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Physique Numérique — Semaine 12

Rappel de la semaine 11

O Ondes - 2D

Q 4.3 Schrodinger.
O Schéema semi-implicite de Crank-Nicolson
Q Particule libre, étalement du paquet d’'onde

Plan de la semaine 12

L Ondes — Exercice 5 — bref retour

0 4.3 Schrodinger
O Initialiser une onde pour qu’elle se propage dans les 2 directions
O Principe d’incertitude de Heisenberg et transformée de Fourier
U Propriétés de conservation de la probabilité et de I'énergie
O Particule dans un potentiel V(x), effet tunnel, etc...
O Détecteur de particule

O Exercice 6: a rendre MERCREDI prochain.
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Physique Numérique — Semaine 12
Evaluation approfondie des cours: jusqu’au 9 juin
5 minutes a la fin du cours

» Aller sur la page d’accueil de Moodle (PAS sur celle du cours)
> Aller a la case «Evaluation approfondie»
»> Seélectionner le cours PHYS-210 _SP24 et compléter le feedback

Retour sur 'Exercice 5: ondes, schéma explicite a 3 niveaux:
Le schéma est exact dans le cas u?=const, =1
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Documentation

Lecture pour la Semaine #12: Notes de cours
o Section 4.3. Schrodinger.

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Exercice 6
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—

3e session, 27 mai : “rattrappage”
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Ondes - Exercice 5

Pour le cas u? = const, le schéma explicite & 3 niveaux est exact pour 5 = 1. En

effet, on connait la solution exacte :

f(z,t) = F(x — ut) + G(x + ut) (48)
pour toutes fonctions F(&) et G(n). Pour 8 =1, le schéma, Eq.(6), devient :
fi,n—}—l — _f-i,n—l + (fi—b—l,‘n, + fi—l,n) <~ fi,n—l—l + f-ign—l — f-i—{—l,n + f-i—l,n (49)

En substituant la solution exacte, on obtient :

F(Ta — Ut-n,Jrl) + G(T? + Utn+1) + F(«Tz — Utn—l) + G(«T? + Utn—l)
— F(Ii—i—l - utn) + G(Ii—l—l + ut'n,) + F(:Ei—l - Utn) + G(:E'é,—l + Ut'n.) (50)

= F(z; —ut, + Az) + G(x; + ut, + Azx) + F(x; — ut,, — Azx) + G(z; + ut,, — Azx) (51)

Avec =1, on a uAt = Ax, et 'équation ci-dessus est bien identiquement satisfaite, VF, VG.
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Profondeur 2D h,(x,y). Focalisation.
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4.3 Mécanique Quantique - Schrodinger

4.3 Schrodinger
o Corpusculaire, ondulatoire, probabiliste [v(Z,1)]?

Particule rj — hlz W()_{’ t) - exp(i (kX _ a)t))
libre: E=Aw V(—)Ik
p <> —1AV 9 <~ —lw
| ot

Particule - 6

dans un E < Ih&

potentiel H

V(X): l _ /(\l//) .
p° S o1 V/4 h°

E=—+V(X) i — Vy +V
2m ot 2m v v
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Solution Eqg. Schrodinger
U(x, t) = exp (%tﬂ ) U(z,0)
13

— _/

o Propagateur (opérateur d’évolution temporelle)
o Propriété: unitarité (conservation de la probabilite)

4.3.1 Schéma numérigue semi-implicite

o Crank-Nicolson
Discrétisation temporelle, pas de temps uniforme At

w(X,t+ At) = exp[— % At H )z//(x, t)

_ , I At
Appliquant 'opérateur eXp| + Py H | des 2 cotés,

Et developpant au 18" ordre de exp
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[1+l§HjW(x,t+At)=[l—%—Hj (x,t)] (.90

h 2
— —— _/ — —~ _/
Opérateur A. Partie implicite: Opérateur B. Partie explicite:
il faut inverser I'opérateur il faut appliquer I'opérateur

Discrétisation spatiale, maillage uniforme Ax

Approximation par différences finies de I'opérateur différentiel
spatial: )
0w, Vi~ 2W+V¥, 2

Av2 |j_ 2 +O(AX )

OX (Ax)

Ainsi, 'opérateur Hamiltonien H peut s’écrire comme une matrice H.

Appliquer 'opérateur H sur w revient a multiplier la matrice H par le
vecteur y constitué des valeurs de y aux points de maillage ; .

De méme, les opérateurs A et B deviennent des matrices A et B.
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0 Schéma de Crank-Nicolson, semi-implicite:

AVY|, =B Y|
dA, CcA Yo dB, cB, Yo
aA, | aB
CAL L | - .. CBy_,
ahA, , dA \wy, LAt aBy_, dBy, \wy,

Implicite. A W=... . Résolution
d’'un systeme algébrique linéaire

Explicite. B ¥ . Multiplication
matrice vecteur

O Le schéma de Crank-Nicolson a les bonnes propriétés suivantes:

> |l conserve la probabilité totale

foo\w(x,t)\zdx 1, vt

> ... etlénergie

E(t)=(H)(t) =] w (x)H((x.1))dx=E(0), vt

... a la précision machine!
» Preuve: au tableau

B Swiss Plasma Center
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O Schéma de Crank-Nicolson, semi-implicite:
P AW, =B Y|

O Conditions aux limites, cas d’un puits de potentiel infini dans [x,,Xg]:

w(X,,t)=0,w(X;,1)=0,Vvt
1

s 1 0 0
% /97% Yo /dB/o 980/ VO/
%‘4 c% ~ o O (yBN)Z (4.99)
aA)/z d%l 4 EY A aB/v(z d%—l %1
7

7 7 7
0 1 0 1 0

Les éléments des matrices et des vecteurs «...» sont inchanges.

Le systeme «...» est en fait équivalent a celui résultant de la discrétisation sur
le domaine [x +4x,Xg -4X], dans lequel on aurait “oublie” d’appliquer les
conditions aux limites.

Autrement dit, si vous «oubliez» d’appliquer les conditions aux limites sur le
systeme (4.99), c’est comme si vous aviez en fait résolu le probléme sur le
domaine [x -4X,Xg +4X] avec ses conditions aux limites.

~—+
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Paguet d’'onde Gaussien: on initialise I'etat de la
particule par une onde plane dont 'amplitude est
modulée par une fonction Gaussienne

l/)(x, 0) — Ceikoxe—(x—xo)z/zgz

Simulons la particule libre (V=0)

B Swiss Plasma Center
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Exemples
o 4.3.2 Particule libre

Schroedlnge-r semi- |mp||::|te n= 16 o=6.4

|3 f?@%

2 D-mnmmm*le‘%p I|:1 |I||+]|I|.L HLFI,E% |
|4+ l'l‘l'l'!fl#

-0.5¢ 'r lall hi_ "

0.5 ‘ t=100

150 0 5'0}( 100 150
Etalement du paquet d’'onde.
Effet de la dispersion, pas de diffusion!

(Etalement n’est pas ~\/E )

B Swiss Plasma Center
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Quiz

Comment faire partir le paquet d’'onde vers la gauche
(onde rétrograde)?

Ko< O
Comment initialiser le paquet d’onde initial pour qu’il
se scinde en deux paquets, I'un se propageant vers
la gauche, I'autre vers la droite?

On remarque que I'Eq. de Schrodinger est du premier ordre en dérivée
temporelle (Z—lf), Il N’y a donc qu’ une seule condition initiale a
imposer : Y (x,0) connu = Y (x,t) connu Vvt

Dans le schéma numérique, on n'initialise pas (x, —At),
contrairement aux ondes classiques.
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Heisenberg

(AX)(AD) > 71/ 2

Peut se comprendre a I’aide de la transformée de
Fourier

o Des démonstrations seront présentées au cours

o Preuve mathématique formelle:
https://brilliant.org/wiki/heisenberg-uncertainty-principle/
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Heisenberg et Fourier

Principe d’incertitude de Heisenberg et transformées de Fourier

1 TR A ikx
w(X,1) =ijw(k,t)ek dk 7 (k,t)estla T.F.en x de w(x,1)

N.B.: On peut ensuite faire la T.Fent de yw(k,t).Cependant, dans
la suite, nous omettrons la dépendanceent.

Theorem (Fourier-Heisenberg): (AX)(AK) >1/2

oy 1 T A kX 1A oy
= Iky e™ dk “r
X J2n LO 4 Ikys estla T.F.en xde Pw
Z £ - 1 4 _ _' i 2 _ 2 2
On définit I'opérateur k = —i— et (AKk ) (t) = <k >(t) — (k)" (t)

Quantique Ona p =%k, donc: (AX) (Ap) > h / 2
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Conservation de la probabilité: semi-implicite

Le schéma de Crank-Nicolson conserve la probabilité: (y,yw) = const

Preuve:
I At I At
1+——H X, t+At)=|1———H X, t
(1228 a0 = (1225 (x| aso
Opératear/A. Opérat;u/r B.
SOIt o = % H H hermitien = o hermitien = B=A" =

1A% - AL pA* .
Via = A Ay, oIt T, =A"A Win = T Wi

*

Lemme 1: T—At = TAt (preuves au tableau)
Lemme 2: T—At — (TAt )_1 Exprime la réversibilité du schéma
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Conservation de la probabilité: semi-implicite et implicite

Le schéma de Crank-Nicolson conserve la probabilité:(l//, ) = const

-1 * *
Lemmeslet2 — (TAt) :TAt &S TAtTAt =1

L'opérateur d’évolution temporelle est unitaire

Cette propriété implique directement la conservation de la probabilité. En effet:
(Wt+At ’ tht) — (TAtWt ’TAtWt) — (Wt ’TAt TAtWt) — (Wt , ';”t)

Un schéma completement implicite ne conserve pas la probabiliteé:

Wia = @+ 2i05)_1'7”t\

Lemme 1: |T :TAt OK!

-T -1
Lemme 2: At (TAt ) Le schéma implicite n’est PAS réversible!
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Conservation de la probabilité: schéma explicite

Un schéma complétement explicite ne conserve pas la probabilité:
Viea = (1—21c) l//t\

. — I
Lemmel: (T_, =T, | OK

-1
Lemme 2: T—At == (TAt ) Le schéma explicite n’est PAS réversible!

Le schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de
I'intervalle temporel. Cette propriété est ici liée a la propriété de
conservation. De facon générale, les schémas de differences finies
«centrés» sont préferables, on gagne en ordre de convergence.

m Swiss Plasma Center 19



1)
U
1
r

Conservation de Pénergie

La proprieté de conservation de I'énergie, en mecanique quantique, devient
la conservation de I'espérance mathématique de I'lhamiltonien. Elle s’appuie
essentiellement sur la propriété que I'Hamiltonien H est hermitien. Il est donc
essentiel que la discrétisation spatiale de I'Hamiltonien préserve cette
proprieté. Une fois de plus: il faut que la matrice H soit hermitienne!

(H )(t) = const

Preuve:

SH)® = . Hy) = (%‘f@}(w

Eqg. Schrodinger:
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Effet tunnel

= 4.3.3 Barriere de potentiel: effet tunnel

o Dans cette série de simulations, on initialise toujours le méme
paquet d’'onde et on change la hauteur VO et I'épaisseur de la

barriere
o CasVy>E
Tunnel 6=2.5V =1.2E n=32
0 0
80 RN Re(y(x.1)
o Probabilité non
_ nulle de traverser
la barriere méme
40 si V,>E
20 Voir aussi Ex6
0 =
-50 0 50 100 150
X
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Résonance avec I’épaisseur de la barriere

» 4.3.3 Barriere de potentiel: résonances
o Cas V<E

Re(y(x,1)

100 100

80 80

60

-

40

60

40

20 20

0

Probabilité non nulle de On augmente la largeur de la barriere,
réflexion ! et la probabilité de réflexion diminue.?.
(NB: elle est nulle pour 6 = n w/k;)
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Détecteur de particule

Détection de particule

Que se passe-t-il sile Que puis-je dire si le
détecteur détecte une détecteur ne deétecte pas
particule («tac»)? la particule?

Que devient la fonction Est-elle a gauche ou a
d'onde? droite?

La détection conserve-t-
elle 'énergie?

Cela fait-il une différence sur I’évolution ultérieure
(t>t ., .) de la particule si on I’a detectee en t=t __,
par rapport au cas ou on ne I’'a pas détectee ?

Compléement facultatif Ex.6

W Swiss Plasma Center
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Détection ou non ...

Barrier 6=4.3 V0=1.02E0 n=32 Re(y(x,t))
400 ;

300 Fe
+ 200

100

0 50 100 150 200 250

X
Barrier 6=4.3 V =1.02E, n=32 |y(x,t)|

400

300

+~ 200

100

0
0 50 100 150 200 250
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Détection ou non ...

Barrier 6=4.3 V0=1 .02E0 n=32
250 ‘ ‘ :

200 1

A
& 150

100 | \/

0 100 200 300 40!
Barrier 6=4.3 Vo=1 .OZEO n=32

0 100 200 300 400

m -Swiss Plasma Center t

Barrier 6=4.3 Vo=1 .02E0 n=32

100 200 300 400
Barrier §=4.3 Vo=1 .02E0 n=32

100 200 300 400

25



=PFL :
Détection ou non ...

Barrier 6=4.3 V0=1 .02E0 n=32

80

<A x><A p>
I o
o o

N
o

0.318

0.316 |

0.314 1
A

<E

0.312}

0.317

0.308

Barrier 6=4.3 V0=1 .()ZE0 n=32

100

200

300

400
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Oscillateur harmonique

| -\ 2 0
= 434 Vi)=gmuge? Vi)=Y (L_/Q) g 3

- ml2

Harmo V0=5.5E0 n=24 |(x,t)]

oV =5.5E, n=24 Re(y(x,t))
3000 W -

2500
2000
< 1500 R N S
1000

500
-200 -100 0 100 200 -100 xd. 100 200

v e [—L/2+ L2 Ey = h2k2/2m
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Limite classique

Oscillateur harmonique: <x> et AX

Harmo \f‘0=4ECl n=32 Halrrno VD:I-ﬂfEc| n:I32

100

/_‘\
10} FARAY
."I \'
20y 9 / \
/ N\ fo
A = 8 / .\\
= 0 =] I."r \
W ?-_ ."f \'.
|'l "u
6 / \
-50} / \
Fi \ I
5_' \
/ \ \
100 - 4 : :
O 50 100 150 200 250 300 0 50 100 150 200 250 300

Fic. 4.22 — Particule dans un potentiel harmonique (méme simulation que la FIG. 4.21).
A gauche : position moyenne < x > (t), avec en traitillés la solution de la physique

1

classique. A droite, incertitude sur la position < Ax > (t).

Particule classique d’énergie
E=<H>=<p?/2m+V(x) >

Etats dits «quasi-classiques», tels que leur incertitude Ax est
constante au cours du temps. |l s’agit de paquets d’'ondes

gaussiens aveC Ay =./a/2mw,

B Swiss Plasma Center
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Etats cohérents ou semi - classiques

Harmo V =5.5E  n=24 [¢(x,t)] noV =5.5E, n=24 Re(y(x,t))

3000

2500
2000
+ 1500
1000

500

-200 -100 0 100 200 -100 0 100 200
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