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Rappel
o Algorithme avec pas de temps adaptatif

Plan [Notes de Cours Sections 2.4, 2.5]
o Démonstration de la formule de changement de At
o Résultats, pas de temps fixe / adaptatif

o Comment obtenir et representer I'ordre de
convergence? Fits de l'erreur.

o Gravitation 1,2, “2 V%" , 3 corps
o Points de Lagrange
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Schéma a pas de temps adaptatif

L A N

L t+At/2 1AL

Chacune des fleches symbolise un pas complet d’un algorithme de base:
par exemple les 4 étapes d’'un schema Runge-Kutta du 4e ordre.

On veut choisir At de telle sorte que d soit inférieur a une valeur donnée ¢

d<eg
¢ joue le réle d’'un paramétre de contrdole de I'algorithme, et nest PAS la
précision obtenue sur y a la fin de la simulation. Cette derniere doit étre
obtenue par une étude de convergence: lime > 0
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Algorithme adaptatif

Si d<g, passer au pas suivant avec un pas propose rallongé:

1
At = At (5) 2
d

Si d>¢;

Tant que d>g, raccourcir le pas et le refaire:

1
EX\ %
AZL"refaire = f At (_> o
d

avec f<1 pour éviter une boucle infinie
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Ordre de convergence, fits, etc

En supposant que la solution soit analytique, on peut écrire la solution numerique:

Voum (t + At) = y(t + At) + ¢, (AL) + ¢ (A)? + 53 (AL)3 + ¢, (AD)* + ¢ (AL)® +

Définition: le schéma est d’ordre n si et seulementsic;=0,..., ¢,=0

n
Vium(t + 88) = Y(E + B + cr B Dk ¢, (A2 +

Ainsi, I'erreur a t=t;, sera, apres N, pas de temps, avec Ng, =t;,/At, les erreurs
s’accumulant a chaque pas de temps:

Yaum( trin ) = Y(Erin) + Cns1 Erin/ DO QO™ + iy (Epin /A (AD™2 + -
Ynum( trin ) = ¥(tfin) + Cnia tfin(At@ Cniz Lrin(AD™HT 4 -

Yum( trin ) = Y(tfin) = cna1 trin(BO™ + Cpaz trin (A" + -+

Sur une échelle log-log:

108(Vnum ( trin ) — Y(trin)) = 108(Cna1 trin(BO™ + Cpp tpin (A + )

Fit de la solution pour obtenir I'ordre? — Voir présentation au tableau
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Halley, Runge-Kutta 4e ordre, At variable

Halley RK4 variable At

5 RK4 A t var, nsteps=4889

y [UA]
=
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Runge-Kutta a une tendance a long terme de diminuer E.
Le pas At variable permet une tres grande efficacité
Convergence tres rapide
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Halley, Verlet, Runge-Kutta 4, At fixe ou
variable, convergence de la période

Halley RK4 & VW

erroron T [year]

RK4

TR
~,

N

Verlet
fix At

: adapt At : .
. | | oded5 N |
N\ \\\\ : \\\
| S ~1NP
10‘3 L AN N
10° 10 10* 10°
steps

Pour 5000 pas de
temps, on est 10
millions de fois plus
précis avec le schéma
adaptatif qu'avec At
fixe!
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En résumeé:

= Verlet conserve bien E, .. en moyenne sur de longues
péeriodes, mais donne une précession non physigue.

= Runge-Kutta 4e ordre: converge tres rapidement la
période, la distance maximale, etc, mais dimunution
séculaire non physique de E, ..

= Un algorithme a pas At adaptatif est de plusieurs
ordres de grandeur plus efficace qu’a At fixe.
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Ordre de convergence, fits, etc

En supposant que la solution soit analytique, on peut écrire la solution numerique:
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Probléme a 2 corps

On se place dans le référentiel du centre de masse

Le mvmt de chacun des 2 corps dans le référentiel du
centre de masse est «identique» au mvmt a 1 corps (a
des rapports de masse pres) (*)
Les lois de Kepler s’appliquent (avec une legere modif.)
Orbites= coniques avec un des foyers au centre de masse
Loi des aires
Période ~ (demi-grand-axe) 3/2
(*) Mouvement central en 1/r? avec r=distance au C.M.

o La force est ~1/d?, avec d=|r,-r,|. Def. C.M. - relation fixe
entre r, et d: r,=m,d/(m;+m,), donc la force est ~1/r .

o “Central” : force toujours dirigée vers un pt fixe du référentiel,
dans ce cas le C.M.
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Probléme a 3 corps: exemples
Pythagore joue au billard cosmique

3 corps de masses 3,4,5, placées initialement aux sommets d'un
triangle rectangle de cotés de longueurs 3,4,5 (unités
astronomiqgues). Les vitesses initiales sont nulles.

Runge-Kutta ordre 4, pas variable adaptatif.

N | ' | ' | ' | q" | ] tﬁn=5ans

"""" m=3,e=10" AU
------- m=4
m=5

- m=3.e=10" AU
--- m=4
m=>5

- . {1

r m=3 =10 AU
— m=4
1= m=>3

y (AL
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80ans ,

------- m=3 e=10"" AU
------- m=4
n m=>5 _
- m=3 e=10" AU
- -—-- m=4 .
m=5
16, .
— m=3, e=10"" AU
— m=4
m=>5

y (AL)

ol 4072 -4.07

\\
— / _
— / |
— 36.64 :

2.446 12.448 1
| |

x (AU)

Quasi-collisions: probleme difficile, méme avec At adaptatif
o Format « long double »
Formation d’'une étoile double et éjection de la troisieme
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3 corps: soleily « Jupiter », terre

Mvmt de la terre dans le systeme (soleill,
« jupiter »), ou on a multiplié la masse reelle de
Jupiter par un facteur arbitraire f.

Cf Notes de Cours, sections 2.5.1 et 2.5.2

Simulations avec les schémas de Verlet et de
Runge-Kutta 4e ordre

M Phys. Num. Semaines 11-12
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Jupiter*300

3 corps MJupiter*SDD

3 corps M Jupitelr*SOO

——

y [UA]
o

= Mouvement quasi-périodique
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Jupiter*700

10

100 ans
At=0.001 an
Verlet

=10}

1%

= La terre se fait capturer par « Jupiter », puis est « éjectée »...
= Chaos: sensitivité aux conditions initiales, difficulté de convergence
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Probleme a trois corps

Il semble difficile de trouver des orbites stables pour 3
corps de masses comparables placées a des distances
comparables.(*)

Lorsque un des 3 corps est de masse negligeable par
rapport aux 2 autres, on parle de « probleme a 3 corps
reduit ».

o Exemples: {Cassini, Saturne, Titan}; {Astéroide, Soleil,
Jupiter}; {Apollol3, Terre, Lune}; etc

o On résout d'abord le probleme a 2 corps (= initialiser
les 2 corps lourds)

o Ensuite, on rajoute le 3e corps (leger)

(*) Il existe une solution stable avec des trajectoires en forme de 8, voir
par exemple https://www.youtube.com/watch?v=|Kvnnlr-9lw,
déecouverte en ... 1993 (!)
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Apollo 13 - 03:08 UTC on April 14, 1970
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Probléme réduit, « planete X » ... et

autres points de Lagrange

Mvmt d’'un 3e corps céleste (m;) dans le systeme {m,,m.}
o mg << mg,m,, mais m; et m, peuvent étre de masses comparables
o approximation d’orbites circulaires pour m, et m,.

Analytiguement:

On se place dans le référentiel dans lequel m; et m, sont
sont fixes. Référentiel en rotation.

On cherche s'il existe des points d’equilibre pour le 3e
corps dans ce reférentiel

o Effet de la force d’inertie (« centrifuge »). Calculs analytiques
présentés au cours (en resume).

On examine la stabilité des points d'equilibre

o Effet de Coriolis. Simulations numériques présentées au cours
Numeriqguement: on reste dans le référentiel (inertiel) du
centre de masse
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Plar],,ét'éﬁx
(sgience-
fiction)

N.B.: Soleil-Jupiter: astéroides Troyens en L4 et L5 (Exercice 4)
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Stabilité des points de Lagrange

Source: wikipedia.org

Equipotentielles dans le réferentiel tournant dans lequel m1, m2 sont fixes
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Stabilité des points de Lagrange - Coriolis

Nous avons constaté que les orbites au voisinage

des points de Lagrange L1, L2, L3 sont instables:

o une condition initiale voisine du point d’équilibre conduit a
des mouvements qui s’écartent fortement du point
d’équilibre

Qu’en est-il de L4 et L5 ? (EX.4)

o Les orbites au voisinage de L4 et L5 sont stables, bien que
ces points correspondent a des maxima du potentiel
effectif

o |l doit donc s’agir d’'un effet d'une force qui ne dérive pas
d’'un potentiel: c’est la force de Coriolis!

o Testons avec la simulation!

Phys. Num. Semaines 11-
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Points de Lagrange: des tremplins pour

Pexploration spatiale

The Lunar L; Gateway:
Portal to the Stars and Beyond

Martin W. Lo
Navigation and Mission Design Section
Jet Propulsion Laboratory
California Institute of Technology

Shane D. Ross
Control and Dynamical Systems
California Institute of Technology

AIAA Space 2001 Conference

www.gg.caltech.edu/~mwl/publications/papers
/lunarGateway.pdf

Albuguergue, New Mexico Angust 28-30, 2001
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“Our Solar System is
interconnected by a vast system of
tunnels winding around the Sun
generated by the Lagrange Points
of all the planets and their moons.
These passageways are identified
by portals around L1 and L2, the
halo orbits. By passing through a
halo orbit portal, one enters this
ancient and colossal labyrinth of the
Sun. This natural Interplanetary
Superhighway System (IPS, see
Figure 1) provides ultra-low energy
transport throughout the Earth’s

Neighborhood, the region between
Earth’s L1 and L2....”
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