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Physique Numérique — Semaine 13

Rappel de la semaine 12

O 4.3 Schrodinger.
0 Schéma semi-implicite de Crank-Nicolson
Q Particule libre, étalement du paquet d’'onde
O Initialiser une onde pour qu’elle se propage dans les 2 directions
O Principe d’incertitude de Heisenberg et transformée de Fourier
Q Propriétés de conservation de la probabilité

Plan de la semaine 13

0 4.2 Ondes: schéma exact pour =1
Qd 4.3 Schrodinger
O Propriété de conservation de I'énergie
Q Particule dans un potentiel V(x),
O Barriere de potentiel effet tunnel
O Oscillateur harmonique — états quasi-classiques
O Détecteur de particule

QU -Exercice 6:--arendre MERCREDI prochain.
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Physique Numérique — Semaine 13
Evaluation approfondie des cours: du 19 mai au 8 juin
5 minutes a la fin du cours

» Aller sur la page d’accueil de Moodle (PAS sur celle du cours)
> Aller a la case «Evaluation approfondie»
» Seélectionner le cours PHYS-210 SP25 et compléter le feedback

Retour sur les ondes, schema explicite a 3 niveaux:
Le schéma est exact dans le cas u?=const, =1
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Documentation

Lecture pour la Semaine #13: Notes de cours
o Section 4.3. Schrodinger.

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Exercice 6 5000

2 sessions: 14, 21 mal
Délai de rendu

TIeret-2 e~ mercredi 28 mai 2025
3e session, 28 mai : “rattrappage”
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Ondes

Pour le cas u” = const, le schéma explicite a 3 niveaux est exact pour 5 = 1. En
effet, on connait la solution exacte :

f(z,t) = F(x — ut) + G(x + ut) (48)
pour toutes fonctions F(&) et G(n). Pour 8 =1, le schéma, Eq.(6), devient :
fi,n—}—l — _f-i,n—l + (fi—b—l,‘n, + fi—l,n) <~ fi,n—l—l + f-i,n—l — f-i—{—l,n + f-i—l,n (49)

En substituant la solution exacte, on obtient :

F(Ta — Ut-n,Jrl) + G(T? + Utn+1) + F(«Tz — Utn—l) + G(«T? + Utn—l)
— F(Ii—i—l - utn) + G(Ii—l—l + ut'n,) + F(:Ei—l - Utn) + G(:E'é,—l + Ut'n.) (50)

= F(z; —ut, + Az) + G(x; + ut, + Azx) + F(x; — ut,, — Azx) + G(z; + ut,, — Azx) (51)

Avec =1, on a uAt = Ax, et 'équation ci-dessus est bien identiquement satisfaite, VF, VG.
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Exemples
o 4.3.2 Particule libre

Schroedlnge-r semi- |mp||::|te n= 16 o=6.4

|3 f?@%

2 D-mnmmm*le‘%p I|:1 |I||+]|I|.L HLFI,E% |
|4+ l'l‘l'l'!fl#

-0.5¢ 'r lall hi_ "

0.5 ‘ t=100

150 0 5'0}( 100 150
Etalement du paquet d’'onde.
Effet de la dispersion, pas de diffusion!

(Etalement n’est pas ~\/E )
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Conservation de la probabilité: semi-implicite

Le schéma de Crank-Nicolson conserve la probabilité: (y,yw) = const

Preuve:
I At I At
1+——H X, t+At)=|1———H X, t
(1228 a0 = (1225 (x| aso
Opératear/A. Opérat;u/r B.
SOIt o = % H H hermitien = o hermitien = B=A" =

1A% - AL pA* .
Via = A Ay, oIt T, =A"A Win = T Wi

*

Lemme 1: T—At = TAt (preuves au tableau)
Lemme 2: T—At — (TAt )_1 Exprime la réversibilité du schéma
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Conservation de la probabilité: semi-implicite et implicite

Le schéma de Crank-Nicolson conserve la probabilité:(l//, ) = const

TAt )_1 :TAt* = TAt TAt* =1

Lemmes let?2 = (

L'opérateur d’évolution temporelle est unitaire

Cette propriété implique directement la conservation de la probabilité. En effet:

(Wt+At , tht) — (TAtWt ’TAtWt) — (Wt ’TAt*TAtWt) — (Wt , ';”t)

Un schéma completement implicite ne conserve pas la probabiliteé:

Lemme 1;

Lemme 2;

W Swiss Plasma Center

Wia = @+ 2i0‘)_1'7”t

Ay

OK!

Le schéma implicite n’est PAS réversible!
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Conservation de la probabilité: schéma explicite

Un schéma complétement explicite ne conserve pas la probabilité:
Viea = (1—21c) l//t\

. — I
Lemmel: (T_, =T, | OK

-1
Lemme 2: T—At == (TAt ) Le schéma explicite n’est PAS réversible!

Le schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de
I'intervalle temporel. Cette propriété est ici liée a la propriété de
conservation. De facon générale, les schémas de differences finies
«centrés» sont préferables, on gagne en ordre de convergence.
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Conservation de Pénergie

La proprieté de conservation de I'énergie, en mecanique quantique, devient
la conservation de I'espérance mathématique de I'lhamiltonien. Elle s’appuie
essentiellement sur la propriété que I'Hamiltonien H est hermitien. Il est donc
essentiel que la discrétisation spatiale de I'Hamiltonien préserve cette
proprieté. Une fois de plus: il faut que la matrice H soit hermitienne!

(H )(t) = const

Preuve:

SH)® = . Hy) = (%‘f@}(w

Eqg. Schrodinger:
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Effet tunnel

= 4.3.3 Barriere de potentiel: effet tunnel

o Dans cette série de simulations, on initialise toujours le méme
paquet d’'onde et on change la hauteur VO et I'épaisseur de la

barriere
o CasV,>E
Tunnel =25V =1.2E_ n=32
0 0
100 \\\ \¥ \ I
. M\ S Re(w(x.)
- Probabilité non
) nulle de traverser
la barriere méme
20 Voir aussi Ex6
0 7 i
~50 0 50 100 150
X
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Résonance avec I’épaisseur de la barriere

» 4.3.3 Barriere de potentiel: résonances
o Cas V<E

Re(y(x,1)

100 100

80 80

60 60

-

40 40

20 20

0

Probabilité non nulle de On augmente la largeur de la barriere,
réflexion ! et la probabilité de réflexion diminue.?.
(NB: elle est nulle pour 6 = n w/k;)
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Détecteur de particule

Détection de particule

Que se passe-t-il sile Que puis-je dire si le
détecteur détecte une détecteur ne deétecte pas
particule («tac»)? la particule?

Que devient la fonction Est-elle a gauche ou a
d'onde? droite?

La détection conserve-t-
elle 'énergie?

Cela fait-il une différence sur I’évolution ultérieure
(t>t ., .) de la particule si on I’a detectee en t=t __,
par rapport au cas ou on ne I’'a pas détectee ?

Compléement facultatif Ex.6

W Swiss Plasma Center
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Détection ou non ...

Barrier 6=4.3 V0=1.02E0 n=32 Re(y(x,t))
400 ;

300 Fe
+ 200

100

0 50 100 150 200 250

X
Barrier 6=4.3 V =1.02E, n=32 |y(x,t)|

400

300

+~ 200

100

0
0 50 100 150 200 250
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300
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100

Barrier 6=4.3 V =1.02E ) n=32 Re(y(x,t))

0 50

100

X
Barrier §=4.3 V,=1.02E, n=32 |$(x.t)|

150

200
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100
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200
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Détection ou non ...

Barrier 6=4.3 V0=1 .02E0 n=32
250 ‘ ‘ :

200 1

A
& 150

100 | \/

0 100 200 300 40!
Barrier 6=4.3 Vo=1 .OZEO n=32

0 100 200 300 400

m -Swiss Plasma Center t

Barrier 6=4.3 Vo=1 .02E0 n=32

100 200 300 400
Barrier §=4.3 Vo=1 .02E0 n=32

100 200 300 400
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Détection ou non ...

Barrier 6=4.3 V0=1 .02E0 n=32

80

<A x><A p>
I o
o o

N
o

0.318

0.316 |

0.314 1
A

<E

0.312}

0.317

0.308

Barrier 6=4.3 V0=1 .()ZE0 n=32

100

200

300

400
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Oscillateur harmonique

| -\ 2 0
= 434 Vi)=gmuge? Vi)=Y (L_/Q) g 3

- ml2

Harmo V0=5.5E0 n=24 |(x,t)]

oV =5.5E, n=24 Re(y(x,t))
3000 W -

2500
2000
< 1500 R N S
1000

500
-200 -100 0 100 200 -100 xd. 100 200

v e [—L/2+ L2 Ey = h2k2/2m
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Limite classique

1 < 1V
Thm Ehrenfest: <=-?~ _ __%%
dt da
d<ax> P
= <= >
dt m

dV(x)> ” dv ({x))

| En général
dx dx

Particule classique #1 d'énergie
Epass1 =<H >=<p*/2m+V(x) >
Particule classique #2 de quantité de mvmt

Dclass2 =<D >

Eclass,l + Eclass,z pclass,l + pclass,z

B Swiss Plasma Center
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Limite classique

Type equation here.Osclillateur harmonique: <x> et AX

Harmo V, =4E n=32 Halrrno VD:|4ECI n:I32

100 1 '
/_ ™,
10 FARAY
\
50r 9 / \
/ N\ fo
A S 8r f .l'\'\
0 . / '
v ! / Y
-'. "-
."I |'-I
_50_ 6 EIJ" \.l‘ \
5/ \
/ \ \
-100 - 4 ) .
0 50 100 1t50 200 250 300 0 50 100 1t50 200 250 300

Fia. 4.22 — Particule dans un potentiel harmonique (méme simulation que la FIG. 4.21).
A gauche : position moyenne < x > (t), avec en traitillés la solution de la physique
classique. A droite, incertitude sur la position < Ax > (t).

Particule classique d’énergie Eiqss = Equant =< H >=<p?*/2m+V(x) >

Pclass # pquant
Ex.6: particule classique de qté de mvmt

Pclass = Pquant =<DP >

Eclass + Equant

B Swiss Plasma Center
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Limite classique
Oscillateur harmonique:

Incertitudes...

Harmo V0=5.5E0 n=24

Harmo V0=5.5E0 n=24
0.12 \ ; :

017
A 0.08f
o}
<
vV 0.06

0.04 1

‘ : : 0.02 : : ‘
0 500 1000 1500 2000 0 500 1000 1500 2000

t t

AX augmente quand Ap diminue et vice-versa... Peut-on
trouver des particules quantiques avec Ax=const?
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Etats cohérents ou semi - classiques

Harmo Vo=5'5Eo n=24
I/ \ T T l —
;7\ hot “

/ \ coherent & \

! \ I 3

! nx=256 ! \
nx=512

500

1000 1500 2000 2500 3000
t
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Etats cohérents ou quasi - classiques

Harmo V =5.5E  n=24 [¢(x,t)] noV =5.5E, n=24 Re(y(x,t))

3000

2500

2000

+ 1500

1000

500

-200 -100 0 100 200 -100 0 100 200
X X

Etats dits «quasi-classiques», tels que leur incertitude Ax est constante au
cours du temps. |l s’agit de paquets d’ondes gaussiens avec

Ax = \Jh/2mw,
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Schrodinger stationnaire

4.3.5 Etats d’énergie bien déterminée:
p (X, 1) =Y (X)exp(-lat)|  H=E/n

Eqg. de Schrodinger stationnaire

hZ

Vi +Vy =Ey| |H(y)=Ey
- 2m
Les énergies possibles de la particule sont les valeurs propres de ’Hamiltonien.

Les fonctions propres correspondantes sont appelées états propres.

Discrétisation  Xic 1=1-N ¥ =¥(x))

H _ Les énergies possibles de la particule sont
¥ =EY, g |
) approximées par les valeurs propres de la matrice

H résultant de la discrétisation de I’Hamiltonien.
Les états propres sont a rOX|mes ar les
vecteurs propres de H. (n),

23



1)
1

Principe de superposition

Solution Générale de Schroedinger = superposition d’'états propres:
w(X,t) =D c W, (X)exp(—iEt/h)

|c,,|%: probabilité que Ta particule soit dans I'état no n

D’ou une autre méthode, dite spectrale, de résolution de Schroedinger:
o Opérateur H : calcul des fonctions et valeurs propres {¥, (x), E,;}
o > Matrice H : calcul des valeurs et vecteurs propres {¥,,(x;), E,}

o Calculdes ¢ = ILP*n (X (X,0)dx > ¢ = X; ¥ ) (x;,0)
(projection sur les états propres)
o La solution numérique est:

l/)(xi» tj) — Zn Cntpn(xi) eXp (_ lETn tj)

Voir aussi http://falstad.com/gm21d/
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Puits

Particule dans un puits de potentiel de profondeur finie

Schr.stat. Puits \-“D:— 100

Schr.stat. Puits ‘\.*'D:—’l[][]

.
-100 ; k

Fic. 4.25 Spec
(a droite) pour une

Vo = —100, entre = =

Dopres
articule confinée dans un puits de potentiel de profondeur [IRge,
U.5 et # =405 (lignes traitillées).

Seul un nombre fini de \)&Ieurs négatives de I'énergie est possible:
«spectre discret». Etat fundamental E>min(pot)

La particule a une probabilité de présence non nulle en dehors du puits

Etats d’énergie positive: «spectre continu»
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Potentiel périodique

Particule dans un potentiel péeriodigue. Solide

2000

15007

1000+

500+

'{'— ( T ) — IE} S1n (T ?'])Ot-

T

2ma
T)

Schr.stat. Periodic V0=500 nv=40

Bande de conduction

Bande intedite (gap)

Bande de valence .~
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