
Physique Numérique – Semaine 13

Swiss Plasma Center

Rappel de la semaine 12

❑ 4.3 Schrödinger. 

❑ Schéma semi-implicite de Crank-Nicolson

❑ Particule libre, étalement du paquet d’onde

❑ Initialiser une onde pour qu’elle se propage dans les 2 directions

❑ Principe d’incertitude de Heisenberg et transformée de Fourier

❑ Propriétés de conservation de la probabilité

Plan de la semaine 13

❑ 4.2 Ondes: schéma exact pour b=1

❑ 4.3  Schrödinger

❑ Propriété de conservation de l’énergie

❑ Particule dans un potentiel V(x), 

❑ Barrière de potentiel effet tunnel

❑ Oscillateur harmonique – états quasi-classiques

❑ Détecteur de particule

❑ Exercice 6: à rendre MERCREDI prochain. 
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Physique Numérique – Semaine 13

Evaluation approfondie des cours: du 19 mai au 8 juin

5 minutes à la fin du cours

➢ Aller sur la page d’accueil de Moodle (PAS sur celle du cours)

➢ Aller à la case «Evaluation approfondie»

➢ Sélectionner le cours  PHYS-210_SP25 et compléter le feedback

Retour sur les ondes, schéma explicite à 3 niveaux:

Le schéma est exact dans le cas u2=const, b2=1
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #13: Notes de cours

❑ Section 4.3. Schrödinger. 

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Exercice 6

◼ 2 sessions: 14, 21 mai

◼ Délai de rendu 

mardi 27 mai →mercredi 28 mai 2025

◼ 3e session, 28 mai : “rattrappage”
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Ondes
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◼ Exemples 

❑ 4.3.2 Particule libre

Etalement du paquet d’onde.

Effet de la dispersion, pas de diffusion! 

(Etalement n’est pas ~           )t
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Conservation de la probabilité: semi-implicite

Le schéma de Crank-Nicolson conserve la probabilité: const),( =
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(preuves au tableau) 
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Conservation de la probabilité: semi-implicite et implicite

Le schéma de Crank-Nicolson conserve la probabilité: const),( =

Lemme 1:
*

tt TT − =

Lemme 2: ( ) 1−

−  tt TT Le schéma implicite n’est PAS réversible! 

Lemmes 1 et 2  ( ) = 

−



*1

tt TT

L’opérateur d’évolution temporelle est unitaire

1
*

= tt TT

Cette propriété implique directement la conservation de la probabilité. En effet:

),(),(),(),(
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Un schéma complètement implicite ne conserve pas la probabilité:

OK!

ttt i  1)21( −

+ +=
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Conservation de la probabilité: schéma explicite

Lemme 1:
*

tt TT − =

Lemme 2: ( ) 1−

−  tt TT Le schéma explicite n’est PAS réversible! 

Un schéma complètement explicite ne conserve pas la probabilité:

OK!

ttt i  )21( −=+

Le  schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de 

l’intervalle temporel. Cette propriété est ici liée à la propriété de 

conservation. De façon générale, les schémas de différences finies 

«centrés» sont préférables, on gagne en ordre de convergence.
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Conservation de l’énergie

La propriété de conservation de l’énergie, en mécanique quantique, devient 

la conservation de l’espérance mathématique de l’hamiltonien. Elle s’appuie 

essentiellement sur la propriété que l’Hamiltonien H est hermitien. Il est donc 

essentiel que la discrétisation spatiale de l’Hamiltonien préserve cette 

propriété. Une fois de plus: il faut que la matrice H soit hermitienne!
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Eq. Schrödinger:
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Effet tunnel

◼ 4.3.3 Barrière de potentiel: effet tunnel
❑ Dans cette série de simulations, on initialise toujours le même 

paquet d’onde et on change la hauteur V0 et l’épaisseur de la 

barrière

❑ Cas V0>E

Voir aussi Ex6

Re((x,t))

Probabilité non 

nulle de traverser 

la barrière même 

si V0>E
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◼ 4.3.3 Barrière de potentiel: résonances

❑ Cas V0<E

Résonance avec l’épaisseur de la barrière

Probabilité non nulle de 

réflexion !

On augmente la largeur de la barrière, 

et la probabilité de réflexion diminue… 

(NB: elle est nulle pour d = n p/kt )

Re((x,t))
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Détection de particule
◼ Que se passe-t-il si le 

détecteur détecte une 

particule («tac»)?

◼ Que devient la fonction 

d’onde?

◼ La détection conserve-t-

elle l’énergie?

◼ Que puis-je dire si le 

détecteur ne détecte pas 

la particule?

◼ Est-elle à gauche ou à 

droite?

◼ Cela fait-il une différence sur l’évolution ultérieure 

(t>t tac) de la particule si on l’a détectée en t=t tac , 

par rapport au cas où on ne l’a pas détectée ?

◼ Complément facultatif Ex.6

Détecteur de particule
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Détection ou non … 
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Détection ou non … 
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Détection ou non … 
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◼ 4.3.4

Oscillateur harmonique
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◼ Thm Ehrenfest:

◼ ! En général        
𝑑𝑉(𝑥)

𝑑𝑥
≠

𝑑𝑉 𝑥

𝑑𝑥

◼ Particule classique #1 d’énergie 

◼ Particule classique #2 de quantité de mvmt

𝐸𝑐𝑙𝑎𝑠𝑠,1 ≠ 𝐸𝑐𝑙𝑎𝑠𝑠,2 𝑝𝑐𝑙𝑎𝑠𝑠,1 ≠ 𝑝𝑐𝑙𝑎𝑠𝑠,2

Limite classique

𝐸𝑐𝑙𝑎𝑠𝑠,1 =< 𝐻 >=< Τ𝑝2 2𝑚 + 𝑉 𝑥 >
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𝑝𝑐𝑙𝑎𝑠𝑠,2 =< 𝑝 >



◼ Type equation here.Oscillateur harmonique: <x> et x

◼ Particule classique d’énergie 

◼ Ex.6: particule classique de qté de mvmt 

𝑝𝑐𝑙𝑎𝑠𝑠 = 𝑝𝑞𝑢𝑎𝑛𝑡 =< 𝑝 >

𝐸𝑐𝑙𝑎𝑠𝑠 ≠ 𝐸𝑞𝑢𝑎𝑛𝑡

Limite classique

𝐸𝑐𝑙𝑎𝑠𝑠 = 𝐸quant =< 𝐻 > = < Τ𝑝2 2𝑚 + 𝑉 𝑥 >
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𝑝𝑐𝑙𝑎𝑠𝑠 ≠ 𝑝𝑞𝑢𝑎𝑛𝑡



◼ Oscillateur harmonique: 

◼ Incertitudes…

◼ x augmente quand p diminue et vice-versa… Peut-on 

trouver des particules quantiques avec x=const?

Limite classique
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Etats cohérents ou semi - classiques



Etats cohérents ou quasi - classiques
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Etats dits «quasi-classiques», tels que leur incertitude x est constante au 

cours du temps. Il s’agit de paquets d’ondes gaussiens avec

Δ𝑥 = Τℏ 2𝑚ω0
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◼ 4.3.5 Etats d’énergie bien déterminée: 

◼ Eq. de Schrödinger stationnaire

◼ Discrétisation 

Schrödinger stationnaire

Les énergies possibles de la particule sont les valeurs propres de l’Hamiltonien. 

Les fonctions propres correspondantes sont appelées états propres.

Les énergies possibles de la particule sont 

approximées par les valeurs propres de la matrice 

H résultant de la discrétisation de l’Hamiltonien. 

Les états propres sont approximés par les 

vecteurs propres de H. →

 EV
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◼ Solution Générale de Schroedinger = superposition d’états propres:

◼ 𝑐𝑛
2: probabilité que la particule soit dans l’état no 𝑛

◼ D’où une autre méthode, dite spectrale, de résolution de Schroedinger:

❑ Opérateur H : calcul des fonctions et valeurs propres {Ψ𝑛(𝑥), En}

❑ → Matrice H : calcul des valeurs et vecteurs propres {Ψ𝑛(𝑥𝑖), En}

❑ Calcul des                                               → 𝑐𝑛 = σ𝑗Ψ𝑛
∗ xi 𝜓(𝑥𝑖 , 0)

(projection sur les états propres)

❑ La solution numérique est: 

𝜓 𝑥𝑖 , 𝑡𝑗 = σ𝑛 cnΨ𝑛 𝑥𝑖 exp −
𝑖𝐸𝑛

ℏ
𝑡𝑗

◼ Voir aussi http://falstad.com/qm1d/
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Principe de superposition

)/exp()(),( 
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tiExctx nn
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http://falstad.com/qm1d/


25

◼ Particule dans un puits de potentiel de profondeur finie

Puits

La particule a une probabilité de présence non nulle en dehors du puits

Seul un nombre fini de valeurs négatives de l’énergie est possible: 

«spectre discret». Etat fundamental E>min(pot)

Etats d’énergie positive: «spectre continu»
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◼ Particule dans un potentiel périodique. Solide

Potentiel périodique


