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Physique Numérique – Semaine 2

Swiss Plasma Center

Rappel des concepts introduits en semaine 1
𝑑𝑦

𝑑𝑡
= 𝑓 𝑦, 𝑡 ,  avec condition initiale 𝑦 0 = 𝑦0

❑ Discrétisation: Eqs différentielles → Eqs algébriques → opérations

arithmétiques

❑ Erreurs: troncature et arrondi

❑ Convergence: limite Δ𝑡 → 0 (erreur) = 0 (*)

❑ Ordre de convergence: 𝑛 tel que limite Δ𝑡 → 0 (erreur) ~ O Δ𝑡 𝑛 (**)

❑ Stabilité

❑ Comportement en fonction du temps: erreur ~ 𝑒𝛾𝑡

❑ Différences finies (**)

❑ Pourquoi centrer les schémas?

❑ Explicite / Implicite / Semi-implicite

(*) Les erreurs d’arrondi de convergent PAS! On parle d’ordre de 

convergence uniquement pour les erreurs de troncature.

(**) suppose des fonctions 𝑓 et 𝑦 infiniment différentiables
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Documentation
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◼ Lecture pour la Semaine #2: Notes de cours

❑ Chapitre 1 Section 1.5

❑ Chapitre 2, Section 2.4, section 2.7.1

http://moodle.epfl.ch/mod/resource/view.php?id=8220

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Plan Semaine 2
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◼ Ordre de convergence: définition, exemples

◼ Analyse de stabilité de Von Neuman pour l’équation de 

la désintégration

◼ Oscillateur harmonique, schéma d’Euler explicite

❑ Analyse de stabilité de Von Neuman

❑ Solution analytique des équations discrétisées

❑ Evolution temporelle de l’énergie mécanique

◼ Schéma Euler-Cromer (ou Euler symplectique): 

apprenons à marcher…



Ordre de convergence (1.5)

◼ On intègre numériquement de t=t0 à t=tf en Nsteps pas de 

temps équidistants Dt.

◼ On suppose que l’erreur |yexact(tf)-ynum(tf)| peut s’écrire 

comme un développement en puissances entières de Dt

◼ L’ordre de convergence est défini comme l’exposant du 

premier terme non-nul de ce développement (mis à part 

l’ordre 0)

◼ Comment représenter graphiquement une étude de 

convergence? Comment, en pratique, déterminer l’ordre 

de convergence?
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Cas 1: on ne connaît pas la solution exacte

◼ Exemple: pendule L=20cm, excitation verticale, W=2w0, d=2.5cm , 

tf=20 périodes, schéma de Verlet (semaine prochaine)
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Cas 2: on connaît la solution exacte

◼ On peut alors calculer la ‘vraie’ erreur

Err = |yexact(tf)-ynum(tf)|

◼ Exemple: période de révolution de la comète de Halley
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Analyse de stabilité Von Neumann

◼ Cas du schéma d’Euler explicite

❑ Cas de la désintégration

◼ Sera présenté au tableau
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Force de portance, effet Magnus
◼ Expériences
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◼ Formule semi-empirique

vRFp


= w 3

w


= vRFp

3

(dans le référentiel de l’obstacle)

(dans le référentiel du sol)

v


v


◼ Eq. Bernouilli

constPv =+2

2

1


(le long d’une ligne de courant)

ABAB PPvv 

ABAB PPvv 
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Magnus tire un coup franc au football
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R=0.11

m=0.42

Cx=0.4

v0=20

a=30o

=1.3

=2p

w=4p

g=0 

Dt=0.1, 0.0125

w


w=0

w=0v


pF


w


w


0v


Eq.(2.27)
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Oscillateur harmonique, particule dans champ B, effet 

Magnus, force de Coriolis: même structure 

mathématique

◼ Effet Magnus:
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◼ Lorentz:

m

R w 3

−=W
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◼ Coriolis: Ԧ𝐹 = −2𝑚 Ω × Ԧ𝑣′ Ω = Ω𝑅′)𝑅
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◼ Le schéma d’Euler explicite est toujours instable lorsqu’il est 
appliqué à l’oscillateur harmonique. La norme de l’erreur augmente 
à chaque pas de temps

◼ L’amplitude des oscillations croît exponentiellement, avec un taux 
de croissance proportionnel à Dt

2.4 Euler explicite et oscillateur harmonique

instabilité
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Solution analytique:
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Oscillateur harmo. Euler explicite. Conservation Emec?

L’énergie 

mécanique, au 

lieu d’être 

conservée, croît 

exponentiellement 

dans le temps.

Le taux de 

croissance de 

Emec est 

proportionnel à Dt.
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◼ 2.4 Oscillations

❑ 2.4.1 Oscillateur harmonique. Instabilité du schéma d’Euler

❑ 2.4.2-2.4.4 Analyses de stabilité numérique

Simulation de Systèmes Oscillatoires

Propagation de 

l’erreur en

Matrice de gain G

Valeurs propres li

Oscillation, 

(dé)croissance?

ti

num Aey w=

gww ir +=

oscillant exponentiel

Propriétés de 

conservation

??,1, +=+ nmecnmec EE

constEmec =

Stable si 1|| il 0g 0
)(


D

D

t

E num

mec

Section 2.3.2 – Von Neumann Section 2.3.3 Section 2.3.4
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2.4.2. Analyse de stabilité de Von Neumann

◼ Sera présentée au tableau

◼ Voir aussi les Notes de Cours
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2.4.3 Stabilité. Oscillations, (dé)croissance

exponentielle. Sol. Analytique des Eqs. Discrètes.
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Oscillation sinusoidaleAmplitude augmentant 

exponentiellement 

dans le temps

Taux de croissance 

proportionnel à Dt En accord avec nos 

résultats numériques
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2.4.4 Euler expl. osc. harmo. Conservation Emec 1

constkxmvEmec =+= 22
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2.4.4 Euler expl. osc. harmo. Conservation Emec 2
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FIG. 2.8 (bas)
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◼ Le schéma d’Euler explicite est toujours instable lorsqu’il est 
appliqué à l’oscillateur harmonique. La norme de l’erreur augmente 
à chaque pas de temps

◼ L’amplitude des oscillations croît exponentiellement, avec un taux 
de croissance proportionnel à Dt

◼ L’énergie mécanique n’est pas conservée, mais croît 
exponentiellement, avec un taux de croissance proportionnel à Dt

◼ Paramètre numérique crucial: wDt

❑ wDt << 1 veut dire plusieurs pas temporels par période

◼ Amélioration des schémas numériques nécessaire!

❑ Euler – Cromer ~Dt (*)

❑ Stormer-Verlet ~(Dt)2

❑ Runge-Kutta ordre 4 ~(Dt)4

❑ Augmenter l’ordre du schéma augmente la précision

◼ (*) changement apparemment minime, mais… (demo)

2.4. Oscillateur harmonique. Conclusions

Symplectiques: Emec=const en moyenne
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2.7.1 Euler-Cromer: déjà un grand progrès!

◼ Les schémas d’Euler-Cromer et de Verlet seront 
présentés au tableau et seront illustrés par des 
simulations numériques.

FIG. 2.8 FIG. 2.9
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2.7.1 Euler-Cromer («symplectique»)

◼ Pour la force de portance de Magnus, comme pour la force de 

Lorentz due au champ magnétique, l’accélération en x dépend de 

vz, et l’accélération en z dépend de vx.

◼ Le schéma d’Euler-Cromer, s’écrit, pour la particule dans un champ 

magnétique selon z:

◼ (Euler explicite: vx,n)

◼ Vous pouvez essayer ce schéma pour le problème de Magnus 

(Ex.1)
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nynxnx vvv ,,1, W+=+

1,,1, ++ W−= nxnyny vvv
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◼ En combinant Euler-Cromer « A » et « B » pour deux demi-pas 
de temps, on aboutit au schéma de Verlet. La dérivation sera 
présentée au tableau.

2.7.1 Euler-Cromer: pied gauche ou pied droite 

d’abord?
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