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Physique Numérique I-1I semaine 16

Remarques sur 'Ex.5

Quelques simulations de I'advection et de la diffusion avec
le schema de Langevin

Relation entre les descriptions macroscopique (coefficient
de diffusion D) et microscopique (marche aléatoire): au
tableau

Schéma différences finies explicite a 2 niveaux
Notes de cours: 4.1 et Annexe D
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Exercice 5

Partie analytique

On doit supposer que la vitesse des particules est bornée, en d’autres
termes qu’il 'y a aucune particule a l'infini.

On doit supposer que la fonction f est une fonction de probabilité, donc
que son intégrale sur tout I'espace des vitesses v est finie (elle vaut 1).

Mathématiquement parlant, on suppose que la fonction f et sa dérivee
tendent vers zero lorsque v tend vers +- l'infini. On suppose méme que

ligrn P(v)f(v,t) =0,Vt,V polyndome P(v)
v—o+o00

En particulier, c’est le cas de la solution stationnaire, qui est une
distribution Gaussienne (Maxwellienne)

Attention: f(v,t), v et t sont des variables indépendantes. En patrticulier,
of v
— est défini, — est défini, mais — n’existe pas!
v ot ot P
v n'’est PAS fonction de ¢
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Marche aléatoire et diffusion (1)

Succession de M pas, {¢;},i = 1.. M, variables aléatoires
de moyenne (espérance math) nulle < & >=10
de méme variance non-nulle < §* > = g2 # 0
statistiquement indépendantes < §;¢; > = 0,Vi # j
La position finale est x = Y11, &; .
samoyenneestnulle:<x >=Y", <& >=0
savariance est: <x* >=< (XL, &) (XML, &) >
= YL, <& >+ XL Y <&& >=Mo?
L'écart-type o est appelé libre parcours moyen, noté A,,,

Soit 7 le temps entre 2 pas successifs. Pour une durée t,ilya M = t/t pas.
Donc

sz’nf p

T

<x?> ()= t
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Marche aléatoire et diffusion (2)

Dans la description macroscopigque continue, on a
Soit N = f:: n(x, t)dx le nombre de particules.
On définit la moyenne de x2 comme x2(t) = %fj;o x’n(x, t)dx

Relation avec la marche aléatoire: x2(t) = < x% > (t), et x2(0) = 0.

On obtient une équation pour x2(t) en multipliant I'Eq. de diffusion (*) par x2
et en integrant sur x. (Calculs faits au tableau).

. — —
5 X2 =2D ,etdonc | 32(¢) = x2(0) + 2D t
Az

En comparant avec <x?>(t) = P ¢
T
On obtient 212
D = mfp
2T
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Advection

Transport d’'une quantité scalaire f (X,t), p.ex. la densité
Quantié conservée au cours du mouvement - éq. de continuité

of 2
. ot )
Avec le flux J — f vV , dans un écoulement. (p.exV vitesse du vent)
Dans le cas incompressible, cela donne: of _
NEOmPrEss! CL@W-V)f =0
Dans le cas incompressible 1D, v=const: ot
of of
—+V—=
ot  oX

Avec la condition initiale  f (x,0) = f,(x) donné
La solution exacte est  f (x,t) = f,(x—Vt)
... une simple translation de la condition initiale, a la vitesse v
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Advection - Schéma explicite a 2 niveaux

Discrétisation {x;, t;} {
Différences finies +1 ¢
i owar /P
ot At j-1
of (T —(tiy; ) ) i1 0 1
A= < backward
OX AX

of of VAL \
raral I D (Dl B

Parametre CFL (Courant, Friedricks, mﬂ = VA—At
X
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Advection — Schéma explicite 2 niveaux
fijw1 = Jij— B (fij — fi-1j)

Parametre CFL (Courant, Friedrichs, Lewy)

At

i

On verra que ce schéma est instable si B>1 ou si B<0

On verra aussi que ce schéma, lorsqu’il est stable,
introduit de la diffusion non-physique («diffusion
numerique»)
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Testons le schéma explicite 2 niveaux pour
’advection!

= (Démos)
= (Testons empiriguement la limite de stabilite)
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4.1.1 Advection

Différences finies, explicite 2 niveaux, u=+1
o Forward (t)
o Backward (x)

Advection FD explicite $=0.16

0.8}

o 0.6f

n/n

0.4

0.2}
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Advection

Différences finies, explicite 2 niveaux

o Forward (t)
o Backward (x)

Adv-Diff FD expl 0 =0 p=-0.16

t=1

1 s |

7/ || t=0

x Iml
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Advection

Différences finies, explicite 2 niveaux, u=-1
o Forward (t)

o Forward (x) (UPWIND) Jfij+1 = fz';—ﬁ (fz'.j‘_g) st 7 >0
figt1 = Ity — fig) st 3 <0

Adv-Diff FD expl upwind a=0 p=-0.16

1F t=0 g
0.8r

o 0.6f

n/n

0.4

0.2}

LS

b 5 0.5 5
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Advection

Différences finies, explicite 2 niveaux, u=1
o Forward (t)

o Forward (x) (UPWIND) nx=64

Adv-Diff FD expl 1 a=0 B=1.2 t=4.35

-2 -1 0 1 2
X [m]

Le schéma est instable pour |CFL|>1.0

™ Phys. Num. Semaine 16 12



=PrL

Advection

= Difféerences finies, explicite 2 niveaux, u=1
o Forward (t)

4 Forward (x) (UPWIND)

5 Advection FD explicite 3=1.2

t=42 t=4.4

-2 -1 0 1
x [m]

= Le schéma est instable pour |CFL|>1.0
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Advectlon et Diffusion
4.1.1-4.1.2 /

/, \\

Flux de matiére: ]_) f 1}?)(/—\ D Vf : f

Conservation de la masse (Eg. Continuité): 1V j — ()
Cas 1D, incompressible, D=const, v=const : 0

of  of 0% f

d_+@’%_ @:0 (4.19)

Différences finies Schema explicite 2 niveaux

fagrio= iy 8= fi-iy) + o (fmip— 2fit L)
It

v 3= ,Uﬁ (CFL) _ DA
—0—@ Ax “T A2

-1 i 1+

J+1
J

yanY
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Ditfusion. Instabilité

Différences finies, explicite 2 niveaux. Diffusion seule

5 Adv-Diff FD expl 1 0=0.525 B=01=1.5 Adv-Diff FD expl 1 «=0.525 =0
: . . 5 . |
x=0
1.5¢ -
1 L 4
1 |
c = AR
of N‘
-1} - -0.5
_1 L
-2 ; : ' -1.5 : :
-2 -1 1 2 '
x?m] 0 05 ] 1 15

Croissance exponentielle dans le temps d’'une
perturbation de courte longueur d’'onde ( 2 points de
maillage par longueur d’onde)
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Advection et diffusion. Différences finies. Schéma
explicite 2 niveaux. Criteres de stabilité numérique.

At
Ax

-

A
A
ek
&0
|

U CFL

Courant-Friedrichs-Lewy

La démonstration sera présentee ultérieurement. Voir Notes de Cours 4.1.3
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Advection-Diffusion. Diffusion numérique

Adv-Diff FD expl 1&2 «=0.256 p=0.32

0.2

0 0.1 0.2 0.3 0.4 0.5
t[s]

= Evolution de la variance: (a) solution analytique, (1) solution
numerique avec schema explicite a 2 niveaux et advection
upwind, (2) advection centree

= Le surcroit de diffusion est un artefact du a la diffusion
numeérique creée par le schéma de 'advection upwind
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Schéma différences finies explicite 2 niveaux

4.1.2 Advection et Diffusion - résumé

on on 0%n
o o pZ ol 4.19
o " or T Yo (4.19)
. At DAt
Parameétre CFL: [ = VA ==
Courant-Friedrichs-Lewy L L
nijr1 = N — By —ni_1,) +a(ni_1; — 21 +nig1 )

Il peut y avoir instabilité numeérique!

Le schéma explicite upwind pour I’advection stabilise,
mais introduit de la diffusion numérique

Conditions de stabilité

1
‘Ogﬁgl\ 0§OK§§
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Euler ou Lagrange? Radar ou mouchard?

Comparaison entre schéma numérique «Eulérien»
et schéma numérique «Lagrangien» ou «particle»

Adv-Diff FD expl 1 «=0.102 3=0.16 v=1 D=0.1 Monte Carlo - Langevin N=100000 v=1 D=0.1

FD 2-level explicit
«=.1p=.16

et
L
A
4—'*’*'%*
_.+~+"MC Langevin
N=100000

s 5 4 3 2 -
/ x[m]

Lagrangien, Langevin: Pas
de diffusion numeérique

Eulerien, différences finies

explicite 2 niveaux Pas de limite de stabilité

L'.m'te. de Stab',“t.e CFL! (At arbitraire)
Diffusion numérique
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Adv-Diff FD expl 1 «=0.102 p=0.16 v=1 D=0.1
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1.5-

o [m]

0.5+

FD 2-level explicit
o=.1p=.16

"
+"'+***

_+++*MC Langevin

o+ N=100000

Monte Carlo - Langevin N=100000 v=1 D=0.1

Langevin: pas de
diffusion numérique

Pas de limite de stabilité
CFL! (At arbitraire)
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