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Physique Numérique — Semaine 13

Rappel de la semaine 12

Q 4.3 Schrodinger.
0 Schéma semi-implicite de Crank-Nicolson: conservation exacte de la
probabilité totale et de I'énergie moyenne.
O Heisenberg et Fourier
A Particule dans un potentiel V(x), effet tunnel, résonance

Plan de la semaine 13
U 4.3 Schrodinger
O Détecteur de particule
O Particule dans un potentiel V(x): Oscillateur harmonique, états quasi-
classiques (cohérents)
O Etats stationnaires (ou «propres»), énergies «propres».
O Particule dans un potentiel V(x) périodique. Gaps.

d Exercice 6: arendre AUJOURD’HUL.
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Physique Numérique — Semaine 13
Evaluation approfondie des cours: jusqu’au 9 juin
5 minutes a la fin du cours

» Aller sur la page d’accueil de Moodle (PAS sur celle du cours)
> Aller a la case «Evaluation approfondie»
» Sélectionner le cours PHYS-210 SP24 et compléter le feedback
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Documentation

Lecture pour la Semaine #13: Notes de cours
o Section 4.3.4 Oscillateur harmonique
o Section 4.3.5 Etats stationnaires (propres)

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Exercice 6
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2 sessions: 15, 22 mal
Délai de rendu
[ =26<far—> mercredi 27 mai 2024

—

3e session, 27 mai : “rattrappage”
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Heisenberg

(AX)(AD) > 71/ 2

Peut se comprendre a I’aide de la transformée de
Fourier

o Des démonstrations seront présentées au cours

o Preuve mathématique formelle:
https://brilliant.org/wiki/heisenberg-uncertainty-principle/
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Heisenberg et Fourier

Principe d’incertitude de Heisenberg et transformées de Fourier

1 TR A ikx
w(X,1) =ijw(k,t)ek dk 7 (k,t)estla T.F.en x de w(x,1)

N.B.: On peut ensuite faire la T.Fent de yw(k,t).Cependant, dans
la suite, nous omettrons la dépendanceent.

Theorem (Fourier-Heisenberg): (AX)(AK) >1/2

oy 1 T A kX 1A oy
= Iky e™ dk “r
X J2n LO 4 Ikys estla T.F.en xde Pw
Z £ - 1 4 _ _' i 2 _ 2 2
On définit I'opérateur k = —i— et (AKk ) (t) = <k >(t) — (k)" (t)

Quantique Ona p =%k, donc: (AX) (Ap) > h / 2
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Conservation de la probabilité: semi-implicite

Le schéma de Crank-Nicolson conserve la probabilité: (y,yw) = const

Preuve:
I At 1 At
1+——H X, t+At)=({1———H X, t
(145 5 H bt a=(1-5 3 H Ju(x)] oo
Opératear/A. Opérat;u/r B.

SoIt & :% H o hermitien > B=A" =

1A% - AL pA* .
Via = A Ay, oIt T, =A"A Win = T Wi

*

Lemme 1: T—At = TAt (preuves au tableau)
Lemme 2: T—At — (TAt )_1 Exprime la réversibilité du schéma
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Conservation de la probabilité: semi-implicite et implicite

Le schéma de Crank-Nicolson conserve la probabilité:(l//, ) = const

TAt )_1 :TAt* = TAt TAt* =1

Lemmes let?2 = (

L'opérateur d’évolution temporelle est unitaire

Cette propriété implique directement la conservation de la probabilité. En effet:

(Wt+At , tht) — (TAtWt ’TAtWt) — (Wt ’TAt*TAtWt) — (Wt , ';”t)

Un schéma completement implicite ne conserve pas la probabiliteé:

Lemme 1;

Lemme 2;

W Swiss Plasma Center

Wia = @+ 2i0‘)_1'7”t

Ay

OK!

Le schéma implicite n’est PAS réversible!
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Conservation de la probabilité: schéma explicite

Un schéma complétement explicite ne conserve pas la probabilité:
Viea = (1—21c) l//t\

. — I
Lemmel: (T_, =T, | OK

-1
Lemme 2: T—At == (TAt ) Le schéma explicite n’est PAS réversible!

Le schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de
I'intervalle temporel. Cette propriété est ici liée a la propriété de
conservation. De facon générale, les schémas de differences finies
«centrés» sont préferables, on gagne en ordre de convergence.
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Conservation de Pénergie

La proprieté de conservation de I'énergie, en mecanique quantique, devient
la conservation de I'espérance mathématique de I'lhamiltonien. Elle s’appuie
essentiellement sur la propriété que I'Hamiltonien H est hermitien. Il est donc
essentiel que la discrétisation spatiale de I'Hamiltonien préserve cette
proprieté. Une fois de plus: il faut que la matrice H soit hermitienne!

(H )(t) = const

Preuve:

SH)® = . Hy) = (%‘f@}(w

Eqg. Schrodinger:
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Détecteur de particule

Détection de particule

Que se passe-t-il sile Que puis-je dire si le
détecteur détecte une détecteur ne deétecte pas
particule («tac»)? la particule?

Que devient la fonction Est-elle a gauche ou a
d'onde? droite?

La détection conserve-t-
elle 'énergie?

Cela fait-il une différence sur I’évolution ultérieure
(t>t ., .) de la particule si on I’a detectee en t=t __,
par rapport au cas ou on ne I’'a pas détectee ?

Compléement facultatif Ex.6
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Détection ou non ...

Barrier 6=4.3 V0=1.02E0 n=32 Re(y(x,t))
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Barrier 6=4.3 V =1.02E, n=32 |y(x,t)|
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Détection ou non ...

Barrier 6=4.3 V0=1 .02E0 n=32
250 ‘ ‘ :
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Barrier 6=4.3 Vo=1 .OZEO n=32
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Détection ou non ...

Barrier 6=4.3 V0=1 .02E0 n=32
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Oscillateur harmonique

| -\ 2 0
= 434 Vi)=gmuge? Vi)=Y (L_/Q) g 3

- ml2

Harmo V0=5.5E0 n=24 |(x,t)]

oV =5.5E, n=24 Re(y(x,t))
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Limite classique

1 < 1V
Thm Ehrenfest: <=-?~ _ __%%
dt da
d<ax> P
= <= >
dt m

dV(x)> ” dv ({x))

| En général
dx dx

Particule classique #1 d'énergie
Epass1 =<H >=<p*/2m+V(x) >
Particule classigue #2 de quantité de mvmt

Dclass2 =<D >

Eclass,l + Eclass,z pclass,l + pclass,z

B Swiss Plasma Center
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Limite classique
Oscillateur harmonique:

<X>(t) VS Xclass(t) et <p>(t) VS pclass(t)

Harmo V0=5.5E0 n=24 Harmo V0=5.5E0 n=24

04
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t

-150

'accord n’est pas parfait... est-ce un probleme
numerique, ou un probleme physique?

B Swiss Plasma Center
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Limite classique
Oscillateur harmonique:

Incertitudes...

Harmo V0=5.5E0 n=24

Harmo V0=5.5E0 n=24
0.12 \ ; :

017
A 0.08f
o}
<
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‘ : : 0.02 : : ‘
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t t

AX augmente quand Ap diminue et vice-versa... Peut-on
trouver des particules quantiques avec Ax=const?
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Etats cohérents ou semi - classiques

Harmo V0=5.5E0 n=4 |(x,t)| mo V0=5.5E0 n=24 Re(v(x,t))
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X X
Etats dits «quasi-classiques», tels que leur incertitude Ax est constante
au cours du temps. Il s’agit de paquets d’'ondes gaussiens avec

Ax = \Jh/2 mw,
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Etats cohérents ou semi - classiques

Harmo Vo=5'5Eo n=24
I/ \ T T l —
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/ \ coherent & \

! \ I 3

! nx=256 ! \
nx=512

500

1000 1500 2000 2500 3000
t

20



1)
U
1
r

Schrodinger stationnaire

4.3.5 Etats d’énergie bien déterminée:
p (X, 1) =Y (X)exp(-lat)|  H=E/n

Eqg. de Schrodinger stationnaire

hZ

Vi +Vy =Ey| |H(y)=Ey
- 2m
Les énergies possibles de la particule sont les valeurs propres de ’Hamiltonien.

Les fonctions propres correspondantes sont appelées états propres.

Discrétisation  Xic 1=1-N ¥ =¥(x))

H _ Les énergies possibles de la particule sont
¥ =EY, g |
) approximées par les valeurs propres de la matrice

H résultant de la discrétisation de I’Hamiltonien.
Les états propres sont a rOX|mes ar les
vecteurs propres de H. (n),
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Principe de superposition

Solution Générale de Schroedinger = superposition d’'états propres:
w(X,t) =D c W, (X)exp(—iEt/h)

|c,,|%: probabilité que Ta particule soit dans I'état no n

D’ou une autre méthode, dite spectrale, de résolution de Schroedinger:
o Opérateur H : calcul des fonctions et valeurs propres {¥, (x), E,;}
o > Matrice H : calcul des valeurs et vecteurs propres {¥,,(x;), E,}

o Calculdes ¢ = ILP*n (X (X,0)dx > ¢ = X; ¥ ) (x;,0)
(projection sur les états propres)
o La solution numérique est:

l/)(xi» tj) — Zn Cntpn(xi) eXp (_ lETn tj)

Voir aussi http://falstad.com/gm21d/
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Puits

Particule dans un puits de potentiel de profondeur finie

Schr.stat. Puits \-“D:— 100

Schr.stat. Puits ‘\.*'D:—’l[][]

.
-100 ; k

Fic. 4.25 Spec
(a droite) pour une

Vo = —100, entre = =

Dopres
articule confinée dans un puits de potentiel de profondeur [IRge,
U.5 et # =405 (lignes traitillées).

Seul un nombre fini de \)&Ieurs négatives de I'énergie est possible:
«spectre discret». Etat fundamental E>min(pot)

La particule a une probabilité de présence non nulle en dehors du puits

Etats d’énergie positive: «spectre continu»
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Potentiel périodique

Particule dans un potentiel péeriodigue. Solide
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Retour vers Schroedinger dépendant du temps

Placons un paquet d’'onde initial dans un potentiel
périodique

Observons comment ce paquet d'onde se propage dans
le systeme

Le premier paquet d'onde a une énergie inférieure aux
maxima du potentiel

Le deuxieme paquet d’'onde a une energie supérieure aux
maxima du potentiel

... QUIZ: qui va gagner la course?
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Potentiel périodique
Energie inférieure aux maxima de V

9y Paquet d’onde initial:
V(z) = Vpsin (npﬁt;) _ sy
L _ iKgX A—(X=X) /20

w(X,0) =Ce™"e

27N
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Potentiel périodique
La particule arrive quand méme a avancer!

Periodic V=500 n =40 n=12 E=358

il
il

L W M i @. M

Paquet d'onde initial n=12

Periodic V0=500 nv=40 n=12 E=358
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V(x)
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-500,
-2

Physique Numérique I-II semaine 28

= Energie supérieure aux maxima de V, ... et pourtant la
particule n’arrive pas a avancer!

Periodic V=500 n =40 n=20 E=988

<E>

L'énerige de la particule est bien

supérieure au maximum du
potentiel.

Periodic VD=50

0.025

0.02
0.015
0.01

0.005

Re(y(x.1))

0.5 1 1.5

Pourquoi la particule
n’arrive-t-elle pas a
avancer ?

28
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Physique Numérique I-II semaine 28

Longueur d’'onde = 2 x périodicité du potentiel

Paquet d’onde initial n=20 Periodic V=500 n =40 n=20 E=988
F - = !

‘WM @ |
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Schr.stat. Periodic VO=500 nv=40
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L0
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i s |
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- - l
_ |
0 |

0 1|0 2|0 3|0 40 5|O 60
On est autour du mode n=40 - gap

La vitesse de groupe est nulle au voisinage du gap -2 le
paquet d'onde a une vitesse nulle



Energie encore plus élevee, au dessus du gap
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