Semaine 21 — Plan

4.2 Ondes
« Schema explicite 3 niveaux
 Modes propres, frequences propres, excitation
resonante
Limite de stabilité CFL (4.2.2)
« analyse de stabilité de Von Neuman
*Vitesse de phase variable (tsunami) (Annexe E)
e egguations en eaux peu profondes
 numérique: démo (4.2.3)
e analytique: approximation WKB (4.2.4)
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Modes propres, fréquences propres

Mode propre: mvmt particulier du systeme homogene
(i.,e. SANS excitation extérieure) pour lequel TOUS les
degrés de liberté oscillent a la méme frequence, appelée
frequence propre.

De démonstrations seront faites en simulation.

Principe de superposition: la somme algébrique de 2
modes propres est egalement solution du systeme
homogene.
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Modes et fréquences propres — Solution générale

2 2
d_f _ _..E_g__Qd_f Séparation des variables (X,t) — A(x)B(t)
Ot? 3;1‘2 :
d A 1 d B 1 d°A
’ ( )=u’ > (X)
A dx
- fct(t) = fct(x) = const =C
d— B(t) C B(t) B(t) est fonction propre de I’opérateurd_2
t’ — de valeur propre C dt?
B(t) = Be ™| = —w’Be™ =CBe' = C =-0’
d2
d° w° A(X) est fonction propre de 'opérateur ——
dT A(X) = u> A(x) de valeur propre — @ / U° dx*

A(X): Aeikx :>_k2Aeikx _ (a) u ) ey
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Modes et fréquences propres — Solution générale
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Relation de dispersion

2 solutions possibles: [K =+

0]
u

et la solution générale s’écrit comme superposition linéaire de ces 2 solutions

f(x,t) = Aexpl[i(kx— at)]+ Aexpli(—kx — wt)]

On peut aussi I'écrire comme:

f(x,t) = Aexp ik(x—%tj

+ Aexp

—ik(x+ﬁtj
K
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Uu=— F (X —ut) |progressive
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G (X + ut) |rétrograde

}

Vitesse de phase
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Modes et fréquences propres — conditions aux
bords

Pour I'exercice 7, on prend des conditions aux bord
fixes a gauche et a droite.

On applique ces conditions aux bords a la solution
generale.

Cela conduit a une quantification des fréquences
possibles, appelées fréquences propres.

La fonction spatiale correspondant a chaque frequence
propre est appelée fonction propre ou mode propre.
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Modes et fréquences propres — superposition

La fonction propre correspondant a cette fréquence propre o, est:

f,(61) = A sin(k,x) exp(—im,t)

|
A1 = A1 |ei(ﬂn < C Dépendance spatiale Dépendance temporelle
de la fonction propre  de la fonction propre:
oscillation a la frégeuce o,

L'équation d’onde étant linéaire, toute superposition linéaire de solutions est
aussi une solution. Ainsi, la solution genérale (mais satisfaisant les
conditions aux bords) peut s’écrire comme superposition de modes propres:

F(xt) =3 A sin(k,x) exp(—io,t)

Les coefficients (complexes) A, sont déterminés par les conditions initiales
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Superposition de modes propres — conditions
initiales

Dans cet exemple, on prend des conditions aux initiales au repos.

(
o0

(£ (x,0) = f._. (X) 3| A, cos(@,)sin (k,X) = fi (X)
1 Too=0 Te .
. ot (x.0)= —| A, |sin(k,xX)a,sin(¢p,) =0

De la 2¢ €q, satisfaite pour tout x, on tire : Sin(@,) =0=cos(p,) =tl=0,

Et donc, on peut écrire la 1¢ EQ: Zan | A1 | sin (kn X) = fimt (X)
n=1

Les o,|A,| sont donc les coefficients de la série de Fourier de f;
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Démonstrations (stmulations «livey)

www.falstad.com

o Math and Physics aplets
loadedstring

Recherche de modes propres et fréquences
propres par excitation resonante
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Ondes
= Recherche de modes propres
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Ondes — instabilité numérique

4.2.2 Stabilité du schema difféerences finies
explicite 3 niveaux pour I’équation d’ondes

Condition de stabilit¢ CFL | < 132 <1 . At
— U—
CFL B=1.01 Ax
2 . .
| t=2.32.
t=2.27_ “
1t | |
: =l ([B=10L
0.5 I'\ |
“h, \
Omseiifrosill ‘!’ |NIV “ 1‘#
J|
0% 0.2 0.4 0.6 0.8 1
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Ondes — instabilité numérique

_e mode instable est une oscillation dans
‘espace (avec 2 pts de maillage x; par
ongueur d'onde) et le temps (2 pts de
maillage t par p_ériode) dont 'amplitude
croit exponentiellement

On fera la démonstration au tableau du
critere de stablilité CFL: analyse de Von
Neumann — voIr aussi section 4.2.2
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Ondes, schema explicite 3 niveaux -
stabilité |t

B = U——
T

p~ 2 7)1 (., ‘ﬂ-

(4.43)

Ansatz: on cherche une solution de (4.43) de type ondulatoire, avec la
possibilité d’avoir une amplitude exponentielle dans le temps

f(x,t)=fexpli(kx —at ), f eCkeR, weC (4.26)

On définit le «gain» G:  f (X t ) G f (X t ) G = ploM

17 °n+l 17°n

yanY
N\
e

Condition de stabilité: \G\g 1LVK, Vo
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Présentation au tableau
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Ondes, schéma explicite 3 niveaux -
stabilité

A
f'), — U—

Ax

Si % <1, |G =1= stable

Si 8% >1, alors,poursin® @ =1, G < —1=>instable

0 =KAx/?2 Sinm:b%x:z

2
k=2714 = |A=2AX

2 points de maillage par longueur d’'onde, c’est bien ce
gue I'on a observe sur les simulations instables!
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