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PFL

Physique Numérique sem. 9-10

Notes de Cours: nouvelle version (22.3) sur Moodle

Pendule excité et amorti, chaos, impredictabilite,
attracteurs étranges et stabilisation non-linéaire
(expériences et simulations)

Schéma de Runge-Kutta d'ordre 4 (section 2.3.5)

Problemes 1D a valeurs aux bords, traites comme
problemes a valeur initiale
o Atmospheére planétaire a I'équilibre (Section 3.1.1)

Gravitation. Probleme a N corps (Sections 2.4 et 2.5)
o 1 corps. Mvmt central en 1/r2. Lois de Kepler.

Numérique: schémas a At variable (adaptatif)

Exercice 4, des la semaine 10 (25 novembre)
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« Signature » du chaos

Sensibilité extréme aux conditions Initiales:

o Soit deux conditions initiales differentes. Le
mouvement est dit chaotique si, aussi petite que
soit la difference entre les deux conditions
Initiales, il y a un temps t fini au-dela duquel les
orbites respectives des deux mouvements
s’écartent exponentiellement |'une de 'autre.
L’'exposant de I'exponentielle est appelé exposant
de Lyapounov.
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Sensibilité aux conditions initiales

0,(0)=0.57

"> Pente = exposant
de Lyapunov

= Distance entre 2 orbites
= Régime chaotique : divergence exponentielle’
= Régime non chaotique: pas de divergence exponentielle
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Chaos et imprédictabilité
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10-10: taille atome, 10-1%: taille 10 noyaux atomiques!

B PhysNum. Semaines 9-10



1)

PrL

Sections de Poincaré — pendule excité

Excitation par une perturbation sinusoidale

Section de Poincaré: on représente un point de I'espace
de phase, p.ex. (angle, vitesse angulaire) a chaque
periode de I'excitation.

o Hint: prenez At=(2n/Q)/nstep, nstep=nombre de pas de temps par
période, et mettez sampling égal a nstep en input du code:
I'output contiendra ainsi directement les coordonnées des sections
de Poincaré.

o Hint: représentez la section de Poincaré avec 6 modulo 2w (ou
entre —w et +n)

Cas sans amortissement: chaque condition initiale produit

une section de Poincare différente. Topologie de surfaces

Imbriquées, de chaines d’llots, et de régions

stochastiques signalant la présence de chaos.
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Sections de Poincaré pendule simple, excitation verticale zoom

VV Pendule g/I=1 v=0 Q=1 A=0.5
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Pendule excité et amorti - attracteurs

Section de Poincaré: on représente une projection
dans un plan de I'espace de phase des positions a
chaque période de I'excitation.

Attracteur: toute condition initiale (dans un domaine
appelé « bassin d’attraction ») conduit a une section
de Poincaré de structure similaire.

Attracteur « etrange »: cas chaotique.

o L' «étrangeté» vient du fait que (1) des conditions initiales
méme infinitésimalement voisines conduisent en un temps
relativement court a des orbites qui divergent
exponentiellement 'une de l'autre; (2) des conditions
initiales méme tres eloignées I'une de l'autre conduisent au
méme attracteur pour des temps longs.
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Galerie d’attracteurs étranges

VV Pendule g/l=9.8 v=0.1 £=3.13 A=5.886
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Simulation numérique de systemes

en régime chaotique

La sensibilité extréme aux conditions initiales,
avec divergence ~ exp (A t) conduit a
I'impossibilite de converger
numeriguement la solution pour des
tempst>~1/A4

Cependant:

o La structure de I'espace de phase (p.ex. I'étendue
de la zone stochastigue et/ou la forme de
I'attracteur étrange) converge numeriquement
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Exercice 4: Rentrée d’un vaisseau spatial dans
Patmosphere.

Apollo 13 est a 310°000km de la terre. lls doivent interrompre leur mission suite a
une grave avarie. lls demandent les parametres de la trajectoire qui les ramenera
sains et saufs sur terre. Sans qu'’ils ne ratent la cible. Sans qu'ils s’écrasent.
Sans gu’ils ne subissent d’accélération trop forte. Sans que leur vaisseau ne se
consume sous l'effet de la puissance des forces de friction aérodynamiques.
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Pour ’Exercice 4. Runge-Kutta orﬁlre 4
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Atmosphere planétaire

3.1.1 Cas 1D, traité comme problemes a valeur initiale

o Ok N PE

N S pwedeier | [SETon) o
Thermodynamique Fluide EDO
Statistique /
Hypotheses:
Fluide
Equilibre
Statigue

Faible épaisseur - Gravitation ~ constante
Equation d’'état polytropique (« adiabatique »)
Symétrie plane (négliger courbure planete)
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L=

L

13

Atmosphere planétaire (suite)
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Probleme: singularité des équations lorsque p=0
Singularité physique: on passe du fluide au vide

Singularité mathématique: dérivées d’ordre m > 1/(y-1)
singulieres - non analytique au voisinage de p=0

Probleme avec l'intégration numeérique

Méthode: obtenir analytiguement le comportement de la
solution au voisinage de la singularité
Initialiser I'integration numerique a partir d'un point voisin
de la position singuliere, (distance ¢), en satisfaisant les

conditions analytiques precédemment obtenues.

Faire une étude en variant ¢ (lim ¢>0)

Q
Q

Q
Q




EPFL

Gravitation - 1 corps

Comete de Halley

Orbite elliptique fortement excentrique
Faxd Tmin=29.6. T=75.986 ans

Unités astronomiques (UA):
o Demi arand axe orbite terre (150 mio km)

Halley RK4

x [UA]

Intégration numerique avec Runge-Kutta d’ordre 4 et pas temporel At constant
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Halley, Verlet, 1000 ans

Halley Verlet
10 |
At=0.01 0.005 0.0025
51 ' = _
S5 o -
=
0.9 IHaIIey Verlet ‘
_ At=0.01
43‘-0.95— | | |
% 0 -25 -20 1
z -1 x [UA]
©
o
E1.05 0.005
2 0.0025
S-1.1F '
1.15 : : :
50 100 150

t[UA] 0 50 o 100 150
Précession non physique.

Bonne conservation de Emec en moyenne sur de longs temps.
Mauvaise lorsque r=r;., (accélération maximale).

La période obtenue converge en At?, mais pas trés grande précision.
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Schémas a pas de temps adaptatif

On a constate que l'erreur était importante aux
Instants ou le corps est fortement acceléré

Raffiner le At a ces instants, augmenter At
autrement... comment faire ceci avant de connaitre
la solution?

Algorithme de At adaptatif: a chaque pas de temps,
comparer les résultats obtenus apres

o a) 1 pas de At

0o b) 2 pas de At/2

En supposant une loi de convergence pour
I'algorithme de base utilisé, on peut en déduire quel

At choisir, I.e. controler l'algorithme.
(développements au tableau)
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Schéma a pas de temps adaptatif

L A N

o t+ALt/2 1+ AL

Chacune des fleches symbolise un pas complet d’un algorithme de base:
par exemple les 4 étapes d’'un schema Runge-Kutta du 4e ordre.

On veut choisir At de telle sorte que d soit inférieur a une valeur donnée ¢

d<eg
¢ joue le réle d’'un paramétre de contrdole de I'algorithme, et nest PAS la
précision obtenue sur y a la fin de la simulation. Cette derniere doit étre

obtenue par une étude de convergence: lime > 0
B PhysNum. Semaines 9-10
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Halley, Runge-Kutta 4e ordre, At variable

Halley RK4 variable At

5 RK4 A t var, nsteps=4889

y [UA]
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1.4 : : : : 107 : : :
0 200 400 600 800 1000 0 200 400 600 800 1000
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Runge-Kutta a une tendance a long terme de diminuer E.
Le pas At variable permet une tres grande efficacité
Convergence tres rapide
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Halley, Verlet, Runge-Kutta 4, At fixe ou
variable, convergence de la période

Halley RK4 & VW

2
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erroron T [year]
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steps
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Pour 5000 pas de
temps, on est 10
millions de fois plus
précis avec le schéma
adaptatif qu'avec At
fixe!
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En résumeé:

= Verlet conserve bien E, .. en moyenne sur de longues
péeriodes, mais donne une précession non physigue.

= Runge-Kutta 4e ordre: converge tres rapidement la
période, la distance maximale, etc, mais dimunution
séculaire non physique de E, ..

= Un algorithme a pas At adaptatif est de plusieurs
ordres de grandeur plus efficace qu’a At fixe.
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Probléme a 2 corps

On se place dans le référentiel du centre de masse

Le mouvement relatif (i.e. pour r,-r,) est identique au
mvmt a 1 corps, mais avec une « masse reduite »

Le mvmt de chacun des 2 corps dans le référentiel
du centre de masse est donc identiqgue au mvmt a 1
corps (a des rapports de masse pres)

o Les lois de Kepler s’appliquent!
Orbites= coniques avec un des foyers au centre de masse
Lol des aires
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Probléme a 3 corps: exemples

Pythagore joue au billard cosmique

3 corps de masses 3,4,5, placées initialement aux sommets d'un
triangle rectangle de co6tés de longueurs 3,4,5 (unites

astronomiqgues). Les vitesses initiales sont nulles.

Runge-Kutta ordre 4, pas variable adaptatif.
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80ans .,
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Quasi-collisions: probleme difficile, méme avec At adaptatif
o Format « long double »
Formation d’'une étoile double et éjection de la troisieme
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3 corps: soleily « Jupiter », terre

Mvmt de la terre dans le systeme (soleill,
« jupiter »), ou on a multiplié la masse reelle de
Jupiter par un facteur arbitraire f.

Cf Notes de Cours, sections 2.5.1 et 2.5.2

Simulations avec les schémas de Verlet et de
Runge-Kutta 4e ordre
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Jupiter*300

3 corps MJupiter*SDD

3 corps M Jupitelr*SOO

y [UA]
o

= Mouvement quasi-périodique
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Jupiter*700

10

100 ans
At=0.001 an
Verlet

=10}

1%

La terre se fait capturer par « Jupiter », puis est « éjectée »...
Chaos: sensitivité aux conditions initiales, difficulté de convergence
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