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◼ Rappel

❑ Algorithme avec pas de temps adaptatif

◼ Plan [Notes de Cours Sections 2.4, 2.5]

❑ Démonstration de la formule de changement de Dt

❑ Résultats, pas de temps fixe  / adaptatif

❑ Comment obtenir et représenter l’ordre de 

convergence? Fits de l’erreur.

❑ Gravitation 1,2, “2 ½” , 3 corps

❑ Points de Lagrange

1

Physique Numérique I semaines 11-12



Phys. Num. Semaines 11-12

Schéma à pas de temps adaptatif

PhysNum. Semaines 9-10
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Chacune des flèches symbolise un pas complet d’un algorithme de base: 

par exemple les 4 étapes d’un schema Runge-Kutta du 4e ordre.

On veut choisir Dt de telle sorte que d soit inférieur à une valeur donnée e

d < e
e joue le rôle d’un paramètre de contrôle de l’algorithme, et n’est PAS la 

précision obtenue sur y à la fin de la simulation. Cette dernière doit être 

obtenue par une étude de convergence: lim e→ 0 
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Algorithme adaptatif
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Si d<e, passer au pas suivant avec un pas proposé rallongé:

Tant que d>e, raccourcir le pas et le refaire:

avec f<1 pour éviter une boucle infinie

Si d>e:
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Ordre de convergence, fits, etc

◼ Fit de la solution pour obtenir l’ordre? – Voir présentation au tableau
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𝑦𝑛𝑢𝑚 𝑡 + ∆𝑡 = 𝑦 𝑡 + ∆𝑡 + 𝑐1 ∆𝑡 + 𝑐2 ∆𝑡 2 + 𝑐3 ∆𝑡 3 + 𝑐4 ∆𝑡 4 + 𝑐5 ∆𝑡 5 + …

En supposant que la solution soit analytique, on peut écrire la solution numérique:

Définition: le schéma est d’ordre n si et seulement si c1 = 0, …,   cn = 0

Ainsi, l’erreur à t=tfin sera, après Nsteps pas de temps, avec Nsteps=tfin/Dt, les erreurs

s’accumulant à chaque pas de temps:

𝑦𝑛𝑢𝑚 𝑡𝑓𝑖𝑛 = 𝑦 𝑡𝑓𝑖𝑛 + 𝑐𝑛+1 (𝑡𝑓𝑖𝑛/∆𝑡) ∆𝑡
𝑛+1 + 𝑐𝑛+2 (𝑡𝑓𝑖𝑛/∆𝑡) ∆𝑡

𝑛+2 +⋯

𝒚𝒏𝒖𝒎 𝒕𝒇𝒊𝒏 = 𝒚 𝒕𝒇𝒊𝒏 + 𝒄𝒏+𝟏 𝒕𝒇𝒊𝒏 ∆𝒕 𝒏 + 𝒄𝒏+𝟐 𝒕𝒇𝒊𝒏 ∆𝒕 𝒏+𝟏 +⋯

𝒚𝒏𝒖𝒎 𝒕 + ∆𝒕 = 𝒚 𝒕 + ∆𝒕 + 𝒄𝒏+𝟏 ∆𝒕 𝒏+𝟏 + 𝒄𝒏+𝟐 ∆𝒕 𝒏+𝟐 + …

𝑦𝑛𝑢𝑚 𝑡𝑓𝑖𝑛 − 𝑦 𝑡𝑓𝑖𝑛 = 𝑐𝑛+1 𝑡𝑓𝑖𝑛 ∆𝑡 𝑛 + 𝑐𝑛+2 𝑡𝑓𝑖𝑛 ∆𝑡 𝑛+1 +⋯

log(𝑦𝑛𝑢𝑚 𝑡𝑓𝑖𝑛 − 𝑦 𝑡𝑓𝑖𝑛 ) = log(𝑐𝑛+1 𝑡𝑓𝑖𝑛 ∆𝑡 𝑛 + 𝑐𝑛+2 𝑡𝑓𝑖𝑛 ∆𝑡 𝑛+1 +⋯)

Sur une échelle log-log:
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Halley, Runge-Kutta 4e ordre, Dt variable

Runge-Kutta a une tendance à long terme de diminuer Emec

Le pas Dt variable permet une très grande efficacité

Convergence très rapide
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Halley, Verlet, Runge-Kutta 4, Dt fixe ou 

variable, convergence de la période

Pour 5000 pas de 

temps, on est 10 

millions de fois plus 

précis avec le schéma 

adaptatif qu’avec Dt 

fixe!
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En résumé:

◼ Verlet conserve bien Emec en moyenne sur de longues 
périodes, mais donne une précession non physique. 

◼ Runge-Kutta 4e ordre: converge très rapidement la 
période, la distance maximale, etc, mais dimunution 
séculaire non physique de Emec

◼ Un algorithme à pas Dt adaptatif est de plusieurs 
ordres de grandeur plus efficace qu’à Dt fixe.
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Ordre de convergence, fits, etc

◼ Fit de la solution pour obtenir l’ordre? – Voir présentation au tableau
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𝑦𝑛𝑢𝑚 𝑡 + ∆𝑡 = 𝑦 𝑡 + ∆𝑡 + 𝑐1 ∆𝑡 + 𝑐2 ∆𝑡 2 + 𝑐3 ∆𝑡 3 + 𝑐4 ∆𝑡 4 + 𝑐5 ∆𝑡 5 + …

En supposant que la solution soit analytique, on peut écrire la solution numérique:

Définition: le schéma est d’ordre n si et seulement si c1 = 0, …,   cn = 0

Ainsi, l’erreur à t=tfin sera, après Nsteps pas de temps, avec Nsteps=tfin/Dt, les erreurs

s’accumulant à chaque pas de temps:

𝑦𝑛𝑢𝑚 𝑡𝑓𝑖𝑛 = 𝑦 𝑡𝑓𝑖𝑛 + 𝑐𝑛+1 (𝑡𝑓𝑖𝑛/∆𝑡) ∆𝑡
𝑛+1 + 𝑐𝑛+2 (𝑡𝑓𝑖𝑛/∆𝑡) ∆𝑡

𝑛+2 +⋯

𝒚𝒏𝒖𝒎 𝒕𝒇𝒊𝒏 = 𝒚 𝒕𝒇𝒊𝒏 + 𝒄𝒏+𝟏 𝒕𝒇𝒊𝒏 ∆𝒕 𝒏 + 𝒄𝒏+𝟐 𝒕𝒇𝒊𝒏 ∆𝒕 𝒏+𝟏 +⋯

𝒚𝒏𝒖𝒎 𝒕 + ∆𝒕 = 𝒚 𝒕 + ∆𝒕 + 𝒄𝒏+𝟏 ∆𝒕 𝒏+𝟏 + 𝒄𝒏+𝟐 ∆𝒕 𝒏+𝟐 + …

𝑦𝑛𝑢𝑚 𝑡𝑓𝑖𝑛 − 𝑦 𝑡𝑓𝑖𝑛 = 𝑐𝑛+1 𝑡𝑓𝑖𝑛 ∆𝑡 𝑛 + 𝑐𝑛+2 𝑡𝑓𝑖𝑛 ∆𝑡 𝑛+1 +⋯

log(𝑦𝑛𝑢𝑚 𝑡𝑓𝑖𝑛 − 𝑦 𝑡𝑓𝑖𝑛 ) = log(𝑐𝑛+1 𝑡𝑓𝑖𝑛 ∆𝑡 𝑛 + 𝑐𝑛+2 𝑡𝑓𝑖𝑛 ∆𝑡 𝑛+1 +⋯)

Sur une échelle log-log:
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Problème à 2 corps

◼ On se place dans le référentiel du centre de masse

◼ Le mvmt de chacun des 2 corps dans le référentiel du 

centre de masse est «identique» au mvmt à 1 corps (à 

des rapports de masse près) (*)

◼ Les lois de Kepler s’appliquent (avec une légère modif.)

◼ Orbites= côniques avec un des foyers au centre de masse

◼ Loi des aires

◼ Période ~ (demi-grand-axe) 3/2

◼ (*) Mouvement central en 1/r2 avec r=distance au C.M.

❑ La force est ~1/d2, avec d=|r2-r1|. Def. C.M. → relation fixe 

entre r1 et d: r1=m2d/(m1+m2), donc la force est ~1/r1
2. 

❑ “Central” : force toujours dirigée vers un pt fixe du référentiel, 

dans ce cas le C.M. 
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Problème à 3 corps: exemples

Pythagore joue au billard cosmique

◼ 3 corps de masses 3,4,5, placées initialement aux sommets d’un 
triangle rectangle de côtés de longueurs 3,4,5 (unités 
astronomiques). Les vitesses initiales sont nulles.

◼ Runge-Kutta ordre 4, pas variable adaptatif.

tfin=5 ans
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80 ans

◼ Quasi-collisions: problème difficile, même avec Dt adaptatif

❑ Format « long double »

◼ Formation d’une étoile double et éjection de la troisième
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3 corps: soleil, « Jupiter », terre

◼ Mvmt de la terre dans le système (soleil, 

« jupiter »), où on a multiplié la masse réelle de 

Jupiter par un facteur arbitraire f.

◼ Cf Notes de Cours, sections 2.5.1 et 2.5.2

◼ Simulations avec les schémas de Verlet et de 

Runge-Kutta 4e ordre
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Jupiter*300

◼ Mouvement quasi-périodique
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Jupiter*700

◼ La terre se fait capturer par « Jupiter », puis est « éjectée »…

◼ Chaos: sensitivité aux conditions initiales, difficulté de convergence

100 ans

Dt=0.001 an

Verlet



Phys. Num. Semaines 11-12 15

Problème à trois corps
◼ Il semble difficile de trouver des orbites stables pour 3 

corps de masses comparables placées à des distances 

comparables.(*)

◼ Lorsque un des 3 corps est de masse négligeable par 

rapport aux 2 autres, on parle de « problème à 3 corps 

réduit ».

❑ Exemples: {Cassini, Saturne, Titan}; {Astéroïde, Soleil, 

Jupiter}; {Apollo13, Terre, Lune}; etc

❑ On résout d’abord le problème à 2 corps (→ initialiser 

les 2 corps lourds)

❑ Ensuite, on rajoute le 3e corps (léger)

(*) Il existe une solution stable avec des trajectoires en forme de 8, voir

par exemple https://www.youtube.com/watch?v=jKvnn1r-9Iw, 

découverte en … 1993 (!)

https://www.youtube.com/watch?v=jKvnn1r-9Iw
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“Houston, we’ve had a problem”

Apollo 13 - 03:08 UTC on April 14, 1970 
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Problème réduit, « planète X » … et 

autres points de Lagrange    
◼ Mvmt d’un  3e corps céleste (m3) dans le système {m1,m2}

❑ m3 << m1,m2 , mais m1 et m2 peuvent être de masses comparables

❑ approximation d’orbites circulaires pour m1 et m2.

Analytiquement:

◼ On se place dans le référentiel dans lequel m1 et m2 sont 
sont fixes. Référentiel en rotation.

◼ On cherche s’il existe des points d’équilibre pour le 3e 
corps dans ce référentiel
❑ Effet de la force d’inertie (« centrifuge »). Calculs analytiques 

présentés au cours (en résumé).

◼ On examine la stabilité des points d’équilibre
❑ Effet de Coriolis. Simulations numériques présentées au cours

Numériquement: on reste dans le référentiel (inertiel) du 
centre de masse
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Points de Lagrange, Soleil-Terre
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N.B.: Soleil-Jupiter: astéroides Troyens en L4 et L5 (Exercice 4)
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Stabilité des points de Lagrange

Equipotentielles dans le référentiel tournant dans lequel m1, m2 sont fixes
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Stabilité des points de Lagrange - Coriolis

◼ Nous avons constaté que les orbites au voisinage 

des points de Lagrange L1, L2, L3 sont instables: 

❑ une condition initiale voisine du point d’équilibre conduit à 

des mouvements qui s’écartent fortement du point 

d’équilibre

◼ Qu’en est-il de L4 et L5 ? (EX.4)

❑ Les orbites au voisinage de L4 et L5 sont stables, bien que 

ces points correspondent à des maxima du potentiel 

effectif

❑ Il doit donc s’agir d’un effet d’une force qui ne dérive pas 

d’un potentiel: c’est la force de Coriolis!

❑ Testons avec la simulation!
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“Our Solar System is 

interconnected by a vast system of 

tunnels winding around the Sun 

generated by the Lagrange Points 

of all the planets and their moons. 

These passageways are identified 

by portals around L1 and L2, the 

halo orbits. By passing through a 

halo orbit portal, one enters this 

ancient and colossal labyrinth of the 

Sun. This natural Interplanetary 

Superhighway System (IPS, see 

Figure 1) provides ultra-low energy 

transport throughout the Earth’s 

Neighborhood, the region between 

Earth’s L1 and L2….”

Points de Lagrange: des tremplins pour 

l’exploration spatiale

www.gg.caltech.edu/~mwl/publications/papers

/lunarGateway.pdf
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www.gg.caltech.edu/~mwl/publications/papers/lunarGateway.pdf


