
Physique Numérique – Semaine 12

Swiss Plasma Center

Rappel de la semaine 11

❑ Ondes – 2D

❑ 4.3 Schrödinger. 

❑ Schéma semi-implicite de Crank-Nicolson

❑ Particule libre, étalement du paquet d’onde

Plan de la semaine 12
❑ Ondes – Exercice 5 – bref retour

❑ 4.3  Schrödinger

❑ Initialiser une onde pour qu’elle se propage dans les 2 directions

❑ Principe d’incertitude de Heisenberg et transformée de Fourier

❑ Propriétés de conservation de la probabilité et de l’énergie

❑ Particule dans un potentiel V(x), effet tunnel, etc…

❑ Détecteur de particule

❑ Exercice 6: à rendre MERCREDI prochain. 
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Physique Numérique – Semaine 12

Evaluation approfondie des cours: jusqu’au 9 juin

5 minutes à la fin du cours

➢ Aller sur la page d’accueil de Moodle (PAS sur celle du cours)

➢ Aller à la case «Evaluation approfondie»

➢ Sélectionner le cours  PHYS-210_SP24 et compléter le feedback

Retour sur l’Exercice 5: ondes, schéma explicite à 3 niveaux:

Le schéma est exact dans le cas u2=const, b2=1
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #12: Notes de cours

❑ Section 4.3. Schrödinger. 

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Exercice 6

◼ 2 sessions: 15, 22 mai

◼ Délai de rendu 

mardi 26 mai →mercredi 27 mai 2024

◼ 3e session, 27 mai : “rattrappage”
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Ondes - Exercice 5
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Profondeur 2D h0(x,y). Focalisation.
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◼ 4.3 Schrödinger
❑ Corpusculaire, ondulatoire, probabiliste

4.3 Mécanique Quantique - Schrödinger

Particule 

libre:

Particule 
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potentiel 
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◼ Solution Eq. Schrödinger

❑ Propagateur (opérateur d’évolution temporelle)

❑ Propriété: unitarité (conservation de la probabilité)

◼ 4.3.1 Schéma numérique semi-implicite

❑ Crank-Nicolson

◼ Discrétisation temporelle, pas de temps uniforme Dt
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Appliquant l’opérateur des 2 côtés,

Et développant au 1er ordre de exp
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◼ Discrétisation spatiale, maillage uniforme Dx

◼ Approximation par différences finies de l’opérateur différentiel 

spatial:
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Opérateur A. Partie implicite: 

il faut inverser l’opérateur

Opérateur B. Partie explicite: 

il faut appliquer l’opérateur

Ainsi, l’opérateur Hamiltonien H peut s’écrire comme une matrice H.

Appliquer l’opérateur H sur  revient à multiplier la matrice H par le 

vecteur  constitué des valeurs de  aux points de maillage xj . 

De même, les opérateurs A et B deviennent des matrices A et B.

(4.90)
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❑ Le schéma de Crank-Nicolson a les bonnes propriétés suivantes:

➢ Il conserve la probabilité totale

➢ … et l’énergie

… à la précision machine! 

➢ Preuve: au tableau

tdxtx =
+
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,1),(
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

( ) tEdxtxHtxtHtE == 
+

−
),0(),(),()()( * 

Explicite. B Y . Multiplication 

matrice vecteur

Implicite.  A Y=… . Résolution 

d’un système algébrique linéaire

(4.99)

❑ Schéma de Crank-Nicolson, semi-implicite: A Y|t+Dt = B Y|t
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(4.99)

❑ Schéma de Crank-Nicolson, semi-implicite: A Y|t+Dt = B Y|t

❑ Conditions aux limites, cas d’un puits de potentiel infini dans [xL,xR]:

ttxtx RL == ,0),(,0),( 
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Les éléments des matrices  et des vecteurs «…» sont inchangés.

Le système «…» est en fait équivalent à celui résultant de la discrétisation sur 

le domaine [xL+Dx,xR--Dx], dans lequel on aurait “oublié” d’appliquer les 

conditions aux limites.

Autrement dit, si vous «oubliez» d’appliquer les conditions aux limites sur le 

système (4.99), c’est comme si vous aviez en fait résolu le problème sur le 

domaine [xL-Dx,xR-+Dx] avec ses conditions aux limites.
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◼ Paquet d’onde Gaussien: on initialise l’état de la 

particule par une onde plane dont l’amplitude est 

modulée par une fonction Gaussienne

◼ Simulons la particule libre (V=0)

𝜓(𝑥, 0) = 𝐶𝑒𝑖𝑘0𝑥𝑒− 𝑥−𝑥0
2/2𝜎2
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◼ Exemples 

❑ 4.3.2 Particule libre

Etalement du paquet d’onde.

Effet de la dispersion, pas de diffusion! 

(Etalement n’est pas ~           )t
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◼ Quiz 

Comment faire partir le paquet d’onde vers la gauche 

(onde rétrograde)?

k0 < 0

Comment initialiser le paquet d’onde initial pour qu’il 

se scinde en deux paquets, l’un se propageant vers 

la gauche, l’autre vers la droite?

On remarque que l’Eq. de Schrödinger est du premier ordre en dérivée 

temporelle (
𝜕𝜓

𝜕𝑡
), Il n’y a donc qu’ une seule condition initiale à 

imposer : 𝜓(𝑥, 0) connu ⇒ 𝜓 𝑥, 𝑡 connu ∀𝑡

Dans le schéma numérique, on n’initialise pas 𝜓 𝑥,−Δ𝑡 , 

contrairement aux ondes classiques.
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Heisenberg

◼ Principe d’incertitude de Heisenberg

◼ Peut se comprendre à l’aide de la transformée de 

Fourier

❑ Des démonstrations seront présentées au cours

❑ Preuve mathématique formelle:

https://brilliant.org/wiki/heisenberg-uncertainty-principle/

2/))(( DD px
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◼ Principe d’incertitude de Heisenberg et transformées de Fourier

Heisenberg et Fourier
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Conservation de la probabilité: semi-implicite

Le schéma de Crank-Nicolson conserve la probabilité: const),( =

H
t
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Opérateur A. Opérateur B. 

(4.90)

= *ABhermitien hermitien  H

ttt AA  *1−

D+ =
*1

tsoit AAT −

D =
tttt T  DD+ =

Lemme 1:
*

tt TT DD− =

Lemme 2: ( ) 1−

DD− = tt TT Exprime la réversibilité du schéma 

(preuves au tableau) 
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Conservation de la probabilité: semi-implicite et implicite

Le schéma de Crank-Nicolson conserve la probabilité: const),( =

Lemme 1:
*

tt TT DD− =

Lemme 2: ( ) 1−

DD−  tt TT Le schéma implicite n’est PAS réversible! 

Lemmes 1 et 2  ( ) = D

−

D

*1

tt TT

L’opérateur d’évolution temporelle est unitaire

1
*

=DD tt TT

Cette propriété implique directement la conservation de la probabilité. En effet:

),(),(),(),(
*

tttttttttttttt TTTT  === DDDDD+D+

Un schéma complètement implicite ne conserve pas la probabilité:

OK!

ttt i  1)21( −

D+ +=
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Conservation de la probabilité: schéma explicite

Lemme 1:
*

tt TT DD− =

Lemme 2: ( ) 1−

DD−  tt TT Le schéma explicite n’est PAS réversible! 

Un schéma complètement explicite ne conserve pas la probabilité:

OK!

ttt i  )21( −=D+

Le  schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de 

l’intervalle temporel. Cette propriété est ici liée à la propriété de 

conservation. De façon générale, les schémas de différences finies 

«centrés» sont préférables, on gagne en ordre de convergence.
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Conservation de l’énergie

La propriété de conservation de l’énergie, en mécanique quantique, devient 

la conservation de l’espérance mathématique de l’hamiltonien. Elle s’appuie 

essentiellement sur la propriété que l’Hamiltonien H est hermitien. Il est donc 

essentiel que la discrétisation spatiale de l’Hamiltonien préserve cette 

propriété. Une fois de plus: il faut que la matrice H soit hermitienne!
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Eq. Schrödinger:

Swiss Plasma Center 20



Effet tunnel

◼ 4.3.3 Barrière de potentiel: effet tunnel
❑ Dans cette série de simulations, on initialise toujours le même 

paquet d’onde et on change la hauteur V0 et l’épaisseur de la 

barrière

❑ Cas V0>E

Voir aussi Ex6

Re((x,t))

Probabilité non 

nulle de traverser 

la barrière même 

si V0>E
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◼ 4.3.3 Barrière de potentiel: résonances

❑ Cas V0<E

Résonance avec l’épaisseur de la barrière

Probabilité non nulle de 

réflexion !

On augmente la largeur de la barrière, 

et la probabilité de réflexion diminue… 

(NB: elle est nulle pour d = n /kt )

Re((x,t))
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Détection de particule
◼ Que se passe-t-il si le 

détecteur détecte une 

particule («tac»)?

◼ Que devient la fonction 

d’onde?

◼ La détection conserve-t-

elle l’énergie?

◼ Que puis-je dire si le 

détecteur ne détecte pas 

la particule?

◼ Est-elle à gauche ou à 

droite?

◼ Cela fait-il une différence sur l’évolution ultérieure 

(t>t tac) de la particule si on l’a détectée en t=t tac , 

par rapport au cas où on ne l’a pas détectée ?

◼ Complément facultatif Ex.6

Détecteur de particule
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Détection ou non … 
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Détection ou non … 
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Détection ou non … 
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◼ 4.3.4

Oscillateur harmonique
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◼ Oscillateur harmonique: <x> et Dx

◼ Particule classique d’énergie 

◼ Etats dits «quasi-classiques», tels que leur incertitude Dx est 

constante au cours du temps. Il s’agit de paquets d’ondes 

gaussiens avec

Limite classique

Δ𝑥 = Τℏ 2𝑚ω0

𝐸 =< 𝐻 > = < Τ𝑝2 2𝑚 + 𝑉 𝑥 >
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Etats cohérents ou semi - classiques
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