
Physique Numérique – Semaine 13

Swiss Plasma Center

Rappel de la semaine 12

❑ 4.3 Schrödinger. 

❑ Schéma semi-implicite de Crank-Nicolson: conservation exacte de la 

probabilité totale et de l’énergie moyenne.

❑ Heisenberg et Fourier

❑ Particule dans un potentiel V(x), effet tunnel, résonance

Plan de la semaine 13
❑ 4.3  Schrödinger

❑ Détecteur de particule

❑ Particule dans un potentiel V(x): Oscillateur harmonique, états quasi-

classiques (cohérents)

❑ Etats stationnaires (ou «propres»), énergies «propres».

❑ Particule dans un potentiel V(x) périodique. Gaps.

❑ Exercice 6: à rendre AUJOURD’HUI. 
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Physique Numérique – Semaine 13

Evaluation approfondie des cours: jusqu’au 9 juin

5 minutes à la fin du cours

➢ Aller sur la page d’accueil de Moodle (PAS sur celle du cours)

➢ Aller à la case «Evaluation approfondie»

➢ Sélectionner le cours  PHYS-210_SP24 et compléter le feedback
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #13: Notes de cours

❑ Section 4.3.4 Oscillateur harmonique

❑ Section 4.3.5 Etats stationnaires (propres)

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Exercice 6

◼ 2 sessions: 15, 22 mai

◼ Délai de rendu 

mardi 26 mai →mercredi 27 mai 2024

◼ 3e session, 27 mai : “rattrappage”
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Heisenberg

◼ Principe d’incertitude de Heisenberg

◼ Peut se comprendre à l’aide de la transformée de 

Fourier

❑ Des démonstrations seront présentées au cours

❑ Preuve mathématique formelle:

https://brilliant.org/wiki/heisenberg-uncertainty-principle/

2/))((  px
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◼ Principe d’incertitude de Heisenberg et transformées de Fourier

Heisenberg et Fourier
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Conservation de la probabilité: semi-implicite

Le schéma de Crank-Nicolson conserve la probabilité: const),( =

H
t

2
soit 


=

Preuve:

( ) ( )txH
ti

ttxH
ti

,
2

1,
2

1  






 
−=+







 
+



Opérateur A. Opérateur B. 

(4.90)

= *ABhermitien hermitien  H

ttt AA  *1−

+ =
*1

tsoit AAT −

 =
tttt T  + =

Lemme 1:
*

tt TT − =
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− = tt TT Exprime la réversibilité du schéma 

(preuves au tableau) 
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Conservation de la probabilité: semi-implicite et implicite

Le schéma de Crank-Nicolson conserve la probabilité: const),( =

Lemme 1:
*

tt TT − =

Lemme 2: ( ) 1−

−  tt TT Le schéma implicite n’est PAS réversible! 

Lemmes 1 et 2  ( ) = 

−



*1

tt TT

L’opérateur d’évolution temporelle est unitaire

1
*
= tt TT

Cette propriété implique directement la conservation de la probabilité. En effet:

),(),(),(),(
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tttttttttttttt TTTT  === ++

Un schéma complètement implicite ne conserve pas la probabilité:

OK!

ttt i  1)21( −

+ +=
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Conservation de la probabilité: schéma explicite

Lemme 1:
*

tt TT − =

Lemme 2: ( ) 1−

−  tt TT Le schéma explicite n’est PAS réversible! 

Un schéma complètement explicite ne conserve pas la probabilité:

OK!

ttt i  )21( −=+

Le  schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de 

l’intervalle temporel. Cette propriété est ici liée à la propriété de 

conservation. De façon générale, les schémas de différences finies 

«centrés» sont préférables, on gagne en ordre de convergence.
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Conservation de l’énergie

La propriété de conservation de l’énergie, en mécanique quantique, devient 

la conservation de l’espérance mathématique de l’hamiltonien. Elle s’appuie 

essentiellement sur la propriété que l’Hamiltonien H est hermitien. Il est donc 

essentiel que la discrétisation spatiale de l’Hamiltonien préserve cette 

propriété. Une fois de plus: il faut que la matrice H soit hermitienne!
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Eq. Schrödinger:
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Détection de particule
◼ Que se passe-t-il si le 

détecteur détecte une 

particule («tac»)?

◼ Que devient la fonction 

d’onde?

◼ La détection conserve-t-

elle l’énergie?

◼ Que puis-je dire si le 

détecteur ne détecte pas 

la particule?

◼ Est-elle à gauche ou à 

droite?

◼ Cela fait-il une différence sur l’évolution ultérieure 

(t>t tac) de la particule si on l’a détectée en t=t tac , 

par rapport au cas où on ne l’a pas détectée ?

◼ Complément facultatif Ex.6

Détecteur de particule

Swiss Plasma Center 11



Détection ou non … 
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Détection ou non … 
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Détection ou non … 
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◼ 4.3.4

Oscillateur harmonique
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◼ Thm Ehrenfest:

◼ ! En général        
𝑑𝑉(𝑥)

𝑑𝑥
≠

𝑑𝑉 𝑥

𝑑𝑥

◼ Particule classique #1 d’énergie 

◼ Particule classique #2 de quantité de mvmt

𝐸𝑐𝑙𝑎𝑠𝑠,1 ≠ 𝐸𝑐𝑙𝑎𝑠𝑠,2 𝑝𝑐𝑙𝑎𝑠𝑠,1 ≠ 𝑝𝑐𝑙𝑎𝑠𝑠,2

Limite classique

𝐸𝑐𝑙𝑎𝑠𝑠,1 =< 𝐻 >=< Τ𝑝2 2𝑚 + 𝑉 𝑥 >
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◼ Oscillateur harmonique: 

◼ <x>(t) vs xclass(t) et <p>(t) vs pclass(t)

◼ L’accord n’est pas parfait… est-ce un problème

numérique, ou un problème physique?

Limite classique
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◼ Oscillateur harmonique: 

◼ Incertitudes…

◼ x augmente quand p diminue et vice-versa… Peut-on 

trouver des particules quantiques avec x=const?

Limite classique
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Etats cohérents ou semi - classiques
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Δ𝑥 = Τℏ 2𝑚ω0

Etats dits «quasi-classiques», tels que leur incertitude x est constante 

au cours du temps. Il s’agit de paquets d’ondes gaussiens avec
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Etats cohérents ou semi - classiques
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◼ 4.3.5 Etats d’énergie bien déterminée: 

◼ Eq. de Schrödinger stationnaire

◼ Discrétisation 

Schrödinger stationnaire

Les énergies possibles de la particule sont les valeurs propres de l’Hamiltonien. 

Les fonctions propres correspondantes sont appelées états propres.

Les énergies possibles de la particule sont 

approximées par les valeurs propres de la matrice 

H résultant de la discrétisation de l’Hamiltonien. 

Les états propres sont approximés par les 

vecteurs propres de H. →
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◼ Solution Générale de Schroedinger = superposition d’états propres:

◼ 𝑐𝑛
2: probabilité que la particule soit dans l’état no 𝑛

◼ D’où une autre méthode, dite spectrale, de résolution de Schroedinger:

❑ Opérateur H : calcul des fonctions et valeurs propres {Ψ𝑛(𝑥), En}

❑ → Matrice H : calcul des valeurs et vecteurs propres {Ψ𝑛(𝑥𝑖), En}

❑ Calcul des                                               → 𝑐𝑛 = σ𝑗Ψ𝑛
∗ xi 𝜓(𝑥𝑖 , 0)

(projection sur les états propres)

❑ La solution numérique est: 

𝜓 𝑥𝑖 , 𝑡𝑗 = σ𝑛 cnΨ𝑛 𝑥𝑖 exp −
𝑖𝐸𝑛

ℏ
𝑡𝑗

◼ Voir aussi http://falstad.com/qm1d/
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Principe de superposition
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◼ Particule dans un puits de potentiel de profondeur finie

Puits

La particule a une probabilité de présence non nulle en dehors du puits

Seul un nombre fini de valeurs négatives de l’énergie est possible: 

«spectre discret». Etat fundamental E>min(pot)

Etats d’énergie positive: «spectre continu»
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◼ Particule dans un potentiel périodique. Solide

Potentiel périodique



Retour vers Schroedinger dépendant du temps

◼ Plaçons un paquet d’onde initial dans un potentiel 

périodique

◼ Observons comment ce paquet d’onde se propage dans 

le système

◼ Le premier paquet d’onde a une énergie inférieure aux 

maxima du potentiel

◼ Le deuxième paquet d’onde a une énergie supérieure aux 

maxima du potentiel

◼ … QUIZ: qui va gagner la course?
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◼ Energie inférieure aux maxima de V

Potentiel périodique
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◼ La particule arrive quand même à avancer!

Potentiel périodique

Position moyenne

Paquet d’onde initial n=12
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◼ Energie supérieure aux maxima de V, … et pourtant la 

particule n’arrive pas à avancer!

Physique Numérique I-II semaine 28

Pourquoi la particule 

n’arrive-t-elle pas à 

avancer ?

Re((x,t))

L’énerige de la particule est bien 

supérieure au maximum du 

potentiel.

<E>
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◼ Longueur d’onde = 2 x périodicité du potentiel

Physique Numérique I-II semaine 28

Position moyenne

Paquet d’onde initial n=20



◼ On est autour du mode n=40 → gap

◼ La vitesse de groupe est nulle au voisinage du gap → le 

paquet d’onde a une vitesse nulle
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◼ Energie encore plus élevée, au dessus du gap

Position moyenne

Paquet d’onde initial n=24
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Merci de votre attention

Bonne continuation de vos études!

Physique Numérique


