
Physique Numérique – Semaine 7

Swiss Plasma Center

Rappel de la semaine 6

❑ Chapitre 3. Problème à valeurs aux bords.

❑ Section 3.3. Forme variationnelle. Equation de Poisson.

Plan de la semaine 7

❑ Section 3.3. Forme variationnelle. Equation de Poisson. Eléments finis.

❑ Assemblage de la matrice et du membre de droite.

❑ Exercice 4. Géométrie cylindrique.

❑ Section 3.2 Différences finies

❑ Méthodes itératives: Jacobi, Gauss-Seidel, SOR, …

❑ Exemples en 2D

1



Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #7: Notes de cours

❑ Section 3.3 Elements Finis

❑ Section 3.2 Différences Finies

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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Ch. 3 Problèmes à valeurs aux bords

3.3 Eléments finis

◼ Illustration sur un problème électrostatique 1D 

◼ Exercice 4: Eq. de la chaleur stationnaire

La présentation 

sera faite au 

tableau noir, 

pour le cas de 

l’électrostatique 

avec charges 

libres, sans 

diélectrique
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Forme variationnelle
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Elements finis – intégration par parties

4
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Elements finis linéaires 1D

Figure 3.4 –Fonctions de base Λi (x) et représentation (approximation) 

d’une  fonction φ(x) par ces éléments finis.
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Elements finis – fonctions de base

hi
h1=0, hN=0
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Conditions aux limites

(*)

(*) Ex.4: cylindre, r=0 n’est pas un bord du domaine physique

On n’impose pas de condition explicite en r=0. 

D’ailleurs, on ne connaît pas la valeur du potentiel en r=0.
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Questions algorithmiques

❑ Il est fortement recommandé de procéder à l’assemblage de 

la matrice et du membre de droite intervalle par intervalle

❑ Boucle sur les intervalles k
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Elements finis 1D

◼ Cas de l’équation de Poisson 1-D
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Elements finis linéaires 1D

◼ La méthode des éléments finis permet naturellement 

d’utiliser des maillages non-équidistants …
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Elements finis linéaires 1D

◼ … ce qui améliore la convergence numérique
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Ex. 4. Eq. de la chaleur stationnaire dans un cylindre

Swiss Plasma Center 17



FAQ – Elements finis - 1  

◼ L’équation différentielle de Poisson est du 2e ordre (elle fait 

intervenir 𝑑2𝜙/𝑑𝑥2).

◼ Or, on a trouvé une solution numérique qui est une fonction 

linéaire par morceau, dont la 1e dérivée est discontinue aux 

points de maillage, et donc dont la 2e dérivée est nulle presque 

partout, sauf aux points de maillage où elle est infinie !!!

◼ Comment peut-on prétendre avoir résolu l’équation 

différentielle?

◼ Pourquoi prendre des fonctions de base linéaires par morceau?

◼ 𝜙 ≈ 𝜙ℎ = σ𝑗𝜙𝑗 Λ𝑗 𝑥

◼ 𝑑𝜙ℎ/𝑑𝑥 = σ𝑗𝜙𝑗 𝑑Λ𝑗/𝑑𝑥

◼ 𝑑2𝜙ℎ/𝑑𝑥
2 = σ𝑗𝜙𝑗 𝑑

2Λ𝑗/𝑑𝑥
2 ????

Swiss Plasma Center 18



FAQ – Elements finis - 2 

◼ En fait, on peut montrer que, malgré ce problème, la 

solution numérique tend vers la solution exacte dans le 

sens que la norme de la différence entre les deux tend 

vers zéro lorsque le maillage devient de plus en plus fin:

lim
ℎ→0

න
𝑥𝑎

𝑥𝑏

𝜙ℎ 𝑥 − 𝜙 𝑥
2
𝑑𝑥 = 0

◼ Choisir des fonctions de bases autres que linéaires par 

morceau est possible. De façon générale, plus l’ordre du 

polynôme par morceau est élevé, plus l’ordre de 

convergence sera élevé.

◼ Dans l’exercice 6, vous vérifierez empiriquement l’ordre 

de convergence de la solution numérique.
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FAQ-Elements finis - 3

❑ Comment vérifier que l’équation différentielle est bien 

satisfaite? 
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Electrostatique dans la matière, inhomogène
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◼ Cas 1D, cartésien: 

◼ Forme variationnelle après intégration par parties: 

Electrostatique dans le vide. 

Forme variationnelle: un petit quiz…

◼ Eq. de Laplace:                ( ) = |,02 xx




( ) ( ) = xxVx


,❑ Conditions aux limites:                

න
𝑎

𝑏 𝑑 𝜂

𝑑𝑥

𝑑𝜙

𝑑𝑥
𝑑𝑥 = 0 , ∀𝜂 Soit 𝑔 =

𝑑𝜂

𝑑𝑥

⇔ න
𝑎

𝑏

𝑔
𝑑𝜙

𝑑𝑥
𝑑𝑥 = 0 , ∀𝑔 ⇔

𝑑𝜙

𝑑𝑥
= 0, ∀𝑥 ? ? ? ? ? ? ?

𝑑2𝜙

𝑑𝑥2
= 0, ∀ 𝑥 ∈ ]𝑎, 𝑏[, 𝜙 𝑎 = 𝑉𝑎 , 𝜙 𝑏 = 𝑉𝑏

Swiss Plasma Center 22



3.2 Différences finies – Eq. De Poisson

◼ Différences finies, cf. Annexe (A.7)

◼ Eq. de Laplace:                

◼ Le potentiel en chaque point de maillage est la moyenne

des valeurs du potentiel aux plus proches voisins

( ) = |,02 xx




◼ Cas 3D, cas hx=hy=hz : 

( ) ( ) = xxVx


,❑ Conditions aux limites:                

◼ Cas du vide:                

Swiss Plasma Center 23



Méthodes itératives – 1: Jacobi

◼ Initialiser les valeurs aux points intérieurs de maillage ijk

à des valeurs arbitraires et les valeurs aux points sur les 

bords selon les conditions aux limites.

◼ Calculer le résidu r (*)

◼ Boucle itération numéro l, (while r>p)

❑ Boucle sur les points de maillage intérieurs (i,j,k)

❑ Boucle sur les points de maillage intérieurs (I,j,k)

◼ Calculer le résidu r (*)

(*) Par exemple, ( )1,,,1,,,1,,
6

1
max  ++−= kjikjikjiijkkjir 

( ))(

1,,

)(

1,,

)(

,1,

)(

,1,

)(

,,1

)(

,,1

)1(

,,
6

1 l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji −+−+−+

+ +++++= 
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Methodes itératives – 2: Gauss-Seidel

◼ Initialiser les valeurs aux points intérieurs de maillage ijk

à des valeurs arbitraires et les valeurs aux points sur les 

bords selon les conditions aux limites.

◼ Calculer le résidu r (*)

◼ Boucle itération numéro l, (while r>p)

❑ Boucle sur les points de maillage intérieurs (i,j,k)

❑ Boucle sur les points de maillage intérieurs (I,j,k)

◼ Calculer le résidu r (*)

(*) Par exemple, ( )1,,,1,,,1,,
6

1
max  ++−= kjikjikjiijkkjir 

( ))1(

1,,

)(

1,,

)1(

,1,

)(

,1,

)1(

,,1

)(

,,1

)1(

,,
6

1 +

−+

+

−+

+

−+

+ +++++= l

kji

l

kji

l

kji

l

kji

l

kji

l

kji

l

kji 
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◼ Initialiser toutes les valeurs aux points de maillage,  ijk

◼ Calculer le résidu r

◼ Boucle while r>p

❑ Boucle sur les points de maillage (i,j,k)

❑ Boucle sur les points de maillage (I,j,k)

◼ Calculer le résidu r

→ a=1 : Gauss-Seidel; 1<a<2 : surrelaxation

→ Converge si 0<a<2        testons!

Accélération des méthodes itératives -

Gauss-Seidel avec Surrelaxation (SOR)

( ))(

,,

(*)

,,

)(

,,

)1(

,,

l

kjikji

l

kji

l

kji a −+=+

( ))1(

1,,

)(

1,,

)1(

,1,

)(

,1,

)1(

,,1

)(

,,1

(*)

,,
6

1 +

−+

+

−+

+

−+ +++++= l

kji

l

kji

l

kji

l

kji

l

kji

l

kjikji 
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◼ Initialiser toutes les valeurs aux points de maillage,  ijk

◼ Calculer le résidu r

◼ Boucle while r>p

❑ Boucle sur les points de maillage (i,j,k)

❑ Boucle sur les points de maillage (I,j,k)

◼ Calculer le résidu r

→ a=1 : Jacobi; 1<a : surrelaxation: DIVERGE!!!!

→ testons! La preuve formelle cf. 4.1.3 pour le cas 1D spatial.

Accélération des méthodes itératives -

Jacobi avec Surrelaxation (SOR)

( ))(

1,,

)(

1,,

)(
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)(
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,,1
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,,1
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,,
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◼ Exemple: 2D, électrodes rectangulaires

Swiss Plasma Center 28



Optimisation de SOR - 1

◼ Niter dépend de la taille du maillage N et de a

2D
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Optimisation de SOR - 2

◼ La valeur optimale de a dépend de N

2D
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Optimisation de SOR - 3

◼ Le nombre d’itérations requises pour une précision donnée augmente 
linéairement avec la taille du maillage (N) lorsqu’on choisit chaque fois le 
paramètre a à l’optimum

◼ Alors que sans SOR, Niterations augmente quadratiquement (N2)

◼ SOR diminue le « coût » de l’algorithme d’un ordre de grandeur! Chaque 
itération coûte ~N2 opérations, donc le coût total N4 (sans SOR) → N3 (avec 
SOR a optimal)

2D NN 
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Champ électrique – Effet de pointe

L’intensité du champ E est très grande aux angles de la surface…

… en fait, le champ E est singulier aux angles de la surface
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Champ E – effet de pointe numérique
Laplacien 2-D

Problème des différences finies sur un maillage cartésien pour des 

surfaces non alignées avec les lignes de coordonnées
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Champ électrique – Loi de Gauss

Champ électrique – Loi de Faraday

◼ Simulations faites en cours et démos au tableau

◼ Quizz

❑ Que vaut              sur            ?

❑ Que vaut              sur            ?

❑ Où sont les charges              ?

❑ Le champ     est nul en dehors de la boîte. Donc la somme des 

charges à l’intérieur est nulle. Vrai ou faux?

❑ Si                  , alors                   . Vrai ou faux?

❑ Si on déplace une électrode, par exemple (a),  en gardant                

constants, les charges sur les électrodes changent-elles? Et 

comment? (1):  Seulement      ?  (2)                 avec                                          

❑ …

2 
E



)(x



E


ba VV −= ba QQ −=

ba VV et  

aQ ba QQ et  const=+ ba QQ
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