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Physique Numérique — Semaine 11

Rappel de la semaine 10

d 4.2 Ondes
Q Analyse de stabilité de Von Neuman: critere CFL
O Modes propres, fréquences propres. Excitation résonante.

O Tsunamis. Quelle équation?
Plan de la semaine 11

4 Ondes - 2D
O 4.3 Schrodinger
O Schéma semi-implicite de Crank-Nicolson
O Observables
O Principe d’incertitude de Heisenberg
O Propriétés de conservation de la probabilité et de I'énergie
O Particule libre, étalement du paquet d’'onde
O Particule dans un potentiel V(x), effet tunnel, etc...
O Exercice 6
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Documentation

Lecture pour la Semaine #11: Notes de cours
o Section 4.3. Schrodinger.

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Profondeur variable hy(x)  w(z) = v/gho(a
Vitesse de propagation variable u(x)

£ on-Ut () < (3)=0 (A)

ot Laquelle de ces
équations est

82 O correcte?

—dw——(u (Lo j 0(B)

ot’ OX Cela fait-il une
difference sur la

L 0 propagation du

Eéh PV (UZ(X) 5h): 0 (C) tsunami?
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Wilayah Kalimantan B
= West Kalimantan Regior

- usine électrique flottante (3000 tonnes) s’est retrouvée a
6 km a l'intérieur des terres — Banda Aceh, Indonésie

m Swiss Plasma Center 4



=PrL

Ondes en milieu inhomogéne 2D: u?(x,y)

Ex.5, facultati
R R
—_— . u
ot?
8_9(,1;. yi) ~ G(Eit1,Y5) —9(Zi—1,Uy5) Pour g=u? ou g=f
Ox "7 2h., ’
dg (i, ) 2 9(Zi, Yj+1) — 9(Ti, Yj—1)
oy Ay ’
0% (20 ) ~ 9(ziv1,y5) — 29(xi, ;) + 9(ziz1, Y5)
ox2 " h?2
N B
Q(,ﬁ y;) A~ 9(xi, Yj+1) — 29(2i,y5) + 9(@i, yj—1)
oy hg

(3)
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Profondeur 2D h,(x,y). Focalisation.
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Profondeur 2D h,(x,y). Focalisation.
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Profondeur 2D h,(x,y). Focalisation.
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Profondeur 2D h,(x,y). Focalisation.
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Nous avons en fait une lentille gravitationnelle convergente...
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Profondeur 2D h,(x,y). Focalisation.

...et le haut-fond ne nous protege pas, bien au contraire!
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4.3 Mécanique Quantique - Schrodinger

4.3 Schrodinger
o Corpusculaire, ondulatoire, probabiliste [v(Z,1)]?

Particule rj — hlz W()_{’ t) - exp(i (kX _ a)t))
libre: E=Aw V(—)Ik
p <> —1AV 9 <~ —lw
| ot

Particule - 6

dans un E < Ih&

potentiel H

V(X): l _ /(\l//) .
p° S o1 V/4 h°

E=—+V(X) i — Vy +V
2m ot 2m v v
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Solution Eqg. Schrodinger
U(x, t) = exp (%tﬂ ) U(z,0)
13

— _/

o Propagateur (opérateur d’évolution temporelle)
o Propriété: unitarité (conservation de la probabilite)

4.3.1 Schéma numérigue semi-implicite

o Crank-Nicolson
Discrétisation temporelle, pas de temps uniforme At

w(X,t+ At) = exp[— % At H )z//(x, t)

_ , I At
Appliquant 'opérateur eXp| + Py H | des 2 cotés,

Et developpant au 18" ordre de exp

B Swiss Plasma Center
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[1+l§HjW(x,t+At)=[l—%—Hj (x,t)] (.90

h 2
— —— _/ — —~ _/
Opérateur A. Partie implicite: Opérateur B. Partie explicite:
il faut inverser I'opérateur il faut appliquer I'opérateur

Discrétisation spatiale, maillage uniforme Ax

Approximation par différences finies de I'opérateur différentiel
spatial: )
0w, Vi~ 2W+V¥, 2

Av2 |j_ 2 +O(AX )

OX (Ax)

Ainsi, 'opérateur Hamiltonien H peut s’écrire comme une matrice H.

Appliquer 'opérateur H sur w revient a multiplier la matrice H par le
vecteur y constitué des valeurs de y aux points de maillage ; .

De méme, les opérateurs A et B deviennent des matrices A et B.
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0 Schéma de Crank-Nicolson, semi-implicite:

AVY|, =B Y|
dA, CcA Yo dB, cB, Yo
aA, | aB
CAL L | - .. CBy_,
ahA, , dA \wy, LAt aBy_, dBy, \wy,

Implicite. A W=... . Résolution
d’'un systeme algébrique linéaire

Explicite. B ¥ . Multiplication
matrice vecteur

O Le schéma de Crank-Nicolson a les bonnes propriétés suivantes:

> |l conserve la probabilité totale

foo\w(x,t)\zdx 1, vt

> ... etlénergie

E(t)=(H)(t) =] w (x)H((x.1))dx=E(0), vt

... a la précision machine!
» Preuve: au tableau

B Swiss Plasma Center
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O Schéma de Crank-Nicolson, semi-implicite:
P AW, =B Y|

O Conditions aux limites, cas d’un puits de potentiel infini dans [x,,Xg]:

w(X,,t)=0,w(X;,1)=0,Vvt
1

s 1 0 0
% /97% Yo /dB/o 980/ VO/
%‘4 c% ~ o O (yBN)Z (4.99)
aA)/z d%l 4 EY A aB/v(z d%—l %1
7

7 7 7
0 1 0 1 0

Les éléments des matrices et des vecteurs «...» sont inchanges.

Le systeme «...» est en fait équivalent a celui résultant de la discrétisation sur
le domaine [x +4x,Xg -4X], dans lequel on aurait “oublie” d’appliquer les
conditions aux limites.

Autrement dit, si vous «oubliez» d’appliquer les conditions aux limites sur le
systeme (4.99), c’est comme si vous aviez en fait résolu le probléme sur le
domaine [x -4X,Xg +4X] avec ses conditions aux limites.

~—+
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Les observables de la mécanique quantique

Produit scalaire: (17,) = jjwn*(x,t)w(x,t) dx

Opérateur adjoint: Q" telque (Qn, ) =", Qw),Vn, Vi
Opérateur hermitien: Q =Q
Opérateur unitaire: Q Q=1

Observable: décrit par un opérateur hermitien (= auto-adjoint)

2
Par exemple: 1, X, p = _ihﬁ, H = _;Z_VZ +V sont des observables
m

Propriété: toutes les valeurs propres d’ un opérateur hermitien sont réelles

m Swiss Plasma Center 16



EPFL

Interprétation probabiliste, moyennes et écart-types

(X)(t) = f:w*(x,t)xw(x,t) dx  (p)(t) = f:l//*(x,t)(— i7 aW(X’t)jdx

OX

() =[x dx (p?)O) = j*:w*(x,t)(—;f ‘gi?’t)jdx

(A () = (x*)(®) - (%) (1) (Ap) ) =(p*)(O)—(p)" )

Et)=(H)(1) = v (x)H(w(x1))dx
, 0% (x, t)) i

Propriétés CRIOESRCL) (‘h ox?
Probabilité totale conservee: f:z//*(x, Dy (x,t)dx =1 Vvt

Valeur moyenne de I'énergie conservée: E(t) = E(0), Vt
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Paguet d’'onde Gaussien: on initialise I'etat de la
particule par une onde plane dont 'amplitude est
modulée par une fonction Gaussienne

l/)(x, 0) — Ceikoxe—(x—xo)z/zgz

Simulons la particule libre (V=0)

B Swiss Plasma Center
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Exemples
o 4.3.2 Particule libre

Schroedlnge-r semi- |mp||::|te n= 16 o=6.4

|3 f?@%

2 D-mnmmm*le‘%p I|:1 |I||+]|I|.L HLFI,E% |
|4+ l'l‘l'l'!fl#

-0.5¢ 'r lall hi_ "

0.5 ‘ t=100

150 0 5'0}( 100 150
Etalement du paquet d’'onde.
Effet de la dispersion, pas de diffusion!

(Etalement n’est pas ~\/E )
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Schroedinger semi-implicite n=16 ¢=6.4 ||
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Quiz

Comment faire partir le paquet d’'onde vers la gauche
(onde rétrograde)?

On remarque que I'Eq. de Schrodinger est du premier
ordre en dérivée temporelle (aa—f), et non du 2¢ ordre

2
comme les ondes classiques (d’Alembert), (37)

Il N’y a donc qu’ une seule condition initiale a imposer :
Y(x,0) connu = YP(x,t) connu Vt

Dans le schéma numérique, on n’initialise pas y(x, —At)

m Swiss Plasma Center 20



Propagation
<X>(t) :jz/(x,t) X (X, t) dx

<x>(t)=<x>(0)+h—k°t
m

Etalement

h*t?

m’c?

<AX > () =< AX > (O)\/1+

W Swiss Plasma Center
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(AX)(AD) > 71/ 2

Peut se comprendre a I’aide de la transformée de
Fourier

o Des démonstrations seront présentées au cours

o Preuve mathématique formelle:
https://brilliant.org/wiki/heisenberg-uncertainty-principle/

m Swiss Plasma Center 22
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Principe d’incertitude de Heisenberg et transformées de Fourier

1 TR A ikx
w(X,1) =ijw(k,t)ek dk 7 (k,t)estla T.F.en x de w(x,1)

N.B.: On peut ensuite faire la T.Fent de yw(k,t).Cependant, dans
la suite, nous omettrons la dépendanceent.

Theorem (Fourier-Heisenberg): (AX)(AK) >1/2

oy 1 T A kX 1A oy
= Iky e™ dk “r
X J2n LO 4 Ikys estla T.F.en xde Pw
Z £ - 1 4 _ _' i 2 _ 2 2
On définit I'opérateur k = —i— et (AKk ) (t) = <k >(t) — (k)" (t)

Quantique Ona p =%k, donc: (AX) (Ap) > h / 2
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Conservation de la probabilité: semi-implicite

Le schéma de Crank-Nicolson conserve la probabilité:(l//, ) = const

Preuve:
I At I At
1+——H X, t+At)=|1———H X, t
(1228 a0 = (1225 (x| aso
Opératear/A. Opérat;u/r B.
SOIt o = % H H hermitien = o hermitien = B=A" =

1A% -  A-Llp* -
Via = A Ay, oIt T, =A"A Win = T Wi

*

Lemme 1: T—At = TAt (preuves au tableau)
Lemme 2: T—At — (TAt )_1 Exprime la réversibilité du schéma
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Conservation de la probabilité: semi-implicite et implicite

Le schéma de Crank-Nicolson conserve la probabilité:(l//, ) = const

-1 * *
Lemmeslet2 — (TAt) :TAt &S TAtTAt =1

L'opérateur d’évolution temporelle est unitaire

Cette propriété implique directement la conservation de la probabilité. En effet:
(Wt+At ’ tht) — (TAtWt ’TAtWt) — (Wt ’TAt TAtWt) — (Wt , ';”t)

Un schéma completement implicite ne conserve pas la probabiliteé:

Wia = @+ 2i05)_1'7”t\

Lemme 1: |T :TAt OK!

-T -1
Lemme 2: At (TAt ) Le schéma implicite n’est PAS réversible!

m Swiss Plasma Center 25



1)

1
r

Schéma explicite

Un schéma complétement explicite ne conserve pas la probabilité:
Viea = (1—21c) l//t\

Lemmel: |T_,, =T, | OK

-1
Lemme 2: T—At == (TAt) Le schéma explicite n’est PAS réversible!

Le schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de
I'intervalle temporel. Cette propriété est ici liée a la propriété de
conservation. De facon générale, les schémas «centrés» sont préférables.
Les differences finies gagnent en ordre de convergence.

La propriété de conservation de la probabilité s’appuie essentiellement sur la
propriété que I'’Hamiltonien H est hermitien. Il est donc essentiel que la
discrétisation spatiale de 'Hamiltonien préserve cette propriété, i.e. il faut

gue la matrice H soit hermitienne!
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Conservation de Pénergie

La proprieté de conservation de I'énergie, en mecanique quantique, devient
la conservation de I'espérance mathématique de I'lhamiltonien. Elle s’appuie
essentiellement sur la propriété que I'Hamiltonien H est hermitien. Il est donc
essentiel que la discrétisation spatiale de I'Hamiltonien préserve cette
proprieté. Une fois de plus: il faut que la matrice H soit hermitienne!

(H )(t) = const

Preuve:

SH)® = . Hy) = (%‘f@}(w

Eqg. Schrodinger:
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Exercice 6
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2 sessions: 15, 22 mal
Délai de rendu
[ =26<far—> mercredi 27 mai 2024

—

3e session, 27 mai : “rattrappage”

m Swiss Plasma Center 28



1)
U
1
r

Détection de particule

Que se passe-t-il sile Que puis-je dire si le
détecteur détecte une détecteur ne deétecte pas
particule («tac»)? la particule?

Que devient la fonction Est-elle a gauche ou a
d'onde? droite?

La détection conserve-t-
elle 'énergie?

Cela fait-il une différence sur I’évolution ultérieure
(t>t ) de la particule si on I’a detectee en t=t
par rapport au cas ou on ne I’'a pas détectee ?

Compléement facultatif Ex.6

tac
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