
Physique Numérique – Semaine 9

Swiss Plasma Center

Rappel de la semaine 8

❑ Chapitre 4 Intégration spatio-temporelle

❑ Section 4.1 Advection-Diffusion

❑ Différences finies explicite à 2 niveaux

❑ Limite de stabilité: critère CFL . Advection.

Plan de la semaine 9

❑ 4.1 Advection-Diffusion

❑ Diffusion. Critère de stabilité.

❑ Analyse de stabilité de Von Neuman

❑ 4.1 Ondes

❑ Différences finies explicite à 3 niveaux

❑ Limite de stabilité: critère CFL

❑ Analyse de stabilité de Von Neuman

❑ Ex.5 - Vague dans un océan de profondeur variable
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #8: Notes de cours

❑ Section 4.1 Advection-Diffusion

❑ Sectino 4.2 Ondes

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Advection - Schéma explicite à 2 niveaux

◼ Discrétisation {xi, tj}

◼ Différences finies
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◼ Paramètre CFL (Courant, Friedrichs, Lewy)
x

tv




=

Swiss Plasma Center 3



◼ Paramètre CFL [*]

◼ Ce schéma est instable si >1 ou si <0

◼ Ce schéma, lorsqu’il est stable, introduit de la diffusion 

non-physique («diffusion numérique»)

[*] R. Courant, K. Friedrichs, H. Lewy, Math. Ann. 100, 32 (1928)

Advection – Schéma explicite 2 niveaux
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4.1.1- 4.1.2

Advection et Diffusion

Différences finies Schéma explicite 2 niveaux

(CFL)

Flux de matière:

Conservation de la masse (Eq. Continuité):

Cas 1D, incompressible, D=const, v=const :

t
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x

Ԧ𝑗 = 𝑓 Ԧ𝑣 − D ∇𝑓
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Solution analytique - propriétés

◼ La dérivation est faite en Annexe C des Notes de Cours

◼ Pour une condition initiale où toutes les particules sont 

en x=x0 en t=0,

la solution est: 

Définitions:
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Solution analytique – propriétés (2)

◼ Pour toute condition initiale, la solution de l’équation 

d’advection-diffusion, Eq.(4.19), satisfait les propriétés:
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22 

1) Conservation  globale

2) Mouvement uniforme de la position moyenne, à la 

vitesse v (advection)

3) La variance augmente linéairement avec le temps, 

proportionnellement au coefficient de diffusion D

4) La quantité reste positive partout et en tous temps
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◼ Différences finies, explicite 2 niveaux. Diffusion seule

Diffusion. Instabilité

Croissance exponentielle dans le temps d’une 

perturbation de courte longueur d’onde ( 2 points de 

maillage par longueur d’onde)
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Advection et diffusion. Différences finies. 

Schéma explicite 2 niveaux. Critères de stabilité 

numérique.

Courant-Friedrichs-Lewy

La démonstration sera présentée ultérieurement. Voir Notes de Cours 4.1.3
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◼ Evolution de la variance: (a) solution analytique, (1) solution 
numérique avec schéma explicite à 2 niveaux et advection 
upwind, (2) advection centrée

◼ Le surcroît de diffusion est un artefact dû à la diffusion 
numérique créée par le schéma de l’advection upwind

Advection-Diffusion. Diffusion 

numérique
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4.1.2 Advection et Diffusion - résumé

Schéma différences finies explicite 2 niveaux

◼ Il peut y avoir instabilité numérique!

◼ Le schéma explicite upwind pour l’advection stabilise, 
mais introduit de la diffusion numérique

◼ Conditions de stabilité

Paramètre CFL :
Courant-Friedrichs-Lewy
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Euler ou Lagrange? Radar ou mouchard?

Lagrangien, Langevin: Pas 

de diffusion numérique

Pas de limite de stabilité 

CFL! (t arbitraire)

Comparaison entre schéma numérique «Eulérien» 

et schéma numérique «Lagrangien» ou «particle»

Eulerien, différences finies 

explicite 2 niveaux

Limite de stabilité

Diffusion numérique
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Langevin: pas de 

diffusion numérique

Pas de limite de stabilité 

CFL! (t arbitraire)
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❑ 4.2.1 Milieu homogène 1D

◼ EDP d’Alembert 

◼ Solution générale

◼ Obtenir une solution unique dans le domaine 

[xl, xr] requiert 2 conditions initiales et 2 

conditions aux bords

4.2 Ondes

)||()||(),( tuxGtuxFtxf ++−=

progressive rétrograde

),(on perturbati txf
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◼ Schéma différences finies explicite 3 niveaux

Ondes – schéma numérique

Discrétisation {(xi,tj)}

t

xSwiss Plasma Center 15



Ondes - Conditions initiales

◼ Eq. du 2e ordre en temps → 2 conditions initiales requises

❑ (1) 

❑ (2)

◼ Dans le schéma différences finies: on a besoin de 

connaître f au temps t=0 et au temps t=-t pour initialiser 

l’algorithme

❑ (1) 

❑ (2) 
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Ondes – conditions initiales (suite)
◼ Cas (a): système au repos pour t<=0

◼ Cas (b): onde progressive

𝑓 𝑥, −∆𝑡 = 𝐹 𝑥 + 𝑢 ∆𝑡 = 𝑓𝑖𝑛𝑖𝑡(𝑥 + 𝑢 ∆𝑡)

⇒ 𝑓𝑖,−1= 𝑓𝑖𝑛𝑖𝑡(𝑥𝑖 + 𝑢 ∆𝑡)

❑ Autre méthode:

𝜕𝑓

𝜕𝑥
𝑥, 0 = 𝐹′ ⇒

𝜕𝑓

𝜕𝑡
𝑥, 0 =−|𝑢|
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𝜕𝑥
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◼ Cas (c): onde rétrograde: similaire, mais G(x+|u|t) …
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Ondes – conditions aux limites
◼ Eq. Diff. 2e ordre en x → 2 conditions aux limites: bord 

gauche et bord droite

◼ Cas 1. Bord g. fixe

◼ Cas 2. Bord g. «libre»  

◼ Cas 3: périodique; 

◼ Cas 4: excitation sinusoïdale : en exercice

◼ Cas 5. Sortie de l’onde 

❑ au bord gauche → onde rétrograde au bord gauche

❑ au bord droite → onde progressive au bord droite

◼ NB: Les conditions aux limites doivent être appliquées à 

chaque pas de temps
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Sortie au bord droite

◼ Sortie de l’onde au bord droite: on impose une onde 

purement progressive au voisinage de 𝑥 = 𝑥𝑟.

j

𝑓 𝑥, 𝑡 = 𝐹(𝑥 − 𝑢 𝑡)

𝑓𝑁,𝑗+1 − 𝑓𝑁,𝑗

Δ𝑡
= −|𝑢|

𝑓𝑁,𝑗 − 𝑓𝑁−1,𝑗

Δ𝑥

𝑓𝑁,𝑗+1 = 𝑓𝑁,𝑗 − 𝛽 𝑓𝑁,𝑗 − 𝑓𝑁−1,𝑗
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Ondes en milieu homogène, 1D

◼ Quelques démonstrations en «live»

❑ Initialisation: immobile, progressive, rétrograde

❑ Conditions aux limites: fixes, «libres», sortie

❑ Réflexions

❑ Superpositions

❑ Ondes stationnaires, modes propres, fréquences 

propres

❑ Excitation résonante

❑ …
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◼ 4.2.2 Stabilité du schéma différences finies 

explicite 3 niveaux pour l’équation d’ondes

Ondes – instabilité numérique

10 2  Condition de stabilité CFL

01.1=
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Ondes – instabilité numérique

◼ Le mode instable est une oscillation dans 

l’espace (avec 2 pts de maillage xi par 

longueur d’onde) et le temps (2 pts de 

maillage tj par période) dont l’amplitude 

croît exponentiellement

◼ On fera la démonstration au tableau du 

critère de stablilité CFL: analyse de Von 

Neumann – voir aussi section 4.2.2
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Ondes – Analyse de stabilité Von Neumann

t
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Ansatz: on cherche une solution de (4.43) de type ondulatoire, avec la 

possibilité d’avoir une amplitude exponentielle dans le temps

On définit le «gain» G: ( ) ( ) ti
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+ == ,,, 1

Condition de stabilité:  ,,1 kG
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Analyse de stabilité de Von Neumann
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Ondes, schéma explicite 3 niveaux -

stabilité

◼ 2 points de maillage par longueur d’onde, c’est bien ce 

que l’on a observé sur les simulations instables!

stable 1,1 Si
22 = G

instable 1,1sinpour  alors,,1 Si 22 −= G

2/xk =
22

1sin 2 
 =


=

xk

=  /2k x= 2
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Exercice 5: ondes

milieu inhomogène 
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◼ Equations

◼ Solution analytique approximative: méthode WKB 

(Wentzel, Kramers, Brillouin)

◼ Simulations numériques et comparaison



Ondes en milieu inhomogène: u2(x)
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Laquelle de ces 

équations est-elle 

correcte?

Cela fait-il une 

différence sur la 

propagation de la 

vague?

Vagues en eaux «peu profondes» – Annexe E

𝑢2 𝑥 = 𝑔 ℎ0 𝑥
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Ondes en milieu inhomogène: u2(x)

◼ Les Eqs. (B) et (C) comportent des termes additionnels 

de 1e , respectivement 2e dérivée de u2(x). On utilisera 

les différences finies centrées pour ces termes:
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Ondes en milieu inhomogène 2D: u2(x,y)
(Ex.5, facultatif)

Pour g=u2 ou g=f

𝜕2𝑓

𝜕𝑡2
= ∇ ⋅ 𝑢2∇𝑓
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Equations en eaux peu profondes
◼ Voir Annexe E des Notes de Cours + au tableau
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Profondeur variable h0(x)
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Vitesse de propagation variable u(x)

Laquelle de ces 

équations est 

correcte?

Cela fait-il une 

différence sur la 

propagation du 

tsunami?
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Méthode WKB
◼ Wentzel, Kramers, Brillouin

◼ Solution analytique avec des approximations basées sur 

des hypothèses

◼ Au cœur de la méthode: séparation des échelles de 

variation

◼ Dépendance temporelle sinusoidale

◼ Substituant dans l’Eq.(B):

◼ Dépendance spatiale ~sinusoidale, phase S(x) 

rapidement variable, amplitude A(x) lentement variable

)(ˆ),( xhetxh ti  −=

( ) (**))(exp)()(ˆ xiSxAxh =
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WKB (2) – “ordering”

◼ On fait l’hypothèse que la variation de A(x) est liée à la 

variation de u2(x), i.e. ce sont des variations lentes du 

même ordre

◼ On va «tagger» les termes variant lentement avec e , qui 

symbolise la «petitesse» du terme

◼ Chaque fois qu’on dérive un terme, il prend un ordre 

supérieur, symbolisé par une puissance de e supérieure 
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WKB (3) – “ordering” (suite)

◼ On insère (**) dans (*), et on simplifie par eis .

◼ On inspecte chaque terme, en y ajoutant les «tags» (***)

◼ On regroupe les termes ordre par ordre, i.e. par 

puissance de e. 

◼ On résout ordre par ordre, en insérant la solution à 

l’ordre 0 dans l’équation d’ordre 1 

◼ …. La présentation sera faite au tableau ….

◼ La solution à l’ordre 0 donne:

◼ La solution à l’ordre 1 donne: 
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