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Physique Numérique – Semaine 4

Swiss Plasma Center

Rappel des concepts introduits en semaine 2

❑ Schéma de Verlet et ses variantes

❑ Critère de stabilité (cas oscillateur harmonique)

Plan de la semaine 3
❑ Retour sur Ex.1: convergence Euler semi-implicite d’ordre 2

❑ Démonstration (simulations): convergence d’ordre 2 pour Verlet

❑ Démonstration (simulations): limite de stabilité de Verlet

❑ Pendule – phénomènes non linéaires

❑ Sections de Poincaré

❑ Chaos. Equations, expériences et simulations.

❑ Schémas de Runge-Kutta ordre 2 et 4

❑ Algorithme à pas de temps adaptatif
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Documentation

Swiss Plasma Center

◼ Lecture pour la Semaine #3: Notes de cours

❑ Chapitre 2, Section 2.7.3, 2.8, 2.9, (2.10.3)

http://moodle.epfl.ch/mod/resource/view.php?id=8220

http://moodle.epfl.ch/mod/resource/view.php?id=8220
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◼ Retour sur l’Exercice 1: pourquoi le schéma d’Euler semi-

implicite converge à l’ordre 2 en Dt, alors que les schémas 

d’Euler explicite et implicite convergent à l’ordre 1 en Dt ?

Euler semi-implicite: convergence

Preuve que RK2 

est du 2e ordre: 

Notes de Cours

section 2.3.8



2.7.3 Stabilité du schéma de Verlet

◼ On montre (preuve au tableau) que le schéma de Verlet

est stable pour le problème de l’oscillateur harmonique, 

à la condition que:

où w0 est la fréquence propre (physique!) du système:

N.B.: Il en est de même pour Euler-Cromer.
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𝜔0 = 𝑘/𝑚

𝜔0Δ𝑡 ≤ 2



2.7.4 Extension du schéma Verlet à des 

forces dépendant de la vitesse et du temps
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Orbites dans l’espace de phase
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positions d’équilibre

Petits mvmts, 

fréquence propre 

indépendante de 

l’amplitude

lg /

Grands mvmts,

Période 

dépendant de 

l’amplitude

Petits mvmts, 

fréquence propre 

imaginaire 

→ instable 

(physiquement!)

lgi /
Orbites piégées

Orbites 

passantes



Exercice 2: pendule de longueur variable
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➢ Petits mouvements. Mode propre et 

fréquence propre.

➢ Grands mouvements. Fréquence 

dépendant de l’amplitude

➢ Rétractation du fil. Basculement 

oscillation → rotation.

➢ Oscillation du fil. Résonance 

paramétrique. Doublement de période.

➢ Mouvement chaotique. Instabilité des 

orbites. Non-convergence numérique.

➢ Sections de Poincaré.

Pendule avec oscillation verticale
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Pendule double articulé 

◼ Chaos dans un système conservatif (« Hamiltonien »)

❑ Simulation numérique et expérience

❑ Régimes périodique (petits mouvements, linéarisation des 
équations), multi-périodique, chaotique

❑ Chaos et imprédictabilité

❑ Chaos et sensibilité aux conditions initiales
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
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Dans l’expérience montrée en classe, le pendule 

est constitué de deux tiges rectilignes rigides.



Equations du pendule double articulé
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◼ Ne sont pas sous une forme symplectique!

◼ Cas de deux tiges rigides uniformes
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Pendule double - simulations◼ m1=2 m2=1, L1=.2 L2=.1

Faible amplitude (petits mouvements): le mouvement est une 

superposition des deux modes propres linéaires. L’analyse spectrale des 

signaux montre la présence des deux fréquences propres.
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Pendule double - simulations

Pour une amplitude plus grande (p/10), le spectre montre de multiples 

fréquences. Les fréquences présentes sont mw1+nw2, avec |m|+|n|=1,3,5,…
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Pendule double - simulations

Amplitude 2p/10. Frequences observées mw1+nw2, avec |m|+|n|=1,3,5,7,,…
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Pendule double - simulations

Amplitude 0.45 p . Une forêt de pics…
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Pendule double - simulations

Amplitude à peine encore un peu plus élevée (0.47 p): CHAOS! Plus de 

structure fréquencielle (« bruit »)!
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« Signature » du chaos

◼ Sensibilité extrême aux conditions initiales:

❑ Soit deux conditions initiales différentes. Le 

mouvement est dit chaotique si, aussi petite que 

soit la différence entre les deux conditions 

initiales, il y a un temps t fini au-delà duquel les 

orbites respectives des deux mouvements 

s’écartent exponentiellement l’une de l’autre. 

L’exposant de l’exponentielle est appelé exposant 

de Lyapounov.
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Sensibilité aux conditions initiales

◼ Distance entre 2 orbites

◼ Régime chaotique : divergence exponentielle

◼ Régime non chaotique: pas de divergence exponentielle

Pente = exposant 

de Lyapunov
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Chaos et imprédictabilité

◼ 10-10: taille atome,  10-14: taille 10 noyaux atomiques!



Swiss Plasma Center 18

Sections de Poincaré

◼ Longues simulations

◼ Représentation de toute l’orbite: pas toujours 

informative (l’espace de phase est 4D dans le 

cas du pendule articulé)

◼ Une Section de Poincaré est une intersection 

de l’orbite avec une surface de l’espace de 

phase

◼ Par exemple {(1,w1,w2)(ti) | 2(ti)=0}
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Sections de Poincaré – pendule double
1(0)=10-6p 1(0)=0.33p 1(0)=0.37p

Petits mouvements Multi-périodique Chaotique
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Sections de Poincaré – pendule excité

◼ Excitation par une perturbation sinusoïdale (point 

d’attache mobile, ou couple appliqué)

◼ Section de Poincaré: on représente une projection dans 

un plan de l’espace de phase, p.ex. (angle, vitesse 

angulaire) pour l’Ex.3, à chaque période de l’excitation.

❑ Hint: prenez Dt=(2p/W)/k, k=nombre de pas de temps par période, 

et mettez sampling=k en input du code: l’output contiendra ainsi 

directement les coordonnées des sections de Poincaré.

◼ Cas sans amortissement: chaque condition initiale produit 

une section de Poincaré différente. L’ensemble des 

sections de Poincaré présente une topologie de surfaces 

imbriquées, de chaînes d’îlots, et de régions 

stochastiques signalant la présence de chaos.
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Sections de Poincaré pendule simple, excitation verticale
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Sections de Poincaré pendule simple, excitation verticale zoom
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Sections de Poincaré pendule simple, excitation verticale zoom



Swiss Plasma Center 24

Pendule excité et amorti - attracteurs

◼ Section de Poincaré: on représente une projection 

dans un plan de l’espace de phase des positions à 

chaque période de l’excitation.

◼ Attracteur: toute condition initiale (dans un domaine 

appelé « bassin d’attraction ») conduit à une section 

de Poincaré de structure similaire.

◼ Attracteur « étrange »: cas chaotique.

❑ L’ «étrangeté» vient du fait que (1) des conditions initiales 

même infinitésimalement voisines conduisent en un temps 

relativement court à des orbites qui divergent 

exponentiellement l’une de l’autre; (2) des conditions 

initiales même très éloignées l’une de l’autre conduisent au 

même attracteur pour des temps longs. 
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Galerie d’attracteurs étranges



Galerie (suite)
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Simulation numérique de systèmes 

en régime chaotique
◼ La sensibilité extrême aux conditions initiales, 

avec divergence ~ exp (l t) conduit à 

l’impossibilité de converger 

numériquement la solution pour des 

temps t > ~ 1/l

◼ Cependant:

❑ La structure de l’espace de phase (p.ex. l’étendue 

de la  zone stochastique et/ou la forme de 

l’attracteur étrange) converge numériquement
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Runge-Kutta d’ordre 2 (2.8)
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Pour l’Exercice 3: Runge-Kutta ordre 4 (2.8)
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Gravitation - 1 corps

◼ Comète de Halley

◼ Orbite elliptique fortement excentrique 
rmax/rmin=59.6. T=75.986 ans

◼ Unités astronomiques (UA):
❑ Demi grand axe orbite terre (150 mio km)

❑ Période de l’orbite de la terre (1 an)

Intégration numérique avec Runge-Kutta d’ordre 4 et pas temporel Dt constant
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Halley, Verlet, 1000 ans

◼ Précession non physique. 

◼ Bonne conservation de Emec en moyenne sur de longs temps. 
Mauvaise lorsque r=rmin, (accélération maximale).

◼ La période obtenue converge en Dt2, mais pas très grande précision.
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Schémas à pas de temps adaptatif

◼ On a constaté que l’erreur était importante aux 
instants où le corps est fortement accéléré

◼ Raffiner le Dt à ces instants, augmenter Dt
autrement… comment faire ceci avant de connaître 
la solution?

◼ Algorithme de Dt adaptatif: à chaque pas de temps, 
comparer les résultats obtenus après 
❑ a) 1 pas de Dt

❑ b) 2 pas de Dt/2

◼ En supposant une loi de convergence pour 
l’algorithme de base utilisé, on peut en déduire quel 
Dt choisir, i.e. contrôler l’algorithme. 
(développements au tableau)



Schéma à pas de temps adaptatif
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Chacune des flèches symbolise un pas complet d’un algorithme de base: 

par exemple les 4 étapes d’un schema Runge-Kutta du 4e ordre.

On veut choisir Dt de telle sorte que d soit inférieur à une valeur donnée e

d < e
e joue le rôle d’un paramètre de contrôle de l’algorithme, et n’est PAS la 

précision obtenue sur y à la fin de la simulation. Cette dernière doit être 

obtenue par une étude de convergence: lim e→ 0 
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Halley, Runge-Kutta 4e ordre, Dt variable

Runge-Kutta a une tendance à long terme de diminuer Emec

Le pas Dt variable permet une très grande efficacité

Convergence très rapide
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Halley, Verlet, Runge-Kutta 4, Dt fixe ou 

variable, convergence de la période

Pour 5000 pas de 

temps, on est 10 

millions de fois plus 

précis avec le schéma 

adaptatif qu’avec Dt 

fixe!
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En résumé:

◼ Verlet conserve bien Emec en moyenne sur de longues 
périodes, mais donne une précession non physique. 

◼ Runge-Kutta 4e ordre: converge très rapidement la 
période, la distance maximale, etc, mais dimunution 
séculaire non physique de Emec

◼ Un algorithme à pas Dt adaptatif est de plusieurs 
ordres de grandeur plus efficace qu’à Dt fixe.


