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Physique Numérique — Semaine 9

Rappel de la semaine 8

A Chapitre 4 Intégration spatio-temporelle
O Section 4.1 Advection-Diffusion
 Différences finies explicite a 2 niveaux

Q Limite de stabilité: critere CFL . Advection.

Plan de la semaine 9

0 4.1 Advection-Diffusion
O Diffusion. Critere de stabilite.
O Analyse de stabilité de Von Neuman

d 4.1 Ondes

( Différences finies explicite a 3 niveaux

O Limite de stabilité: critere CFL

O Analyse de stabilité de Von Neuman

O Ex.5 - Vague dans un océan de profondeur variable
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Documentation

Lecture pour la Semaine #8: Notes de cours

o Section 4.1 Advection-Diffusion
o Sectino 4.2 Ondes

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Advection - Schéma explicite a 2 niveaux

Discrétisation {x;, t;} {
Différences finies +1 ¢
ot At j-1
of fi,j B fi_l,j . I-1 | I+1
A= - backward”
OX AX

of of VAL \
raaral I D (Dl B

Parametre CFL (Courant, Friedrichs, Imﬂ = VA—At
X
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Advection — Schéma explicite 2 niveaux
fijrn = Jfij—0(fij — fi-1j)

Parametre CFL [*]

At
3 =1v—m
| v Ax

Ce schéma est instable si f>1 ou si B<0

Ce schéma, lorsqu’il est stable, introduit de la diffusion
non-physique («diffusion numeérigue»)

[*] R. Courant, K. Friedrichs, H. Lewy, Math. Ann. 100, 32 (1928)
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Advectlon et Diffusion
4.1.1-4.1.2 /

/, \\

Flux de matiére: ]_) f I}i\y/—\ D Yf : f

Conservation de la masse (Eg. Continuité): ) +V - j — ()
ot
Cas 1D, incompressible, D=const, v=const :
9, 9, oA
ot ox ox

Différences finies Schema explicite 2 niveaux

fagrio= iy 8= fi-iy) + o (fmip— 2fit L)
It

o 0 = ,Uﬂ (CFL) _ DAt
—0—0 Ax “T A

-1 i 1+

J+1
J

yanY
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Solution analytique - propriétés
La dérivation est faite en Annexe C des Notes de Cours
Pour une condition initiale ou toutes les particules sont

en x=x0 en t=0, f(z.0) = No(x — ;)

la solution est: fat) = — e (_L‘fﬁ'—rm —~ Nﬁ)
B W 1D

Définitions: N (t) :j f(x,t)dx
<x>(t)——jxf(x t)dx
<X >(t)_—jx f (x,t)dx

ol (t) =< x* > (t)—(< X > (1))
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Solution analytique — propriétés (2)
Pour toute condition initiale, la solution de I'équation
d’advection-diffusion, Eq.(4.19), satisfait les propriétés:

(1) N(t) = N(0), vt

(2) < x> () =<x>(0)+vt, vt
(3)o*(t) = o*(0) + 2Dt, Vt

(4) f(x,t) >0,Vvx,Vtsi f(x,0) >0, VX

1) Conservation globale

2) Mouvement uniforme de la position moyenne, a la
vitesse v (advection)

3) La variance augmente linéairement avec le temps,
proportionnellement au coefficient de diffusion D

4) La quantité reste positive partout et en tous temps
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Diffusion. Instabilité

Différences finies, explicite 2 niveaux. Diffusion seule

5 Adv-Diff FD expl 1 «=0.525 p=0t=1.5 Adv-Diff FD expl 1 «=0.525 =0
: . . 5 . |
x=0
1.5 -
1k i
'] 1
- “E AR
of N‘
-1} . -0.5
-1t
-2 ; : ' -1.5 : '
-2 -1 1 2 '
xlﬁm] 0 05 ] 1 1.5

Croissance exponentielle dans le temps d’'une
perturbation de courte longueur d’'onde ( 2 points de
maillage par longueur d’'onde)
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Advection et diffusion. Différences finies.

Schéma explicite 2 niveaux. Critéres de stabilité
numérique.

At
Ax

-

A
A
ek
&0
|

v CFL

Courant-Friedrichs-Lewy

La démonstration sera présentee ultérieurement. Voir Notes de Cours 4.1.3
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Advection-Diffusion. Diffusion

numérique

0.2

Adv-Diff FD expl 1&2 «=0.256 p=0.32

0 0.1 0.2 0.3 0.4 0.5
t[s]

Evolution de la variance: (a) solution analytique, (1) solution
numerique avec schéma explicite a 2 niveaux et advection
upwind, (2) advection centree

Le surcroit de diffusion est un artefact du a la diffusion
numeérique creée par le schéma de I'advection upwind
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Schéma différences finies explicite 2 niveaux

4.1.2 Advection et Diffusion - résumé

on on 9%n
— +v— — D— = 0]. 4.19
or " or T U o2 (4.19)
. At DAt
Parameétre CFL: [ = VA ==
Courant-Friedrichs-Lewy L L
nijr1 = N — By —ni_1,) +a(ni_1; — 21 +nig1 )

Il peut y avoir instabilité numérique!

Le schéma explicite upwind pour I’advection stabilise,
mais introduit de la diffusion numérique

Conditions de stabilité

1
‘Ogﬁgl\ 0§OK§§
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Euler ou Lagrange? Radar ou mouchard?

Comparaison entre schéma numérique «Eulérien»
et schéma numérique «Lagrangien» ou «particle»

Adv-Diff FD expl 1 «=0.102 3=0.16 v=1 D=0.1 Monte Carlo - Langevin N=100000 v=1 D=0.1

FD 2-level explicit
«=.1p=.16

et
L
A
4—'*’*'%*
_.+~+"MC Langevin
N=100000

t[s] X ) ) /- ) x [m]

Lagrangien, Langevin: Pas
de diffusion numeérique
Pas de limite de stabilité
CFL! (At arbitraire)

Eulerien, différences finies
explicite 2 niveaux

Limite de stabilité
Diffusion numérique
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Adv-Diff FD expl 1 «=0.102 p=0.16 v=1 D=0.1 Monte Carlo - Langevin N=100000 v=1 D=0.1

x [m]

25
a
E———
15 ]
5 e Langevin: pas de
i "1 diffusion numérique
~_TEEET 1 Pas de limite de stabilité
CFL! (At arbitraire)
00 1 2 3 4 S5 6
t[s]
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4.2 Ondes

0 4.2.1 Milieu homogéne 1D perturbation f (x,t)
EDP d’Alembert o f ) ai

Solution générale
f(x,t)=F(X=|u|t)+G(x+|u|t)

progressive  rétrograde

Obtenir une solution unique dans le domaine
[X,, X,] requiert 2 conditions initiales et 2
conditions aux bords
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Ondes — schéma numérique

Schema différences finies explicite 3 niveaux
0 f SO f

2 — U 2 Discrétisation {(xi,tj)}
, 1 , P (A21)
f_} — h_2 (fj—l — Ef_-j + fj_|_1_) + ()(\h-z) A21]
@it D€ 2f (0t )+ i tui D, wz )+t )
(At)? o (Ar)?

o
N\
e

v
X
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Ondes - Conditions initiales

EqQ. du 2e ordre en temps - 2 conditions Initiales requises

o (1) f(x,0)=f. .(x)donne
of ,
2@ —-(x0) = gy, (X) donné

Dans le schema différences finies: on a besoin de
connaitre f au temps t=0 et au temps t=-At pour initialiser

I'algorithme
0 (1) Tio = T (%)
f 0 fi 1
0 (2) — — = 0 (%) = T, = Tie (X)) = G (X ) A

Al
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Ondes — conditions initiales (suite)
Cas (a): systeme au repos pour t<=0
of
E(X,O) =0 (X)=0= 1 ; = 1, (%)
Cas (b): onde progressive f(x,0)=F(&)=F(x—|ul?)
f(x,—At) = F(x + |[u]At) = fine(x + |u|At)

= fi,—1= finit(xi + |lulAt)
o Autre méthode:

f(x,8) = F() = FOu1) =2 (x,0) = gy (0 =—|u | F
o (x,0)=F = L(x O)ai—|u| 9 (x,0)
ox =’ ot =’ ox =’
= f, = f (X)+|u |At%(xi) ~ . (X+]|Uu|At)
Cas (c): onde rétrograde: similaire, mais G(x+|ult) ...
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Ondes — conditions aux limites

Eq. Diff. 2¢ ordre en x = 2 conditions aux limites: bord
gauche et bord droite

Cas 1. Bord g. fixe f(x.,1)=C,vVt=f,,=C,V]

Cas 2. Bord g. «libre»

of £
—(x, ,t)=0,Vt = —
ax(L ) AX

Cas 3: périodique; Ty.1j = To.1 V]
Cas 4: excitation sinusoidale : en exercice
Cas 5. Sortie de I'onde

o au bord gauche - onde rétrograde au bord gauche
o au bord droite = onde progressive au bord droite

NB: Les conditions aux limites doivent étre appliquées a
chaqgue pas de temps

m Swiss Plasma Center 18
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Sortie au bord droite

Sortie de I'onde au bord droite: on impose une onde
purement progressive au voisinage de x = x,.

fx,t) = F(x = |ult)

df B | YR N of
o> —(z,,t) = pr F( — |ult) = F'(x, — |ult)(—=|u]) = —]u );(
fnj+1— Inj _lulf — fN-1,]
At Ax

fN,j+1 — fN,j — ,B(fN,j — fN—1,j) Vj

B Swiss Plasma Center
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Ondes en milieu homogeéne, 1D

Quelgues demonstrations en «live»

o Initialisation: immobile, progressive, retrograde
Conditions aux limites: fixes, «libres», sortie
Réflexions

Superpositions

Ondes stationnaires, modes propres, frequences
propres

o Excitation résonante
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Ondes — instabilité numérique

4.2.2 Stabilité du schema difféerences finies
explicite 3 niveaux pour I’équation d’ondes

Condition de stabilit¢ CFL | < 132 <1 ; At
T T — U—
CFL B=1.01 L
2 . :
5l t=2.32.
t=2.2?h “
1+ | 1
. =i 1[p=101
0.5 || |
“h 1 \
o ‘|' ||V'ﬂ “ 1‘1‘
* J|| V V
-0.5

B Swiss Plasma Center
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Ondes — instabilité numérique

_e mode Instable est une oscillation dans
‘espace (avec 2 pts de maillage x; par
ongueur d’'onde) et le temps (2 pts de
malillage t par periode) dont 'amplitude
croit exponentiellement

On fera la démonstration au tableau du
critere de stablilité CFL: analyse de Von
Neumann — voir aussi section 4.2.2

B Swiss Plasma Center
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Ondes — Analyse de stabilit¢ Von Neumann

.
O O 3_”%
(1 'B ,f X1, ‘ﬂ- Xi_1 1

(4.43)

Ansatz: on cherche une solution de (4.43) de type ondulatoire, avec la
possibilité d’avoir une amplitude exponentielle dans le temps

f(x,t)=fexpli(kx —at ), f eCkeR, weC (4.26)
On définitle «gain» Gt f(x,t  )=Gf(x,t ) G=e

17 °n+l 17°n

Condition de stabilité: \G\s 1LVK, Vo
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Analyse de stabilité de Von Neumann
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Ondes, schéma explicite 3 niveaux -
stabilité

A
f'), — U—

Ax

Si % <1, |G =1= stable

Si 8% >1, alors,poursin® @ =1, G < —1=>instable

0 =KAx/?2 Sinm:b%x:z

2
k=2714 = |A=2AX

2 points de maillage par longueur d’'onde, c’est bien ce
gue I'on a observe sur les simulations instables!
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Exercice 5: ondes
milieu inhomogeéne
Eqations
Solution analytique approximative: méthode WKB

(Wentzel, Kramers, Brillouin)
Simulations numérigues et comparaison
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Ondes en milieu inhomogéne: u?(x)

Vagues en eaux «peu profondes» — Annexe E

u® (x) = g ho(x)

Oy (x)a—zf—O (A)

81:2

2 Laquelle de ces
6— f— a—(u (x) — f j =0 (B) équations est-elle
ot* OX correcte?
@2 @2 Cela fait-il une
— _ f X) f )= différence sur la
@’[2 OX 2 ( ( ) ) 0 (C) propagation de la

vague?
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Ondes en milieu inhomogéne: u?(x)

Les Egs. (B) et (C) comportent des termes additionnels
de 1¢, respectivement 2¢ dérivée de u?(x). On utilisera
les différences finies centrées pour ces termes:

d_u2 N (Ui —U%i)
dx 2 AX

d°u’ N (U%is1 — 2U% 4+ U%i1)
dx’ (AX)?
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Ondes en milieu inhomogéne 2D: u?(x,y)

Ex.5, facultati
( b f) aZf ,
5.2 = vV (WVf)
8—9(11?,- y;) ~ G(Tit1,Y5) —9(Zi—2,U5) Pour g=u? ou g=f
Ox "7 2h., ’
dg (s, ) 9(Zi, Yj+1) — 9(Ti, Yj—1)
oy 2hy ’

P9, 9@, yp) — 29(xi, yi) + 9(@i1, y)

h2

(2)

@(’r- RS 9(@i: Yj+1) — 29, y5) + 9(@i, yj-1)
gy T e h;

(3)

B Swiss Plasma Center
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L=

L

Equations en eaux peu profondes
Voir Annexe E des Notes de Cours + au tableau

surface océan perturbée

/
surface océan au repos

- fond océan

30
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Profondeur variable hO(X] u(r) = \/ gho(z)
Vitesse de propagation variable u(x)

£ on-Ut () < (3)=0 (A)

ot Laquelle de ces
équations est

82 O correcte?

—dw——(u (Lo j 0(B)

ot’ OX Cela fait-il une
difference sur la

L 0 propagation du

Eéh PV (UZ(X) 5h): 0 (C) tsunami?
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Méthode WKB

Wentzel, Kramers, Brillouin

Solution analytiqgue avec des approximations basées sur
des hypotheses

Au cceur de la méthode: séparation des echelles de
variation

Dépendance temporelle sinusoidalegh (X, t) = e_i“)tﬂ%(x)
Substituant dans I'Eq.(B):

~ w?3h(x) = ix(u (x)—éh(x)j *)

Dépendance spatiale ~sinusoidale, phase S(x)
rapidement variable, amplitude A(x) lentement variable

n(x) = A(x)exp(iS(x)) (**)

|
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WKB (2) — “ordering”

On fait ’'hnypothese que la variation de A(x) est liée a la
variation de u?(x), i.e. ce sont des variations lentes du
méme ordre

On va «tagger» les termes variant lentement avec ¢, qui
symbolise la «petitesse» du terme

Chaque fois qu’on dérive un terme, il prend un ordre
supérieur, symbolisé par une puissance de ¢ supérieure

dS 0 dk d*S
— =Kk(X) rapide (grand): ~ & ~ ~ ¢l
dx dZ\ (grand) 12 dx dx° g
A~ g’ —~ g 5 g
dx dx
> 0 du? d“u? (™)
U ~¢ ~ gl ~ 52

ax dx?
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WKB (3) — “ordering” (suite)

On insére (**) dans (*), et on simplifie par e's .
On inspecte chaque terme, en y ajoutant les «tags» (***)

On regroupe les termes ordre par ordre, i.e. par
puissance de e.

On résout ordre par ordre, en inserant la solution a
I'ordre 0 dans I'équation d’ordre 1

.... La présentation sera faite au tableau ....
La solution a l'ordre 0 donne:

(d_sjzzkz(x): g02 _ 0’
dx us(x) gh,(x)

La solution a 'ordre 1 donne:

A(X) = A (u()) ™ ~ (hy(x)) ™

34



