
Physique Numérique – Semaine 11

Swiss Plasma Center

Rappel de la semaine 10
❑ 4.2 Ondes

❑ Analyse de stabilité de Von Neuman: critère CFL

❑ Modes propres, fréquences propres. Excitation résonante.

❑ Tsunamis. Quelle équation?

Plan de la semaine 11
❑ Ondes

❑ Analyse WKB

❑ 2D u2(x,y). Réfraction. Lentille gravitationnelle

❑ 4.3  Schrödinger

❑ Schéma semi-implicite de Crank-Nicolson

❑ Observables

❑ Principe d’incertitude de Heisenberg

❑ Propriétés de conservation de la probabilité et de l’énergie

❑ Particule libre, étalement du paquet d’onde

❑ Particule dans un potentiel V(x), effet tunnel, etc…

❑ Exercice 6
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #11: Notes de cours

❑ 4.2.4 WKB

❑ 4.3.1 Schrödinger. Schéma Crank-Nicolson

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Profondeur variable h0(x)
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Vitesse de propagation variable u(x)

Laquelle de ces 

équations est 

correcte?

Cela fait-il une 

différence sur la 

propagation du 

tsunami?
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◼ Cette usine électrique flottante (3000 tonnes) s’est retrouvée à 
6 km à l’intérieur des terres – Banda Aceh, Indonésie

Swiss Plasma Center

Wilayah Kalimantan Barat (W.K.B.)

= West Kalimantan Region
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Méthode WKB
◼ Wentzel, Kramers, Brillouin

◼ Solution analytique avec des approximations basées sur 

des hypothèses

◼ Au cœur de la méthode: séparation des échelles de 

variation

◼ Dépendance temporelle sinusoidale

◼ Substituant dans l’Eq.(B):

◼ Dépendance spatiale ~sinusoidale, phase S(x) 

rapidement variable, amplitude A(x) lentement variable
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WKB (2) – “ordering”

◼ On fait l’hypothèse que la variation de A(x) est liée à la 

variation de u2(x), i.e. ce sont des variations lentes du 

même ordre

◼ On va «tagger» les termes variant lentement avec e , qui 

symbolise la «petitesse» du terme

◼ Chaque fois qu’on dérive un terme, il prend un ordre 

supérieur, symbolisé par une puissance de e supérieure 
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WKB (3) – “ordering” (suite)

◼ On insère (**) dans (*), et on simplifie par eis .

◼ On inspecte chaque terme, en y ajoutant les «tags» (***)

◼ On regroupe les termes ordre par ordre, i.e. par 

puissance de e. 

◼ On résout ordre par ordre, en insérant la solution à 

l’ordre 0 dans l’équation d’ordre 1 

◼ …. La présentation sera faite au tableau ….

◼ La solution à l’ordre 0 donne:

◼ La solution à l’ordre 1 donne: 
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Comparaison WKB - numérique

Profondeur de l’océan

Solution numérique f(x,t)

Nx = 1024  (Dx=976.6m)

bCFL
max = 1 (Dt=3.7266s)

Période de la perturbation T=2000s
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Comparaison WKB - numérique

Vitesse de propagation Amplitude relative

Conclusion: la méthode WKB donne des résultats en excellent 

accord avec les simulations numériques
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◼ La simulation numérique et la méthode WKB 

permettent de mettre en évidence que:

❑ la vitesse de propagation et la longueur d’onde 

diminuent quand la vague se rapproche des côtes

❑ l’amplitude de la vague augmente quand la vague 

se rapproche des côtes

Conclusions
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Remarques

◼ Les équations ont été dérivées sous trois approximations:

❑ Longueur d’onde  >> profondeur ho

❑ Petites perturbations h << ho ➔ linéarisation

❑ Cas unidimensionnel

◼ Lorsque la vague se rapproche des côtes, la 2e hypothèse n’est 
plus vérifiée. Des phénomènes non linéaires apparaissent, tels le 
« wave breaking » et les solitons. Voir les équations de Burger et 
de Korteweg – de Vries.

◼ D’autres phénomènes peuvent encore modifier (et 
malheureusement augmenter parfois) l’amplitude de la vague, 
notamment la focalisation lorsque la profondeur n’est pas 1D. 

◼ h0(x,y) → focalisation; démonstration (Ex.7 facultatif)



Ondes en milieu inhomogène 2D: u2(x,y)
(Ex.5, facultatif)

Pour g=u2 ou g=f

𝜕2𝑓

𝜕𝑡2
= ∇ ⋅ 𝑢2∇𝑓
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Profondeur 2D h0(x,y). Focalisation.
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Profondeur 2D h0(x,y). Focalisation.

Swiss Plasma Center 14



Profondeur 2D h0(x,y). Focalisation.
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Profondeur 2D h0(x,y). Focalisation.

Nous avons en fait une lentille gravitationnelle convergente…
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Profondeur 2D h0(x,y). Focalisation.

2D

1D
1D WKB

…et le haut-fond ne nous protège pas, bien au contraire!
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◼ 4.3 Schrödinger
❑ Corpusculaire, ondulatoire, probabiliste

4.3 Mécanique Quantique - Schrödinger

Particule 

libre:

Particule 

dans un 

potentiel 

V(x):
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◼ Solution Eq. Schrödinger

❑ Propagateur (opérateur d’évolution temporelle)

❑ Propriété: unitarité (conservation de la probabilité)

◼ 4.3.1 Schéma numérique semi-implicite

❑ Crank-Nicolson

◼ Discrétisation temporelle, pas de temps uniforme Dt
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Et développant au 1er ordre de exp
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◼ Discrétisation spatiale, maillage uniforme Dx

◼ Approximation par différences finies de l’opérateur différentiel 

spatial:
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Opérateur A. Partie implicite: 

il faut inverser l’opérateur

Opérateur B. Partie explicite: 

il faut appliquer l’opérateur

Ainsi, l’opérateur Hamiltonien H peut s’écrire comme une matrice H.

Appliquer l’opérateur H sur  revient à multiplier la matrice H par le 

vecteur  constitué des valeurs de  aux points de maillage xj . 

De même, les opérateurs A et B deviennent des matrices A et B.

(4.90)
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❑ Le schéma de Crank-Nicolson a les bonnes propriétés suivantes:

➢ Il conserve la probabilité totale

➢ … et l’énergie

… à la précision machine! 

➢ Preuve: au tableau
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( ) tEdxtxHtxtHtE == 
+
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),0(),(),()()( * 

Explicite. B Y . Multiplication 

matrice vecteur

Implicite.  A Y=… . Résolution 

d’un système algébrique linéaire

(4.99)

❑ Schéma de Crank-Nicolson, semi-implicite: A Y|t+Dt = B Y|t
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(4.99)

❑ Schéma de Crank-Nicolson, semi-implicite: A Y|t+Dt = B Y|t

❑ Conditions aux limites, cas d’un puits de potentiel infini dans [xL,xR]:

ttxtx RL == ,0),(,0),( 
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Les éléments des matrices  et des vecteurs «…» sont inchangés.

Le système «…» est en fait équivalent à celui résultant de la discrétisation sur 

le domaine [xL+Dx,xR--Dx], dans lequel on aurait “oublié” d’appliquer les 

conditions aux limites.

Autrement dit, si vous «oubliez» d’appliquer les conditions aux limites sur le 

système (4.99), c’est comme si vous aviez en fait résolu le problème sur le 

domaine [xL-Dx,xR-+Dx] avec ses conditions aux limites.
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◼ Les observables de la mécanique quantique

Produit scalaire: dxtxtx ),(),(),( *  
+

−
=

Opérateur adjoint:  = ,),,(),( que  tel, **

Opérateur hermitien: =*

Opérateur unitaire: 1* =

Observable: décrit par un opérateur hermitien (= auto-adjoint)

Par exemple: V
m

Hipx +−=−= 2
2

2
,,,1





sont des observables

Propriété: toutes les valeurs propres d’ un opérateur hermitien sont réelles 
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◼ Interprétation probabiliste, moyennes et écart-types
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◼ Propriétés

tEtE = ),0()(

Probabilité totale conservée: 

Valeur moyenne de l’énergie conservée:

tdxtxtx =
+

−
,1),(),(* 

𝑝2 𝑡 = ∫ 𝜓∗ 𝑥, 𝑡 −ℏ2
𝜕2𝜓 𝑥, 𝑡

𝜕𝑥2
dx
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◼ Paquet d’onde Gaussien: on initialise l’état de la 

particule par une onde plane dont l’amplitude est 

modulée par une fonction Gaussienne

◼ Simulons la particule libre (V=0)

𝜓(𝑥, 0) = 𝐶𝑒𝑖𝑘0𝑥𝑒− 𝑥−𝑥0
2/2𝜎2

Swiss Plasma Center 25



◼ Exemples 

❑ 4.3.2 Particule libre

Etalement du paquet d’onde.

Effet de la dispersion, pas de diffusion! 

(Etalement n’est pas ~           )t
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◼ Quiz 

Comment faire partir le paquet d’onde vers la gauche 

(onde rétrograde)?

On remarque que l’Eq. de Schrödinger est du premier 

ordre en dérivée temporelle (
𝜕𝜓

𝜕𝑡
), et non du 2e ordre 

comme les ondes classiques (d’Alembert), (
𝜕2𝑓

𝜕𝑡2
)

Il n’y a donc qu’ une seule condition initiale à imposer : 

𝜓(𝑥, 0) connu ⇒ 𝜓 𝑥, 𝑡 connu ∀𝑡

Dans le schéma numérique, on n’initialise pas 𝜓 𝑥,−Δ𝑡
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◼ Propagation

◼ Etalement

t
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◼ Principe d’incertitude de Heisenberg

◼ Peut se comprendre à l’aide de la transformée de 

Fourier

❑ Des démonstrations seront présentées au cours

❑ Preuve mathématique formelle:

https://brilliant.org/wiki/heisenberg-uncertainty-principle/

2/))(( DD px
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◼ Principe d’incertitude de Heisenberg et transformées de Fourier
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◼ Theorem (Fourier-Heisenberg): 2/1))(( DD kx
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Conservation de la probabilité: semi-implicite

Le schéma de Crank-Nicolson conserve la probabilité: const),( =

H
t

2
soit 

D
=

Preuve:

( ) ( )txH
ti

ttxH
ti

,
2

1,
2

1  






 D
−=D+







 D
+



Opérateur A. Opérateur B. 

(4.90)

= *ABhermitien hermitien  H

ttt AA  *1−

D+ =
*1

tsoit AAT −

D =
tttt T  DD+ =

Lemme 1:
*

tt TT DD− =

Lemme 2: ( ) 1−

DD− = tt TT Exprime la réversibilité du schéma 

(preuves au tableau) 

Swiss Plasma Center 31



Conservation de la probabilité: semi-implicite et implicite

Le schéma de Crank-Nicolson conserve la probabilité: const),( =

Lemme 1:
*

tt TT DD− =

Lemme 2: ( ) 1−

DD−  tt TT Le schéma implicite n’est PAS réversible! 

Lemmes 1 et 2  ( ) = D

−

D

*1

tt TT

L’opérateur d’évolution temporelle est unitaire

1
*

=DD tt TT

Cette propriété implique directement la conservation de la probabilité. En effet:

),(),(),(),(
*

tttttttttttttt TTTT  === DDDDD+D+

Un schéma complètement implicite ne conserve pas la probabilité:

OK!

ttt i  1)21( −

D+ +=
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Schéma explicite

Lemme 1:
*

tt TT DD− =

Lemme 2: ( ) 1−

DD−  tt TT Le schéma explicite n’est PAS réversible! 

Un schéma complètement explicite ne conserve pas la probabilité:

OK!

ttt i  )21( −=D+

Le  schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de 

l’intervalle temporel. Cette propriété est ici liée à la propriété de 

conservation. De façon générale, les schémas «centrés» sont préférables. 

Les différences finies gagnent en ordre de convergence.

La propriété de conservation de la probabilité s’appuie essentiellement sur la 

propriété que l’Hamiltonien H est hermitien. Il est donc essentiel que la 

discrétisation spatiale de l’Hamiltonien préserve cette propriété, i.e. il faut 

que la matrice H soit hermitienne!
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Conservation de l’énergie

La propriété de conservation de l’énergie, en mécanique quantique, devient 

la conservation de l’espérance mathématique de l’hamiltonien. Elle s’appuie 

essentiellement sur la propriété que l’Hamiltonien H est hermitien. Il est donc 

essentiel que la discrétisation spatiale de l’Hamiltonien préserve cette 

propriété. Une fois de plus: il faut que la matrice H soit hermitienne!
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Eq. Schrödinger:
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Exercice 6

◼ 2 sessions: 14, 21 mai

◼ Délai de rendu 

mardi 27 mai →mercredi 28 mai 2025

◼ 3e session, 28 mai : “rattrappage”
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Détection de particule
◼ Que se passe-t-il si le 

détecteur détecte une 

particule («tac»)?

◼ Que devient la fonction 

d’onde?

◼ La détection conserve-t-

elle l’énergie?

◼ Que puis-je dire si le 

détecteur ne détecte pas 

la particule?

◼ Est-elle à gauche ou à 

droite?

◼ Cela fait-il une différence sur l’évolution ultérieure 

(t>t tac) de la particule si on l’a détectée en t=t tac , 

par rapport au cas où on ne l’a pas détectée ?

◼ Complément facultatif Ex.6
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