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Physique Numérique — Semaine 4

Rappel des concepts introduits en semaine 2

O Schéma de Verlet et ses variantes
O Critere de stabilité (cas oscillateur harmonique)

Plan de la semaine 3

O Retour sur Ex.1: convergence Euler semi-implicite d’ordre 2

O Démonstration (simulations): convergence d'ordre 2 pour Verlet
O Démonstration (simulations): limite de stabilité de Verlet

O Pendule — phénomenes non linéaires

O Sections de Poincaré

O Chaos. Equations, expériences et simulations.

O Schémas de Runge-Kutta ordre 2 et 4
Q Algorithme a pas de temps adaptatif
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Documentation

Lecture pour la Semaine #3: Notes de cours
o Chapitre 2, Section 2.7.3, 2.8, 2.9, (2.10.3)

http://moodle.epfl.ch/mod/resource/view.php?1d=8220
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http://moodle.epfl.ch/mod/resource/view.php?id=8220

Euler semi-implicite: convergence

Retour sur I'Exercice 1: pourquoi le schema d’Euler semi-
implicite converge a l'ordre 2 en At, alors que les schémas
d'Euler explicite et implicite convergent a 'ordre 1 en At ?

Convergence

108;

Euler explicit_

Euler implicit ™

Euler semi-implicit

Preuve que RK2
: est du 2¢ ordre:
109" - e Notes de Cours
107" 10710 102 section 2.3.8

At
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2.7.3 Stabilité du schéma de Verlet

On montre (preuve au tableau) que le schéma de Verlet
est stable pour le probleme de l'oscillateur harmonique,
a la condition que:

WAt < 2

ou w, est la fréquence propre (physique!) du systeme:

Wo = \/k/m

N.B.: Il en est de méme pour Euler-Cromer.
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2.7.4 Extension du schéma Verlet a des

forces dépendant de la vitesse et du temps

Soit le cas

%F(x, v,t) =a(x,v,t) = a(x,t) +a(v,t)

Xj+1

= X; +V;Al +%a(xj,V- t-)(At)2 (2.125)

17"

1
Vi :vj+§a(xj,vj,tj)At (2.126)

1 )
Viy1 =V + > (a1(xj, t7) + ar(ja1ftica))At + az(Vys1 )2} tira/2) At

(2.127)
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Orbites dans P’espace de phase

Petits mvmts,

fréequence propre, /g /I
indépendante de

fréequence propre
imaginaire j [g/| -2
- instable )
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positions d’équilibre

VV Pendule g/l=1 v=0 Q=1 A=0 / I'amplitude

Grands mvmts,
- Période

| dépendant de

I'amplitude

" Orbites piégées

Y
Y
N

Orbites
passantes
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Petits mouvements. Mode propre et
fréquence propre.

Grands mouvements. Fréquence
dépendant de I'amplitude

Rétractation du fil. Basculement
oscillation - rotation.

Oscillation du fil. Résonance
paramétrique. Doublement de période.
Mouvement chaotique. Instabilité des
orbites. Non-convergence numeérique.
Sections de Poincaré.




Pendule double articulé

Dans I'expérience montrée en classe, le pendule
est constitué de deux tiges rectilignes rigides.

Chaos dans un systeme conservatif (« Hamiltonien »)
o Simulation numérique et experience

o Reégimes périodique (petits mouvements, linéarisation des
équations), multi-périodique, chaotique

Chaos et impredictabilite
Chaos et sensibilité aux conditions initiales
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Equations du pendule double articulé

Cas de deux tiges rigides uniformes

64 ( ‘9:1 \

to

1 e
i |- (5 + C + CF - BE) / (AB = C?)
s | (-4 @ cr[@+ CE—AF) [ (AB - C?)

A = (m1/2+mg)L3

B = myl3/3

C = (ma/2)L1Lacos(fz — 1)
D = (mg/2)L1Lasin(fa — 01)
E = (m1/2+mg)L1gsinb,
F = (m2/2)Lagsinfs

Ne sont pas sous une forme symplectigue!
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Pendule double - simulationsm=2m=1,1,=21,=1

RK. 6,,=3.1 4?e-005 920=I3.1 42e-00§ ®,,=0 ©,,=0

®, ©

0 2

10" ¢

f7t(6,,0,)|
3

4
f [Hz]

Faible amplitude (petits mouvements): le mouvement est une
superposition des deux modes propres linéaires. L'analyse spectrale des
signaux montre la présence des deux fréquences propres.
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Pendule double - simulations

RK. 910=F).31 42 920=.0'31 42 oa1q=0 ®,,=0

1 m=2m=1L=2L7=1

£y (1.2)
< (12)
E (5,0) (0.3)
— e @1 32
S 'r'-+-lﬂ-n
0 2 6 8

4
f [Hz]

Pour une amplitude plus grande (n/10), le spectre montre de multiples

fréquences. Les fréquences presentes sont mo,+nw,, avec |m|+|n|=1,3,5,...
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Pendule double - simulations

RK. 910=9.6283 920:.0'6283 0)10.=0 ®,,=0

@ = = = =
1 m, 2 m,, A L1 2 L2 A

f7t(6,,0,)|

4
f [Hz]

Amplitude 27/10. Frequences observées mo,;+nw,, avec |m|+|n|=1,3,5,7,,...
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Pendule double - simulations

RK. 6, ,=1 .I414 6,,=1.41 4. ®,,=0 ®,,=0 |

A m1=.2 m2=.1 L1=.2 L2=.1
10* |
J— 2
8“—10 B
&
E |
| L
10° |
10 '
0 5 10 15

f [HZz]
Amplitude 0.45 = . Une forét de pics...
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Pendule double - simulations

RK. 6, ,=1 '.477 6,,=1 '477. ®,,=0 ®2O=0.

m=2m.=1L=2L.=.1
104 ‘ 1 2 1 2
b s W
L el

_ S ’
’é:—,] 02 ,f||.'.' d'“uM‘
sl ' | |
£

10° |

10_20 5 10 15

f[Hz]

Amplitude a peine encore un peu plus élevée (0.47 n): CHAOS! Plus de
structure fréquencielle (« bruit »)!
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« Signature » du chaos

Sensibilité extréme aux conditions Initiales:

o Soit deux conditions initiales differentes. Le
mouvement est dit chaotique si, aussi petite que
soit la difference entre les deux conditions
Initiales, il y a un temps t fini au-dela duquel les
orbites respectives des deux mouvements
s’ecartent exponentiellement 'une de 'autre.
L’'exposant de I'exponentielle est appelé exposant
de Lyapounov.
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Sensibilité aux conditions initiales

0,(0)=0.57

"> Pente = exposant
de Lyapunov

= Distance entre 2 orbites
= Régime chaotique : divergence exponentielle’
= Régime non chaotique: pas de divergence exponentielle
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Chaos et imprédictabilité

Wo,,=1.5716,,=1.5/1 0,,=0 0,,=0

10f

o 8,(0)=n/2

— -14
10l 0,(0)=n/2 + 10

-0l 0,(0)=n/2 + 107°
-30+
40+
-50F
-60+

-70r

-80+

0 S 10 15
t

10-10: taille atome, 10-1%: taille 10 noyaux atomiques!
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Sections de Poincaré

Longues simulations

Representation de toute l'orbite: pas toujours
informative (I'espace de phase est 4D dans le
cas du pendule articulé)

Une Section de Poincare est une intersection
de l'orbite avec une surface de I'espace de
phase

Par exemple {(0;,0;,0,)(t) | 0,(t)=0}

m Swiss Plasma Center 18
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Sections de Poincaré — pendule double

5

0,(0)=10"%r

x10°

] ' | ]
LN B W N
+ T T T

o, [S-W]

Petits mouvements
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Sections de Poincaré — pendule excité

Excitation par une perturbation sinusoidale (point
d’attache mobile, ou couple applique)

Section de Poincaré: on représente une projection dans
un plan de I'espace de phase, p.ex. (angle, vitesse
angulaire) pour 'Ex.3, a chaque période de I'excitation.

o Hint: prenez At=(2n/Q2)/k, k=nombre de pas de temps par période,
et mettez sampling=k en input du code: l'output contiendra ainsi
directement les coordonnées des sections de Poincare.

Cas sans amortissement: chaque condition initiale produit

une section de Poincaré différente. L'’ensemble des

sections de Poincaré présente une topologie de surfaces

Imbriquées, de chaines d’ilots, et de régions

stochastiques signalant la présence de chaos.
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Sections de Poincaré pendule simple, excitation verticale

VV Pendule g/I=1 v=0 Q=1 A=0.5
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Sections de Poincaré pendule simple, excitation verticale zoom

VV Pendule g/I=1 v=0 Q=1 A=0.5

111

1.05

0.95 4
097
0.85

0.8

0.75
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Sections de Poincaré pendule simple, excitation verticale zoom

VV Pendule g/I=1 v=0 Q=1 A=0.5

1.03
1.02

1.01

0.99

0.98.4
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Pendule excité et amorti - attracteurs

Section de Poincaré: on représente une projection
dans un plan de I'espace de phase des positions a
chaque période de I'excitation.

Attracteur: toute condition initiale (dans un domaine
appelé « bassin d’attraction ») conduit a une section
de Poincaré de structure similaire.

Attracteur « etrange »: cas chaotique.

o L' «étrangeté» vient du fait que (1) des conditions initiales
méme infinitésimalement voisines conduisent en un temps
relativement court a des orbites qui divergent
exponentiellement 'une de l'autre; (2) des conditions
initiales méme tres eloignées I'une de l'autre conduisent au
méme attracteur pour des temps longs.
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Galerie d’attracteurs étranges

VV Pendule g/l=9.8 v=0.1 £=3.13 A=5.886
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Galerie (suite)
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Simulation numérique de systemes

en régime chaotique

La sensibilité extréme aux conditions initiales,
avec divergence ~ exp (A t) conduit a
I'impossibilite de converger
numeriguement la solution pour des
tempst>~1/A4

Cependant:

o La structure de I'espace de phase (p.ex. I'étendue
de la zone stochastique et/ou la forme de
I'attracteur étrange) converge numeriquement
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Runge-Kutta d’ordre 2 (2.8)

dy
= _ f(y,t
m (y,t)

Yia =Y + At f(y

At

i "‘? f(y, ’ti)’ti+1/2j —

k1 =At f (yi’ti)
k, = At f(y, +0.5k,,t, +0.5At)

A

yi+1 ______________________________ e 2

Yiuro

Y,

Vi =i +K,

s
7
7
7
e
7
7

} """""""""""" N

e

e
7
e
7
7
7
7
7
e
7

\\//

Runge-Kutta ordre 2

> k Voir les Notes de Cours,

pour une généralisation

> 1

ti } I:i+1/2
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Pour ’Exercice 3. Runge-Kutta or)(/:lre 4 (2.8)

Yv oo d S
y /
— /
—=T(y.1) ay
/ ,/
dt S Al

C‘( / /7 :

/ é i// ///

//// // ////
/ /
Yit k3 A, - )

/// // ’ ’ el \//

// Ve e e -

y /,///,//Og_?;_ __________ el > k4
Va s
///// //// //// > k3
J/ L /// ////
yi-l_kzl2 ________________ /f/// e ol > k
//////// ////’/ 2
_____________ vl ol AL
A ’/Z:f_/__Z(f ________ } ky ) )
. .t

L L !
Vi =V, +%(k1+2k2 + 2k, +k, ) (2.138)
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Gravitation - 1 corps

Comete de Halley

Orbite elliptique fortement excentrique
Faxd Tmin=29.6. T=75.986 ans

Unités astronomiques (UA):
o Demi arand axe orbite terre (150 mio km)

Halley RK4

x [UA]

Intégration numeérique avec Runge-Kutta d’ordre 4 et pas temporel At constant

m Swiss Plasma Center 3()



=PrL

Halley, Verlet, 1000 ans

Halley Verlet
10 |
At=0.01 0.005 0.0025
5- ' .
S5 o -
=
0.9 IHaIIey Verlet ‘
_ At=0.01
43‘-0.95— | | |
% 0 -25 -20 1
z -1 x [UA]
©
o
E1.05 0.005
2 0.0025
S-1.1F '
1.15 : : :
50 100 150

t[UA] 0 50 o 100 150
Précession non physique.

Bonne conservation de Emec en moyenne sur de longs temps.
Mauvaise lorsque r=r;., (accélération maximale).

La période obtenue converge en At?, mais pas trés grande précision.
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Schémas a pas de temps adaptatif

On a constaté que l'erreur était importante aux
Instants ou le corps est fortement acceléré

Raffiner le At a ces instants, augmenter At
autrement... comment faire ceci avant de connaitre
la solution?

Algorithme de At adaptatif: a chaque pas de temps,
comparer les résultats obtenus apres

o a) 1 pas de At

0 b) 2 pas de At/2

En supposant une loi de convergence pour
I'algorithme de base utilisé, on peut en déduire quel

At choisir, I.e. controler l'algorithme.
(développements au tableau)
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Schéma a pas de temps adaptatif

L A N

o t+ALt/2 1+ AL

Chacune des fleches symbolise un pas complet d’un algorithme de base:
par exemple les 4 étapes d’'un schema Runge-Kutta du 4e ordre.

On veut choisir At de telle sorte que d soit inférieur a une valeur donnée ¢

d<e
¢ joue le réle d’'un paramétre de contrdle de l'algorithme, et nest PAS la
précision obtenue sur y a la fin de la simulation. Cette derniére doit étre
obtenue par une étude de convergence: lime 2> 0

B Swiss Plasma Center
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Halley, Runge-Kutta 4e ordre, At variable

Halley RK4 variable At

5 RK4 A t var, nsteps=4889

y [UA]
=

0.9 Halley VV const At & RK4 var At T — i

Verl=t/_\t—conat nsteps= 100000 10" Halley RK4
A ! ! ! .
) 25 -20 -15 ‘]OD T S 1 ﬂ A HFW I f AN ANaNa
J— l] 1 7 L -
< 1 | x [UA] r\/l/\f/ / \/ /Hﬂf f “\/ :
= RK4 A t var, nsteps=4889 = | | \
é 107" :
AT -1.2¢ ] = ‘ :
1.3 107}
RK4 A tvar, nsteps=1737
1.4 : : : : 107 : : :
0 200 400 600 800 1000 0 200 400 600 800 1000
t [an] t [an]

Runge-Kutta a une tendance a long terme de diminuer E.
Le pas At variable permet une tres grande efficacité
Convergence tres rapide
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Halley, Verlet, Runge-Kutta 4, At fixe ou
variable, convergence de la période

Halley RK4 & VW

2

10

erroron T [year]

RK4

TR
~.

N

Verlet
fix At

: adapt At : .
. | | oded5 N |
N\ \\\\ : \\\
| S ~1NP
10‘3 L AN N
10° 10 10* 10°
steps
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Pour 5000 pas de
temps, on est 10
millions de fois plus
précis avec le schéma
adaptatif qu'avec At
fixe!
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En résumeé:

= Verlet conserve bien E .. en moyenne sur de longues
périodes, mais donne une précession non physigue.

= Runge-Kutta 4e ordre: converge tres rapidement la
période, la distance maximale, etc, mais dimunution
séculaire non physique de E, ..

= Un algorithme a pas At adaptatif est de plusieurs
ordres de grandeur plus efficace qu’a At fixe.
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