
Physique Numérique – Semaine 14

Swiss Plasma Center

Rappel de la semaine 13

❑ 4.3 Schrödinger. 

❑ Crank-Nicolson: conservation exacte de l’énergie moyenne.

❑ Particule dans un potentiel V(x), effet tunnel, résonance

❑ Détecteur de particule

❑ Particule dans un potentiel V(x): Oscillateur harmonique, états quasi-

classiques (cohérents)

Plan de la semaine 14
❑ 4.3  Schrödinger

❑ Heisenberg et Fourier

❑ Etats stationnaires (ou «propres»), énergies «propres».

❑ Particule dans un potentiel V(x) périodique. Gaps.

❑ Physique numérique des plasmas de fusion (en bref)

❑ Exercice 6: à rendre AUJOURD’HUI. 
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Physique Numérique – Semaine 14

Evaluation approfondie des cours: jusqu’au 8 juin

5 minutes à la fin du cours

➢ Aller sur la page d’accueil de Moodle (PAS sur celle du cours)

➢ Aller à la case «Evaluation approfondie»

➢ Sélectionner le cours  PHYS-210_SP24 et compléter le feedback
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #14: Notes de cours

❑ Section 4.3.4 Oscillateur harmonique

❑ Section 4.3.5 Etats stationnaires (propres)

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Exercice 6

◼ 2 sessions: 14, 21 mai

◼ Délai de rendu 

mardi 27 mai →mercredi 28 mai 2025

◼ 3e session, 28 mai : “rattrappage”
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Détection ou non … 
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Etats cohérents ou semi - classiques
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Δ𝑥 = Τℏ 2𝑚ω0

Etats dits «quasi-classiques», tels que leur incertitude Dx est constante 

au cours du temps. Il s’agit de paquets d’ondes gaussiens avec
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Etats cohérents ou semi - classiques



Heisenberg

◼ Principe d’incertitude de Heisenberg

◼ Peut se comprendre à l’aide de la transformée de 

Fourier

❑ Des démonstrations seront présentées au cours

❑ Preuve mathématique formelle:

https://brilliant.org/wiki/heisenberg-uncertainty-principle/

2/))(( DD px
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◼ Principe d’incertitude de Heisenberg et transformées de Fourier

Heisenberg et Fourier
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◼ Thm Ehrenfest:

◼ ! En général        
𝑑𝑉(𝑥)

𝑑𝑥
≠

𝑑𝑉 𝑥

𝑑𝑥

◼ Particule classique #1 d’énergie 

◼ Particule classique #2 de quantité de mvmt

𝐸𝑐𝑙𝑎𝑠𝑠,1 ≠ 𝐸𝑐𝑙𝑎𝑠𝑠,2 𝑝𝑐𝑙𝑎𝑠𝑠,1 ≠ 𝑝𝑐𝑙𝑎𝑠𝑠,2

Limite classique

𝐸𝑐𝑙𝑎𝑠𝑠,1 =< 𝐻 >=< Τ𝑝2 2𝑚 + 𝑉 𝑥 >
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𝑝𝑐𝑙𝑎𝑠𝑠,2 =< 𝑝 >
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◼ 4.3.5 Etats d’énergie bien déterminée: 

◼ Eq. de Schrödinger stationnaire

◼ Discrétisation 

Schrödinger stationnaire

Les énergies possibles de la particule sont les valeurs propres de l’Hamiltonien. 

Les fonctions propres correspondantes sont appelées états propres.

Les énergies possibles de la particule sont 

approximées par les valeurs propres de la matrice 

H résultant de la discrétisation de l’Hamiltonien. 

Les états propres sont approximés par les 

vecteurs propres de H. →
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◼ Solution Générale de Schroedinger = superposition d’états propres:

◼ 𝑐𝑛
2: probabilité que la particule soit dans l’état no 𝑛

◼ D’où une autre méthode, dite spectrale, de résolution de Schroedinger:

❑ Opérateur H : calcul des fonctions et valeurs propres {Ψ𝑛(𝑥), En}

❑ → Matrice H : calcul des valeurs et vecteurs propres {Ψ𝑛(𝑥𝑖), En}

❑ Calcul des                                               → 𝑐𝑛 = σ𝑗Ψ𝑛
∗ xi 𝜓(𝑥𝑖 , 0)

(projection sur les états propres)

❑ La solution numérique est: 

𝜓 𝑥𝑖 , 𝑡𝑗 = σ𝑛 cnΨ𝑛 𝑥𝑖 exp −
𝑖𝐸𝑛

ℏ
𝑡𝑗

◼ Voir aussi http://falstad.com/qm1d/
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Principe de superposition
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◼ Particule dans un puits de potentiel de profondeur finie

Puits

La particule a une probabilité de présence non nulle en dehors du puits

Seul un nombre fini de valeurs négatives de l’énergie est possible: 

«spectre discret». Etat fundamental E>min(pot)

Etats d’énergie positive: «spectre continu»
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◼ Particule dans un potentiel périodique. Solide

Potentiel périodique



Retour vers Schroedinger dépendant du temps

◼ Plaçons un paquet d’onde initial dans un potentiel 

périodique

◼ Observons comment ce paquet d’onde se propage dans 

le système

◼ Le premier paquet d’onde a une énergie inférieure aux 

maxima du potentiel

◼ Le deuxième paquet d’onde a une énergie supérieure aux 

maxima du potentiel

◼ … QUIZ: qui va gagner la course?
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◼ Energie inférieure aux maxima de V

Potentiel périodique
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◼ La particule arrive quand même à avancer!

Potentiel périodique

Position moyenne

Paquet d’onde initial n=12
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◼ Energie supérieure aux maxima de V, … et pourtant la 

particule n’arrive pas à avancer!

Physique Numérique I-II semaine 28

Pourquoi la particule 

n’arrive-t-elle pas à 

avancer ?

Re((x,t))

L’énerige de la particule est bien 

supérieure au maximum du 

potentiel.

<E>
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◼ Longueur d’onde = 2 x périodicité du potentiel

Physique Numérique I-II semaine 28

Position moyenne

Paquet d’onde initial n=20



◼ On est autour du mode n=40 → gap

◼ La vitesse de groupe est nulle au voisinage du gap → le 

paquet d’onde a une vitesse nulle

20
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◼ Energie encore plus élevée, au dessus du gap

Position moyenne

Paquet d’onde initial n=24



Physique Numérique des Plasmas 

de Fusion – Quelques Illustrations
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Les méthodes numériques vues dans ce cours sont 

toutes utilisées dans les codes de simulation des 

plasmas … avec des variantes… 

… et d’autres méthodes aussi…
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Magnetic confinement: tokamak

Larmor 

radius rL

linefieldB


surfacemagnetic drifts curvature and B

Trapped 

particle

Passing 

particleparticle 

trajectory

particles confine  toessential

is lines field  of transform)
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B
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Complexity: many nonlinearities

◼ Geometry of magnetic configuration is an essential feature of fusion plasma physics

Neutral 

Beams

RF

current drive heat

T

n



heat

fusion

particles heat

transport

turbulence

microscopic 

stability

heat

transformer

pIj,currentplasma


)(ionconfigurat xB
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limits
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Timescales in magnetic fusion plasmas

]s[t

machine 

lifetime 1 shot
energy 

confinement
turbulence

ion 

cyclotron

electron 

cyclotron

810−510−010310810 1210−

◼ Physics spans several orders of magnitude

◼ Direct Numerical Simulation (DNS) of “everything” is unthinkable

❑ Need to separate timescales using approximations

❑ How to integrate all phenomena in a consistent manner?
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Net energy transfer from the wave to the 

particles if

Collisionless Landau damping

0/  vf

Kinetic effects: wave-particle interaction

Surfers with velocity just below the 

phase velocity of the wave will be 

accelerated 

-> momentum and energy transfer

Surfers with velocity too different 

from the phase velocity of the 

wave will not ride the wave

◼ General: distribution function in 6D phase space

◼ To be solved with consistent electromagnetic fields
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Gyrokinetic model

◼ Assume 

◼ Average out the fast motion of 
the particle around the guiding 
center

◼ Fast parallel motion, slow 
perpendicular motion (drifts)

◼ Strong anisotropy of turbulent 
perturbations (// vs perp to B)

cyclotron ionturbulence  

110− 010 110 210 310 410

//k
⊥kion-driven electron-drivenZonal Flows
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phase space dimension reduction 

6D ---> 5D

);,,();,( tuRftpqf ss 


→

sqR r


−=







Strasbourg September 16 2009 28

Gyrokinetic equations

It is an advection equation along nonlinear characteristics:

: generalized potential

parallel motion

(FAST)

curvature and grad-Bmagnetic and ExB nonlinearities

drifts 

(SLOW)

mirror term

parallel velocity
nonlinearity

: conservation of the magnetic moment
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Gyrokinetic perturbed field equations

◼ Poisson (or: quasi-neutrality) equation, here with Boltzmann electrons, 
linearized ion polarization density, long wavelength approx. ~

◼ Ampère’s law, here neglecting dB//  and expanding ~
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Integral – partial differential system of equations, inhomogeneous, linear

gyro-center perturbed ion density
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Lagrange “PIC”: essential steps

grid cell
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Euler (“Vlasov”) (“continuum”)
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Semi-Lagrange
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ITG turbulence in ITER
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2D slice

Snapshot

Contours of 

density 

perturbations

1G grid (3D)(*)

2G particles (5D)

HELIOS 

1.5 PFlops 

Turbulence in 

an ITER 

plasma

(*) more grid points on this 2D slice than pixels
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Zonal Flows and 

turbulence
◼ Turbulence 

→ zonal flows (ZF) 

→ shearing turbulent 
eddies 

→ turbulence suppression

◼ Self-organization

→ Radial structure of 
alternating bands of 
ZFs, related to regions of 
suppressed turbulence

◼ ITER plasma shaping

→ more effective 
turbulence 
suppression by ZFs 
than circular shaped 
plasmas

(see next slide)
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Merci de votre attention

Bonne continuation de vos études!

Physique Numérique


