
Physique Numérique – Semaine 10

Swiss Plasma Center

Rappel de la semaine 9
❑ 4.1 Advection-Diffusion

❑ Limite de stabilité: critère CFL

❑ 4.2 Ondes

❑ Différences finies explicite à 3 niveaux

❑ Ex.5 - Vague dans un océan de profondeur variable

Plan de la semaine 10

❑ 4.2 Ondes

❑ Modes propres, fréquences propres. Excitation résonante.

❑ Analyse de stabilité de Von Neuman: critère CFL.

❑ Ondes en eaux «peu profondes»: équations.

❑ Profondeur variable. WKB.

❑ Tsunami or not tsunami, that is the question.

Semaine 11

❑ 4.3  Schrödinger

❑ Schéma semi-implicite de Crank-Nicolson
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #10: Notes de cours

❑ Section 4.2 Ondes

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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◼ Schéma différences finies explicite 3 niveaux

Ondes – schéma numérique

Discrétisation {(xi,tj)}

t

xSwiss Plasma Center 3



Ondes en milieu homogène, 1D

◼ Quelques démonstrations en «live»

❑ Initialisation: immobile, progressive, rétrograde

❑ Conditions aux limites: fixes, «libres», sortie

❑ Réflexions

❑ Superpositions

❑ Ondes stationnaires, modes propres, 

fréquences propres

❑ Excitation résonante
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Modes propres, fréquences propres

◼ Mode propre: mvmt particulier du système homogène 

(i.e. SANS excitation extérieure) pour lequel TOUS les 

degrés de liberté oscillent à la même fréquence, appelée 

fréquence propre.

◼ De démonstrations seront faites en simulation.

◼ Principe de superposition: la somme algébrique de 2 

modes propres est également solution du système 

homogène.
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Modes et fréquences propres – Solution générale
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Modes et fréquences propres – Solution générale

2

2
2

u
k


= Relation de dispersion

La solution générale s’écrit

Les conditions initiales et aux bords déterminent les constantes d’intégration.

P.ex., onde purement progressive →

Ainsi, la méthode de séparation des variables permet de trouver non 

seulement des ondes stationnaires, mais aussi des ondes propageantes

(*)

(**)
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Signes de  et de k … ? De C dans R…

Swiss Plasma Center

La solution physique s’obtient en prenant la partie réelle de la 

représentation complexe. 

En poursuivant notre exemple de l’onde progressive, en posant

on obtient

Il reste donc bien 2 constantes d’intégration réelles.

On peut faire le même type d’analyse, en partant de l’Eq.(*) de la page 

précédente, pour d’autres situations, p.ex conditions aux limites 

Dirichlet ou Neumann → onde stationnaire, quantification. (voir

Exercice 5). 
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Modes et fréquences propres – conditions aux 

bords
◼ Pour l’exercice 5, on prend des conditions aux bord fixe 

(Dirichlet) à droite et  «libre» (Neumann) à gauche.

◼ On applique ces conditions aux bords à la solution 

générale. 

◼ Cela conduit à une quantification des fréquences 

possibles, appelées fréquences propres.

◼ La fonction spatiale correspondant à chaque fréquence 

propre est appelée fonction propre ou mode propre.
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Modes et fréquences propres – superposition

La fonction propre correspondant à cette fréquence propre n est: 

)(exp )(sinˆ),( tixkAtxf nnnn −=

C |ˆ|ˆ = ni

nn eAA
 Dépendance spatiale 

de la fonction propre

Dépendance temporelle 

de la fonction propre: 

oscillation à la fréqeuce n

L’équation d’onde étant linéaire, toute superposition linéaire de solutions est 

aussi une solution. Ainsi, la solution générale (mais satisfaisant les 

conditions aux bords) peut s’écrire comme superposition de modes propres: 
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Les coefficients (complexes) An sont déterminés par les conditions initiales
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Superposition de modes propres – conditions 

initiales
◼ Dans cet exemple, on prend des conditions aux initiales au repos. 
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Les n|An| sont donc les coefficients de la série de Fourier de finit
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Démonstrations (simulations 

«live»)
◼ www.falstad.com

❑ Math and Physics aplets

◼ loadedstring

◼ Recherche de modes propres et fréquences 

propres par excitation résonante
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◼ Recherche de modes propres

Ondes - excitation

lr xx
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◼ 4.2.2 Stabilité du schéma différences finies 

explicite 3 niveaux pour l’équation d’ondes

Ondes – instabilité numérique

10 2  Condition de stabilité CFL

01.1=
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Ondes – instabilité numérique

◼ Le mode instable est une oscillation dans 

l’espace (avec 2 pts de maillage xi par 

longueur d’onde) et le temps (2 pts de 

maillage tj par période) dont l’amplitude 

croît exponentiellement

◼ On fera la démonstration au tableau du 

critère de stablilité CFL: analyse de Von 

Neumann – voir aussi section 4.2.2
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Ondes – Analyse de stabilité Von Neumann
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Analyse de stabilité de Von Neumann
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Ondes, schéma explicite 3 niveaux -

stabilité

◼ 2 points de maillage par longueur d’onde, c’est bien ce 

que l’on a observé sur les simulations instables!

stable 1,1 Si
22 = G

instable 1,1sinpour  alors,,1 Si 22 −= G
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
=
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=  /2k x= 2
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Exercice 5: ondes, milieu inhomogène 

Swiss Plasma Center

◼ Equations

◼ Solution analytique approximative: méthode WKB 

(Wentzel, Kramers, Brillouin)

◼ Simulations numériques et comparaison
19



Equations en eaux peu profondes
◼ Voir Annexe E des Notes de Cours + au tableau

Swiss Plasma Center 20
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Présentation au tableau
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Profondeur variable h0(x)

( ) )A(0)(
2

2
2

2

2

=



−




h

x
xuh

t


(B)0)(2

2

2

=















−




h

x
xu

x
h

t


( ) (C)0)(2

2

2

2

2

=



−




hxu

x
h

t


Vitesse de propagation variable u(x)

Laquelle de ces 

équations est 

correcte?

Cela fait-il une 

différence sur la 

propagation du 

tsunami?

Swiss Plasma Center 23



26 December 2004, 7h55 (WIB)

The Earth shakes
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26 décembre 2004, 7h58 (WIB)

http://www.psychceu.com/tsunami/animation.sm.gif
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◼ Cette usine électrique flottante (3000 tonnes) s’est retrouvée à 
6 km à l’intérieur des terres – Banda Aceh, Indonésie
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Profondeur variable h0(x)
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Méthode WKB
◼ Wentzel, Kramers, Brillouin

◼ Solution analytique avec des approximations basées sur 

des hypothèses

◼ Au cœur de la méthode: séparation des échelles de 

variation

◼ Dépendance temporelle sinusoidale

◼ Substituant dans l’Eq.(B):

◼ Dépendance spatiale ~sinusoidale, phase S(x) 

rapidement variable, amplitude A(x) lentement variable
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WKB (2) – “ordering”

◼ On fait l’hypothèse que la variation de A(x) est liée à la 

variation de u2(x), i.e. ce sont des variations lentes du 

même ordre

◼ On va «tagger» les termes variant lentement avec e , qui 

symbolise la «petitesse» du terme

◼ Chaque fois qu’on dérive un terme, il prend un ordre 

supérieur, symbolisé par une puissance de e supérieure 
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WKB (3) – “ordering” (suite)

◼ On insère (**) dans (*), et on simplifie par eis .

◼ On inspecte chaque terme, en y ajoutant les «tags» (***)

◼ On regroupe les termes ordre par ordre, i.e. par 

puissance de e. 

◼ On résout ordre par ordre, en insérant la solution à 

l’ordre 0 dans l’équation d’ordre 1 

◼ …. La présentation sera faite au tableau ….

◼ La solution à l’ordre 0 donne:

◼ La solution à l’ordre 1 donne: 
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Comparaison WKB - numérique

Profondeur de l’océan

Solution numérique f(x,t)

Nx = 1024  (x=976.6m)

CFL
max = 1 (t=3.7266s)

Période de la perturbation T=2000s
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Comparaison WKB - numérique

Vitesse de propagation Amplitude relative

Conclusion: la méthode WKB donne des résultats en excellent 

accord avec les simulations numériques
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◼ Cette usine électrique flottante (3000 tonnes) s’est retrouvée à 
6 km à l’intérieur des terres – Banda Aceh, Indonésie

Wilayah Kalimantan Barat (W.K.B.)

= West Kalimantan Region
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◼ La simulation numérique et la méthode WKB 

permettent de mettre en évidence que:

❑ la vitesse de propagation et la longueur d’onde 

diminuent quand la vague se rapproche des côtes

❑ l’amplitude de la vague augmente quand la vague 

se rapproche des côtes

Conclusions
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Remarques

◼ Les équations ont été dérivées sous trois approximations:

❑ Longueur d’onde  >> profondeur ho

❑ Petites perturbations h << ho ➔ linéarisation

❑ Cas unidimensionnel

◼ Lorsque la vague se rapproche des côtes, la 2e hypothèse n’est 
plus vérifiée. Des phénomènes non linéaires apparaissent, tels le 
« wave breaking » et les solitons. Voir les équations de Burger et 
de Korteweg – de Vries.

◼ D’autres phénomènes peuvent encore modifier (et 
malheureusement augmenter parfois) l’amplitude de la vague, 
notamment la focalisation lorsque la profondeur n’est pas 1D. 

◼ h0(x,y) → focalisation; démonstration (Ex.7 facultatif)


