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Semaine 21 – Plan

•4.2 Ondes

• Schéma explicite 3 niveaux

• Modes propres, fréquences propres, excitation 

résonante

•Limite de stabilité CFL (4.2.2)

• analyse de stabilité de Von Neuman

•Vitesse de phase variable (tsunami) (Annexe E)

• équations en eaux peu profondes

• numérique: démo (4.2.3)

• analytique: approximation WKB (4.2.4)
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Modes propres, fréquences propres

◼ Mode propre: mvmt particulier du système homogène 

(i.e. SANS excitation extérieure) pour lequel TOUS les 

degrés de liberté oscillent à la même fréquence, appelée 

fréquence propre.

◼ De démonstrations seront faites en simulation.

◼ Principe de superposition: la somme algébrique de 2 

modes propres est également solution du système 

homogène.
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Modes et fréquences propres – Solution générale
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Modes et fréquences propres – Solution générale
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Modes et fréquences propres – conditions aux 

bords

◼ Pour l’exercice 7, on prend des conditions aux bord 

fixes à gauche et à droite.

◼ On applique ces conditions aux bords à la solution 

générale. 

◼ Cela conduit à une quantification des fréquences 

possibles, appelées fréquences propres.

◼ La fonction spatiale correspondant à chaque fréquence 

propre est appelée fonction propre ou mode propre.
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Modes et fréquences propres – superposition
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La fonction propre correspondant à cette fréquence propre n est: 
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aussi une solution. Ainsi, la solution générale (mais satisfaisant les 

conditions aux bords) peut s’écrire comme superposition de modes propres: 




=

−=
1

)(exp )(sinˆ),(
n

nnn tixkAtxf 

Les coefficients (complexes) An sont déterminés par les conditions initiales



Phys. Num. Semaine 21

Superposition de modes propres – conditions 

initiales
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◼ Dans cet exemple, on prend des conditions aux initiales au repos. 
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Les n|An| sont donc les coefficients de la série de Fourier de finit
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Démonstrations (simulations «live»)

◼ www.falstad.com

❑ Math and Physics aplets

◼ loadedstring

◼ Recherche de modes propres et fréquences 

propres par excitation résonante
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http://www.falstad.com/
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◼ Recherche de modes propres

Ondes - excitation
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◼ 4.2.2 Stabilité du schéma différences finies 

explicite 3 niveaux pour l’équation d’ondes

Ondes – instabilité numérique

10 2  Condition de stabilité CFL

01.1=
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Ondes – instabilité numérique

◼ Le mode instable est une oscillation dans 

l’espace (avec 2 pts de maillage xi par 

longueur d’onde) et le temps (2 pts de 

maillage tj par période) dont l’amplitude 

croît exponentiellement

◼ On fera la démonstration au tableau du 

critère de stablilité CFL: analyse de Von 

Neumann – voir aussi section 4.2.2
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Ondes, schéma explicite 3 niveaux -

stabilité
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Ansatz: on cherche une solution de (4.43) de type ondulatoire, avec la 
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Présentation au tableau
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Ondes, schéma explicite 3 niveaux -

stabilité

◼ 2 points de maillage par longueur d’onde, c’est bien ce 

que l’on a observé sur les simulations instables!
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