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Physique Numeérique sem. 24-25

« 4,3 Mécanique quantique — Eqg. de Schrddinger
« 4.3.1 Schéma semi-implicite de Crank-Nicolson
« 4.3.2 Particule libre. Paquet d’onde. Etalement.
« 4.3.3 Barriere de potentiel. Effet tunnel.

e Exercice 8: 4 séances

« ATTENTION : commencer ay travailler des la
premiere séance!
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4.3 Mécanique Quantique - Schrodinger

4.3 Schrodinger
o Corpusculaire, ondulatoire, probabiliste [v(Z,1)]?

Particule I_j — hlz W()_(’ t) - exp(i (kX o Cc)t))
libre: E=%4Amw V(—)Ik
. 9, .
p < —I1AV — <> —lw
ot

Particule - 9,
dans un E <> 17—
potentiel ot H (1//)
V(X): l e A .

p° S o1 V/4 h°
E=—+V(X) iz XL = Vay +V

2m ot om © 7 v
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Solution Eqg. Schrodinger
U(x, t) = exp (%tﬂ ) U(z,0)
13

— _/

o Propagateur (opérateur d’évolution temporelle)
o Propriéte: unitarité (conservation de la probabilité)

4.3.1 Schéma numériqgue semi-implicite

o Crank-Nicolson
Discrétisation temporelle, pas de temps uniforme At

w(X,t+ At) = exp[— % At H jw(x, t)

_ , I At
Appliquant 'opérateur eXp| + Py H | des 2 cotés,

Et développant au 18" ordre de exp
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[1+L§ij(x,t+At)=[l—%—Hj (x,t)] (.90

h 2
— —— _ — —~ _
Opérateur A. Partie implicite: Opérateur B. Partie explicite:
il faut inverser I'opérateur il faut appliquer I'opérateur

Discrétisation spatiale, maillage uniforme Ax

Approximation par différences finies de I'opérateur différentiel
spatial: )
0w, Vi~ 2W+V¥, 2

A2 |j_ 2 +O(AX )

OX (Ax)

Ainsi, 'opérateur Hamiltonien H peut s’écrire comme une matrice H.

Appliquer 'opérateur H sur w revient a multiplier la matrice H par le
vecteur y constitué des valeurs de y aux points de maillage ; .

De méme, les opérateurs A et B deviennent des matrices A et B.
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0 Schéma de Crank-Nicolson, semi-implicite:

A Y|, = B Y|
dA, CcA Yo dB, cB, Yo
ahA, .. aB, ..
= (4.99)
CAL L | - e CByL, | -
ahA, , dA \wy, LAt aBy_, dBy, \wy, ¢

Implicite. AW¥=... . Résolution Explicite. B ¥ . Multiplication
d’'un systéme algeébrique linéaire matrice vecteur

O Le schéma de Crank-Nicolson a les bonnes propriétés suivantes:
> |l conserve la probabilité totale

[ "l (x,t)] dx=1, vt
> ... etl'énergie -

E(t)=(H)(t) =] w (x)H((x.1))dx=E(0), vt

... a la précision machine!
> Preuve: au tableau
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O Schéma de Crank-Nicolson, semi-implicite:
P AY|, . =B Y|

O Conditions aux limites, cas d’un puits de potentiel infini dans [x,,Xg]:

w(X,,t)=0,w(X;,1)=0,Vvt
1

s 1 0 0
% /97% Yo /dB/o 980/ VO/
%“{ c% ~ o O (yBN)Z (4.99)
aA)/z d%l 4 EY A aB/v(z d%—l %1
7

7 7 7
0 1 0 1 0

Les éléments des matrices et des vecteurs «...» sont inchanges.

Le systéme «...» est en fait équivalent a celui résultant de la discrétisation sur
le domaine [x +4x,Xg -4X], dans lequel on aurait “oublie” d’appliquer les
conditions aux limites.

Autrement dit, si vous «oubliez» d’appliquer les conditions aux limites sur le
systeme (4.99), c’est comme si vous aviez en fait résolu le probléme sur le
domaine [x -4X,Xg +4X] avec ses conditions aux limites.

~—+
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Les observables de la mécanique quantique
Produit scalaire: (17,) = jjwn*(x,t)w(x,t) dx

Opérateur adjoint: Q" telque (Qn, ) =", Qw),Vn, Vi
Opérateur hermitien: Q =Q
Opérateur unitaire: Q Q=1

Observable: décrit par un opérateur hermitien (= auto-adjoint)

2
Par exemple: 1, X, p = _|hV H = _;Z_VZ +V sont des observables
m

Propriété: toutes les valeurs propres d’ un opérateur hermitien sont réelles
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Interprétation probabiliste, moyennes et écart-types

OX

() =[x dx (p?)O) = j*:w*(x,t)(—;f ‘gi?’t)jdx

(A () = (x*)(®) - (%) (1) (ApY () =(p*)(O)—(p)"(¥)

(X)(t) = f:w*(x,t)xw(x,t) dx  (p)(t) = f:l//*(x,t)(— i7 aW(X’t)jdx

Et)=(H)(1) = v (x)H(w(x1))dx
, 0% (x, t)) i

Propriétés PO =97 C ) <_h ox?2
Probabilité totale conservée: f:z//*(x, Dy (x,t)dx =1 Vvt

Valeur moyenne de I'énergie conservée: E(t) = E(0), Vt
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Paguet d’'onde Gaussien: on initialise lI'etat de la
particule par une onde plane dont 'amplitude est
modulée par une fonction Gaussienne

P(x,0) = Cetkox g=(x=x0)*/207

Simulons la particule libre (V=0)
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Exemples
o 4.3.2 Particule libre

Schroedlnge-r semi- |mp||::|te n= 16 o=6.4

W
0.5 f" At t=100
| 'Sfi 3&&?” IrFr"ﬁ
£l T[T i
! MMM*T* g'm' lﬁﬁ”ﬁ
I-HILLI'I'!T&
@F 1R
-0.5¢ 'r u
150 0 50 100 150

Etalement du paquet d’'onde.

X

Effet de la dispersion, pas de diffusion!

(Etalement n’est pas ~\/E )
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Quiz

Comment faire partir le paquet d’'onde vers la gauche
(onde rétrograde)?

On remarque que I'Eq. de Schrodinger est du premier
ordre en dérivée temporelle (Z—f), et non du 2¢ ordre

2
comme les ondes classiques (d’Alembert), (ZT’;

Il 'y a donc qu’ une seule condition initiale a imposer :
Y(x,0) connu = YP(x,t) connu Vt

Dans le schéma numérique, on n’initialise pas y(x, —At)
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Libre n=32 nx=1024

. 200 . — ‘
Propagation i o2
. 150+ 0.25
<x>(t) = [w (%) xy (x 1) dx
% 100/ 10
hik !
<X>(t)=<x>(0)+—t
m 50/
00 2I0 4‘0 6‘0 8I0 1 60 120
Etalement Libre =32 nx=1024
4y | ' anallytique\ , .
At= 0125
h°t?
<AX> (1) =< Ax > (0),[1+ ——; 2
mo v

0 20 40 60 80 100
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(AX)(AD) > 71/ 2

= Peut se comprendre a I'aide de la transformée de
Fourier
o Des démonstrations seront présentées au cours
o Preuve mathématique formelle:

o https://Iwww.brown.edu/academics/applied-
mathematics/sites/brown.edu.academics.applied-
mathematics/files/uploads/26%20Heisenberqgsinequality

pdt
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Principe d’incertitude de Heisenberg et transformées de Fourier

1 TR A ikx
w(X,1) =ijw(k,t)ek dk 7 (k,t)estla T.F.en x de w(x,1)

N.B.: On peut ensuite faire la T.Fent de yw(k,t).Cependant, dans
la suite, nous omettrons la dépendanceent.

Theorem (Fourier-Heisenberg): (AX)(AK) >1/2

oy 1 T A kX 1A oy
= Iky e™ dk “r
X J2n LO 4 Ikys estla T.F.en xde Pw
Z £ - 1 4 _ _' i 2 _ 2 2
On définit I'opérateur k = —i— et (AKk ) (t) = <k >(t) — (k)" (t)

Quantique Ona p =%k, donc: (AX) (Ap) > h / 2

M Phys. Num. Semaines 24-25 14



=PrL
Physique Numérique I-II semaines 24-25

Le schéma de Crank-Nicolson conserve la probabilité:(l//,W) = const

Preuve:
I At I At
1+——H X, t+At)=|1———H X, t
(1228 H a0 = (1225 (x| s
Opératear/A. Opérat;u/r B.
SOIt o = % H H hermitien = o hermitien = B=A" =

1A% - AL pA* .
Via = A Ay, oIt T, =A"A Win = T Wi

*

=T

At

Lemme1l: |

At (preuves au tableau)

-1 i . e, ,
Lemme 2: T—At — (TAt) Exprime la réversibilité du schéma
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Le schéma de Crank-Nicolson conserve la probabilité:(l//,W) = const

-1 * *
Lemmeslet2 — (TAt) :TAt &S TAtTAt =1

L'opérateur d’évolution temporelle est unitaire

Cette propriété implique directement la conservation de la probabilité. En effet:
(Wt+At ’ tht) — (TAtWt ’TAtWt) — (Wt ’TAt TAtWt) — (Wt , ';”t)

Un schéma completement implicite ne conserve pas la probabiliteé:

Wia = @+ 2i05)_1'7”t\

Lemme 1: |T :TAt OK!

-T -1
Lemme 2: At (TAt ) Le schéma implicite n’est PAS réversible!
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Un schéma complétement explicite ne conserve pas la probabilité:
Viea = (1—21c) l//t\

Lemmel: |T_,, =T, | OK

-1
Lemme 2: T—At == (TAt) Le schéma explicite n’est PAS réversible!

Le schéma Crank-Nicolson est semi-implicite, ou «centré» au milieu de
I'intervalle temporel. Cette propriété est ici liée a la propriété de
conservation. De facon générale, les schémas «centrés» sont préférables.
Les differences finies gagnent en ordre de convergence.

La propriété de conservation de la probabilité s’appuie essentiellement sur la
propriété que I'Hamiltonien H est hermitien. Il est donc essentiel que la
discrétisation spatiale de 'Hamiltonien préserve cette propriété, i.e. il faut

gue la matrice H soit hermitienne!

M Phys. Num. Semaines 24-25 17



1)
U
1
r

Physique Numérique I-II semaines 24-25

La proprieté de conservation de I'énergie, en mecanique quantique, devient
la conservation de I'esperance mathématique de I'hamiltonien. Elle s’appuie
essentiellement sur la propriété que I'Hamiltonien H est hermitien. Il est donc
essentiel que la discrétisation spatiale de I'Hamiltonien préserve cette
proprieté. Une fois de plus: il faut que la matrice H soit hermitienne!

(H )(t) = const

Preuve:

SH)® = . Hy) = (%‘f@}(w

Eqg. Schrodinger:
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Détection de particule

Que se passe-t-il sile Que puis-je dire si le
détecteur détecte une détecteur ne deétecte pas
particule («tac»)? la particule?

Que devient la fonction Est-elle a gauche ou a
d'onde? droite?

La détection conserve-t-
elle 'énergie?

Cela fait-il une différence sur I’évolution ultérieure
(t>t ) de la particule si on I’a detectee en t=t
par rapport au cas ou on ne I’'a pas détectee ?

Compléement facultatif Ex.8

tac
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