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Physique Numérique I-1I semaines 17-18

Advection-Diffusion

Schéma différences finies explicite a 2 niveaux
Limites de stabilité. Analyse de Von Neuman
Diffusion numeérique

Comparaison avec la méthode de Langevin
Notes de cours: 4.1 et Annexe D

Problemes a valeurs aux bords. Eléments finis
Forme variationnelle

Représentation en éléments finis

Conditions aux limites

Notes de cours: 3.2.4 et 3.2.5
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Advectlon et Diffusion
4.1.1-4.1.2 /

/, \\

Flux de matiére: ]_) f 1}?)(/—\ D Vf : f

Conservation de la masse (Eg. Continuité): 1V j — ()
Cas 1D, incompressible, D=const, v=const : 0

of  of 0% f

d_+@’%_ @:0 (4.19)

Différences finies Schema explicite 2 niveaux
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Advection — Schéma explicite 2 niveaux
fijw1 = Jij— B (fij — fi-1j)

Parametre CFL (Courant, Friedrichs, Lewy)

At

i

On verra que ce schéma est instable si B>1 ou si B<0

On verra aussi que ce schéma, lorsqu’il est stable,
introduit de la diffusion non-physique («diffusion
numerique»)
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Advection

Différences finies, explicite 2 niveaux, v=+1
o Forward (t)
o Backward (x)

Advection FD explicite $=0.16

0.8}

o 0.6f

n/n

0.4

0.2}
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Advection, v<(
Différences finies, explicite 2 niveaux

o Forward (t)
o Backward (x)

Adv-Diff FD expl 0 =0 p=-0.16

t=1

1 s |

7/ || t=0

x Iml
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Advection — schéma upwind

Différences finies, explicite 2 niveaux, u=-1
o Forward (t)

o Forward (x) (UPWIND) Jfij+1 = fz}'_.-’i-}(fz'.j_g)
fi,j—l—l — 7(. fzg

Adv-Diff FD expl upwind a=0 p=-0.16

1F t=0 g

0.8}

o 0.6f

n/n

0.4

0.2}

LS

-2
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Advection - Instabilité

= Difféerences finies, explicite 2 niveaux, u=1
o Forward (t)

4 Forward (x) (UPWIND)

5 Advection FD explicite 3=1.2

t=42 t=4.4

n/n0

-2 -1 0 1
x [m]

= Le schéma est instable pour |CFL|>1.0
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Diffusion - Instabilité

Différences finies, explicite 2 niveaux. Diffusion seule

5 Adv-Diff FD expl 1 0=0.525 B=01=1.5 Adv-Diff FD expl 1 «=0.525 =0
: . . 5 . |
x=0
1.5¢ -
1 | 4
1 |
c = AR
of N‘
-1} - -0.5
_1 L
-2 ; : ' -1.5 : :
-2 -1 1 2 '
x?m] 0 05 ] 1 15

Croissance exponentielle dans le temps d’'une
perturbation de courte longueur d’'onde ( 2 points de
maillage par longueur d’onde)
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Advection et diffusion. Différences finies. Schéma
explicite 2 niveaux. Criteres de stabilité numérique.

At
Ax

-

A
A
ek
&0
|

U CFL

Courant-Friedrichs-Lewy

La démonstration sera présentee ultérieurement. Voir Notes de Cours 4.1.3

™ Phys. Num. Semaines 17-18



=PrL

Advection-Diffusion. Diffusion numérique

Adv-Diff FD expl 1&2 «=0.256 p=0.32

0.2

0 0.1 0.2 0.3 0.4 0.5
t[s]

= Evolution de la variance: (a) solution analytique, (1) solution
numerique avec schema explicite a 2 niveaux et advection
upwind, (2) advection centree

= Le surcroit de diffusion est un artefact du a la diffusion
numeérique creée par le schéma de 'advection upwind
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Euler ou Lagrange? Radar ou mouchard?

Comparaison entre schéma numérique «Eulérien»
et schéma numérique «Lagrangien» ou «particle»

Adv-Diff FD expl 1 «=0.102 3=0.16 v=1 D=0.1 Monte Carlo - Langevin N=100000 v=1 D=0.1

FD 2-level explicit
o=.1p=.16

-
+++++
A
+++++
et

ot
-#“'**
4t

/ x[m]

. e s . Lagrangien, Langevin: P
Eulerien, différences finies ag _a g_e a ge_ as
explicite 2 niveaux de diffusion numerique

P Pas de limite de stabilité

L'.m'te. de Stab',“t.e CFL! (At arbitraire)
Diffusion numérique
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Eléments finis
Eléments finis

o Notes de Cours, Section 3.2.4
lllustration sur un probleme électrostatique 1D
o Notes de Cours, Section 3.2.5

La présentation
sera faite au
tableau noilr,
pour le cas de
I’électrostatique
avec charges
libres, sans
dielectrique
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0

Elements finis - Poisson

0.02

0.04
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0.1
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Elements finis 1D
Cas de I'équation de Poisson 1-D

(:12(}5 I
cla £0
Elements finis - Poisson
1000 , |
500+

plsy [V/m?’]
o
<__
>

-500¢

-1000 ' ' ' '
0 002 004 006 008 0.1
x [m]
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Elements finis linéaires 1D

2¢,1,(x)

A\ J

Figure 3.4 —Fonctions de base A, (x) et représentation (approximation)

d’une fonction ¢@(x) par ces éléments finis.
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Elements finis — forme variationnelle
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Elements finis — intégration par parties
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Elements finis — fonctions de base
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Elements finis — conditions aux limites
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Elements finis linéaires 1D

X 10‘3 Elements finis - Poisson

5

n=100 pack

0 0.02 0.04 0.06 0.08 0.1
X [m]

La méthode des éléments finis permet naturellement
d’utiliser des maillages non-equidistants ...
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Elements finis linéaires 1D

Elements finis - Poisson

n=15 pack n=100 pack

= 0.5¢ n=15 uniforme |}

.
~ =

0 0.02 0.04 0.06 0.08 0.1
x [m]

... Ce qui améliore la convergence numerique
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Questions algorithmiques

o |l est fortement recommandé de proceder a 'assemblage de
la matrice et du membre de droite intervalle par intervalle

/ (k) (k+1) \
A = ;ﬁl—l— (k) . 1/:’1,!,; —I/h_:f
(k+1) —1/hx  1/hg
. o)
b = bp+hp|p p(zk) + (1 —p) p(kauz))
QED th
bre1r = bpyr + g (pp(;‘-::u) +(1 _p)ﬂfg-—WJ :
0 =0
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Elemeuts %‘mi@ - Struclture de la matnie
b kst
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. ( |
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FAQ — Elements finis - 1

L’équation différentielle de Poisson est du 2¢ ordre (elle fait
intervenir d?¢/dx?).

Or, on a trouvé une solution numérique qui est une fonction
linéaire par morceau, dont la 1® derivée est discontinue aux
points de maillage, et donc dont la 2° dérivée est nulle presque
partout, sauf aux points de maillage ou elle est infinie !!!

Comment peut-on pretendre avoir résolu I'équation
differentielle?

Pourquoi prendre des fonctions de base linéaires par morceau?
¢~ P =2;d; Ajx

dop/dx =% ¢; dA;/dx

d>pp/dx? =3 ¢; d?A;/dx? 2227
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FAQ — Elements finis - 2

En fait, on peut montrer que, malgre ce probleme, la
solution numeérique tend vers la solution exacte dans le
sens gue la norme de la difféerence entre les deux tend
vers zéro lorsque le maillage devient de plus en plus fin:

xb
im | (¢n(x) = () dx = 0

Choisir des fonctions de bases autres que linéaires par
morceau est possible. De fagon genérale, plus I'ordre du
polyndbme par morceau est élevé, plus I'ordre de
convergence sera éleve.

Dans I'exercice 6, vous veérifierez empiriguement l'ordre
de convergence de la solution numeérique.
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FAQ-Elements finis #2

o Comment vérifier que I'équation différentielle est bien
satisfaite?

o Attention lorsque ¢,(r) a une discontinuité en r=b pour
I’évaluation des intégrales avec la regle des trapezes
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Indication pour Ex.6 (d) (ii)
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