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Physique Numérique — Semaine 10

Rappel de la semaine 9
0 4.1 Advection-Diffusion
O Limite de stabilité: critere CFL
O 4.2 Ondes
O Différences finies explicite a 3 niveaux
O Ex.5 - Vague dans un océan de profondeur variable

Plan de la semaine 10

0 4.2 Ondes
O Modes propres, fréquences propres. Excitation résonante.
O Analyse de stabilité de Von Neuman: critere CFL.
0 Ondes en eaux «peu profondes»: equations.
O Profondeur variable. WKB.
O Tsunami or not tsunami, that is the question.

Semaine 11
4 4.3 Schrddinger
O Scheéma semi-implicite de Crank-Nicolson
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Documentation

Lecture pour la Semaine #10: Notes de cours
o Section 4.2 Ondes

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Ondes — schéma numérique

Schema différences finies explicite 3 niveaux
0 f SO f

2 — U 2 Discrétisation {(xi,tj)}
, 1 , P (A21)
f_} — h_2 (fj—l — Ef_-j + fj_|_1_) + ()(\h-z) A21]
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Ondes en milieu homogeéne, 1D

Quelgues demonstrations en «live»
d
d
d
d

o Ondes stationnaires, modes propres,
fréequences propres

o Excitation résonante
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Modes propres, fréquences propres

Mode propre: mvmt particulier du systeme homogene
(i.,e. SANS excitation exterieure) pour lequel TOUS les
degrés de liberté oscillent a la méme frequence, appelée
fréequence propre.

De démonstrations seront faites en simulation.

Principe de superposition: la somme algebrique de 2
modes propres est également solution du systeme
homogene.
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Modes et fréquences propres — Solution générale

o2 2
()—f — -'g_{_.g()—f Séparation des variables  f (X,t) = A(X)B(t)
ot? 3;1‘2 :
d A 1 d B 1d°A
i ( )=u’ > (X)
A dx
fct(t) = fct(x) = const =C
d’ d?
— B(t) C B(t)|B(t) est fonction propre de I'opérateur —
t? de valeur propre C dt*
B(t) = Be | = —w’Be " = CBe™ = C = -’
d 2
d 2 2 A(X) est fonction propre de l'opérateur ——
dT A(x) = U2 A(X) de valeur propre — @” / U° dx’

A(X): Aeikx :>_k2Aeikx _ (a) u ) ey
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Modes et fréquences propres — Solution générale

2
@
u2

La solution générale s’écrit

k? =

w
Relation de dispersion w= *ku, k=4—
y

fla.t) = (AE—LJ +B€-iwt) (Ceik'.x n Dﬁ—z'zm) (*)

— AE?(LI_”%) +B€-i.(—kx—wt) +€Ez(ka+wf) +D€i(—k;n+wt) (**)

Les conditions initiales et aux bords determinent les constantes d’intégration.
P.ex., onde purement progressive - f(z,t) = F(x — ut), Vo, Vt

B=0, C=0 = flx,t) = Aetk(x=$) 4 Pe—ik(z=$1)

Ainsi, la methode de séparation des variables permet de trouver non
seulement des ondes stationnaires, mais aussi des ondes propageantes
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Signes de m et de k ... ? De C dans R...

La solution physique s’obtient en prenant la partie réelle de la
représentation complexe.
En poursuivant notre exemple de I'onde progressive, en posant

§ = ko — wt, A=a+1b, D =d+ig
on obtient
fla,t) =
(a+d)cosE+ (g —b)sing = Acos€ + Bsiné = Ay cos(€ + o) .

Il reste donc bien 2 constantes d’intégration réelles.

On peut faire le méme type d’analyse, en partant de I'Eq.(*) de la page
préceédente, pour d’autres situations, p.ex conditions aux limites
Dirichlet ou Neumann - onde stationnaire, quantification. (voir
Exercice 5).
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Modes et fréquences propres — conditions aux
bords

Pour I'exercice 5, on prend des conditions aux bord fixe
(Dirichlet) a droite et «libre» (Neumann) a gauche.

On applique ces conditions aux bords a la solution
generale.

Cela conduit a une quantification des fréquences
possibles, appelées fréquences propres.

La fonction spatiale correspondant a chaque frequence
propre est appelée fonction propre ou mode propre.
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Modes et fréquences propres — superposition

La fonction propre correspondant a cette fréquence propre o, est:

f,(61) = A sin(k,x) exp(—im,t)

|
ﬁh = A1 |ei(ﬂn < C Dépendance spatiale Dépendance temporelle
de la fonction propre  de la fonction propre:
oscillation a la frégeuce o,

L'équation d’onde étant linéaire, toute superposition linéaire de solutions est
aussi une solution. Ainsi, la solution genérale (mais satisfaisant les
conditions aux bords) peut s’écrire comme superposition de modes propres:

F(xt) =3 A sin(k,x) exp(—io,t)

Les coefficients (complexes) A, sont déterminés par les conditions initiales
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Superposition de modes propres — conditions
initiales
Dans cet exemple, on prend des conditions aux initiales au repos.

(
o0

(£ (x,0) = f._. (X) 3| A, cos(@,)sin (k,X) = fi (X)
1 Too=0 Te .
. ot (x.0)= —| A, |sin(k,xX)a,sin(¢p,) =0

De la 2¢ €q, satisfaite pour tout x, on tire : Sin(@,) =0=cos(p,) =tl=0,

Et donc, on peut écrire la 1¢ EQ: Zan | A1 | sin (kn X) = finit (X)
n=1

Les o,|A,| sont donc les coefficients de la série de Fourier de f,;,
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Démonstrations (simulations
«live»)

o Math and Physics aplets
loadedstring

Recherche de modes propres et fréquences
propres par excitation resonante

B Swiss Plasma Center
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http://www.falstad.com/
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Ondes - excitation

= Recherche de modes propres

B Swiss Plasma Center
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Ondes — instabilité numérique

4.2.2 Stabilité du schema difféerences finies
explicite 3 niveaux pour I’équation d’ondes

Condition de stabilit¢ CFL | < 132 <1 ; At
T T — U—
CFL B=1.01 L
2 . :
5l t=2.32.
t=2.2?h “
1+ | 1
. =i 1[p=101
0.5 || |
“h 1 \
o ‘|' ||V'ﬂ “ 1‘1‘
* J|| V V
-0.5
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Ondes — instabilité numérique

_e mode Instable est une oscillation dans
‘espace (avec 2 pts de maillage x; par
ongueur d’'onde) et le temps (2 pts de
malillage t par periode) dont 'amplitude
croit exponentiellement

On fera la démonstration au tableau du
critere de stablilité CFL: analyse de Von
Neumann — voir aussi section 4.2.2

B Swiss Plasma Center
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Ondes — Analyse de stabilit¢ Von Neumann

.
O O 3_”%
(1 'B ,f X1, ‘ﬂ- Xi_1 1

(4.43)

Ansatz: on cherche une solution de (4.43) de type ondulatoire, avec la
possibilité d’avoir une amplitude exponentielle dans le temps

f(x,t)=fexpli(kx —at ), f eCkeR, weC (4.26)
On définitle «gain» Gt f(x,t  )=Gf(x,t ) G=e

17 °n+l 17°n

Condition de stabilité: \G\s 1LVK, Vo
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Analyse de stabilité de Von Neumann
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Ondes, schéma explicite 3 niveaux -
stabilité

A
f'), — U—

Ax

Si % <1, |G =1= stable

Si 8% >1, alors,poursin® @ =1, G < —1=>instable

0 =KAx/?2 Sinm:b%x:z

2
k=2714 = |A=2AX

2 points de maillage par longueur d’'onde, c’est bien ce
gue I'on a observe sur les simulations instables!

m Swiss Plasma Center 18



~—

_Exereice 5:.ondes, milicu inhemogene

-

Equations o S
= Solution analytique approximative: méthode WKB
(Wentzel, Kramers, Brillouin)

= Simulations numérigues et comparaison
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Equations en eaux peu profondes
Voir Annexe E des Notes de Cours + au tableau

surface océan perturbée

/
surface océan au repos

- fond océan

B Swiss Plasma Center
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dv

Po—=—VP+p,0 (E3
dt
oh _
—+V- (hV) =0 (E4) 1D — o(vxh) — a_h
ot OX ot
Hypotheses:
- fluide parfait, incompressible a<<l
-1D dv,
- Eaux peu profondes: hy << 1 at <<

- Petites perturbations -> linéarisation
h(x,t) = h, (x) + sh(x, t)
V(x,1) =0+ (x,1)
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Présentation au tableau
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Profondeur variable h(x) u(z) = /gho(x)
Vitesse de propagation variable u(x)

£ on-Ut () < (3)=0 (A)

ot Laquelle de ces
équations est

82 O correcte?

—oh——u (x)— =0(B)

ot° OX Cela fait-il une
différence sur la

L 0 propagation du

Eéh PV (UZ(X) 5h): 0 (C) tsunami?
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26 December 2004, 7h55 (WIB)
The Earth shakes

O UMEN TSUNA
Z ,(, v e pm,

B TR
Fta- Noma-Vama f
KORBAN TSUNAMI ||

? / b
Sy, TN .~ L C\ e il |
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26 décembre 2004, 7h58 (WIB)

B Swiss Plasma Center

2004 Sumatra Earthquake 010 min
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http://www.psychceu.com/tsunami/animation.sm.gif
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Indian Ocean tsunami 2004
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= usine électrique flottante (3000 tonnes) s’est retrouvée a
6 km a l'intérieur des terres — Banda Aceh, Indonésie
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Profondeur variable hO(X] u(r) = \/ gho(z)
Vitesse de propagation variable u(x)

£ on-Ut () < (3)=0 (A)

ot

0° 0

aTéh—&(u (x)— j 0 (B)
0° 0°

—ah—— (u*(x)oh)=0 (C)

Laquelle de ces
équations est
correcte?

Cela fait-il une
différence sur la
propagation du
tsunami?
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Méthode WKB

Wentzel, Kramers, Brillouin

Solution analytiqgue avec des approximations basées sur
des hypotheses

Au cceur de la méthode: séparation des echelles de
variation

Dépendance temporelle sinusoidalegh (X, t) = e_i“)tﬂ%(x)
Substituant dans I'Eq.(B):

~ w?3h(x) = ix(u (x)—éh(x)j *)

Dépendance spatiale ~sinusoidale, phase S(x)
rapidement variable, amplitude A(x) lentement variable

n(x) = A(x)exp(iS(x)) (**)

|
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WKB (2) — “ordering”

On fait ’'hnypothese que la variation de A(x) est liée a la
variation de u?(x), i.e. ce sont des variations lentes du
méme ordre

On va «tagger» les termes variant lentement avec ¢, qui
symbolise la «petitesse» du terme

Chaque fois qu’on dérive un terme, il prend un ordre
supérieur, symbolisé par une puissance de ¢ supérieure

dS 0 dk d*S
— =Kk(X) rapide (grand): ~ & ~ ~ ¢l
dx dZ\ (grand) 12 dx dx° g
A~ g’ —~ g 5 g
dx dx
> 0 du? d“u? (™)
U ~¢ ~ gl ~ 52
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WKB (3) — “ordering” (suite)

On insére (**) dans (*), et on simplifie par e's .
On inspecte chaque terme, en y ajoutant les «tags» (***)

On regroupe les termes ordre par ordre, i.e. par
puissance de e.

On résout ordre par ordre, en inserant la solution a
I'ordre 0 dans I'équation d’ordre 1

.... La présentation sera faite au tableau ....
La solution a l'ordre 0 donne:

(d_sjzzkz(x): g02 _ 0’
dx us(x) gh,(x)

La solution a 'ordre 1 donne:

A(X) = A (u()) ™ ~ (hy(x)) ™

31



Comparaison WKB - numérique

Onde Explicite 3 niveaux

0 ' ' ' ‘ 14000+
-1000} * 12000+
-2000; ' 10000 |
£ 2000 % 8000 A
N 4000} ~ 000l
0007 4000+
-6000+
2000
-7000 ' ' ' ‘
-10 -8 -6 -4 -2 0 0 . . . .
x [m] « 10° 10 -8 6 -4 -2 0
X [m] x 10°

Profondeur de 'océan
Solution numérique f(x,t)

Période de la perturbation T=2000s N, = 1024 (Ax=976.6m)
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Comparaison WKB - numérique

WKB

N W R 1 )~

Amplitude relative

x [m] x 10 x [m]
) ) x 10
Conclusion: la méthode WKB donne des résultats en excellent

accord avec les simulations numériques
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Wilayah Kalimantan Ba
= West Kalimantan Region

- » usine Ictrique flottante (3000 tonnes) s’est retrouvée a
6 km a l'intérieur des terres — Banda Aceh, Indonésie
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Conclusions

La simulation numérique et la méthode WKB
permettent de mettre en évidence que:

0 la vitesse de propagation et la longueur d’'onde
diminuent quand la vague se rapproche des cotes

u(x) =~/gh(x)
A(X)=27x1k(X) =27 u(X)/ =27 gh(X)/ ®

o 'amplitude de la vague augmente quand la vague
se rapproche des coOtes A
A(X) = 1/4
(h(x))
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Remarques

Les equations ont été derivées sous trois approximations:
o Longueur d'onde A >> profondeur h,

o Petites perturbations oh << h, = linéarisation

o Cas unidimensionnel

Lorsque la vague se rapproche des coétes, la 2e hypothése n’est
plus vérifiee. Des phénomenes non linéaires apparaissent, tels le
« wave breaking » et les solitons. Voir les équations de Burger et
de Korteweg — de Vries.

D’autres phénomeénes peuvent encore modifier (et
malheureusement augmenter parfois) I'amplitude de la vague,
notamment la focalisation lorsque la profondeur n'est pas 1D.

hy(x,y) = focalisation; démonstration (Ex.7 facultatif)
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