j(t-i-At)
MW\
/1!/-r A\
/ A
i
! |\ \ B: finite differences
I\ \
A: fixed grid oy v

L

e

x 2 7
/

rd

m  Strasbourg September 16 2009
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Semi-Lagrange

D: solve fields

T A

\"

B: follow orbit back in time
A fixed grid

X / /«?}1::7
/ / l\/\"/’: C: interpolate

m  Strasbourg September 16 2009
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Turbulence in
an ITER
plasma

(¢-<¢>)/Te at t=960000 ORBS

0.01
2500+
0.008
0.006
2000+
0.004
- -0.002
1500
)
= -0
N
-0.002
1000+
-0.004
=00l -0.006
-0.008
1500 2000 2500 -0.01

(*) more grid points on this 2D slice than pixels

2D slice
Snapshot

Contours of
density
perturbations

1G grid (3D)(*)
2G particles (5D)

HELIOS
1.5 PFlops
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Z.onal Flows and

turbulence
= Turbulence
W - zonal flows (ZF)
- shearing turbulent
| eddies
N - turbulence suppression

= Self-organization

- Radial structure of
alternating bands of
ZFs, related to regions of
suppressed turbulence

|
A L;‘ = ITER plasma shaping
v/ Wa) - more effective
e turbulence
suppression by ZFs
! than circular shaped

plasmas
(see next slide)

d\ : yg‘a
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Physique Numérique
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