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◼ Notes de Cours: nouvelle version (22.3) sur Moodle

◼ Pendule excité et amorti, chaos, imprédictabilité, 
attracteurs étranges et stabilisation non-linéaire 
(expériences et simulations)

◼ Schéma de Runge-Kutta d’ordre 4 (section 2.3.5)

◼ Problèmes 1D à valeurs aux bords, traités comme 
problèmes à valeur initiale
❑ Atmosphère planétaire à l’équilibre (Section 3.1.1)

◼ Gravitation. Problème à N corps (Sections 2.4 et 2.5)

❑ 1 corps. Mvmt central en 1/r2. Lois de Kepler.

◼ Numérique: schémas à Dt variable (adaptatif)

◼ Exercice 4, dès la semaine 10 (25 novembre)

Physique Numérique sem. 9-10
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« Signature » du chaos

◼ Sensibilité extrême aux conditions initiales:

❑ Soit deux conditions initiales différentes. Le 

mouvement est dit chaotique si, aussi petite que 

soit la différence entre les deux conditions 

initiales, il y a un temps t fini au-delà duquel les 

orbites respectives des deux mouvements 

s’écartent exponentiellement l’une de l’autre. 

L’exposant de l’exponentielle est appelé exposant 

de Lyapounov.
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Sensibilité aux conditions initiales

◼ Distance entre 2 orbites

◼ Régime chaotique : divergence exponentielle

◼ Régime non chaotique: pas de divergence exponentielle

Pente = exposant 

de Lyapunov
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Chaos et imprédictabilité

◼ 10-10: taille atome,  10-14: taille 10 noyaux atomiques!
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Sections de Poincaré – pendule excité

◼ Excitation par une perturbation sinusoïdale

◼ Section de Poincaré: on représente un point de l’espace 

de phase, p.ex. (angle, vitesse angulaire) à chaque 

période de l’excitation.

❑ Hint: prenez Dt=(2p/W)/nstep, nstep=nombre de pas de temps par 

période, et mettez sampling égal à nstep en input du code: 

l’output contiendra ainsi directement les coordonnées des sections 

de Poincaré.

❑ Hint: représentez la section de Poincaré avec q modulo 2p (ou 

entre –p et +p)

◼ Cas sans amortissement: chaque condition initiale produit 

une section de Poincaré différente. Topologie de surfaces 

imbriquées, de chaînes d’îlots, et de régions 

stochastiques signalant la présence de chaos.
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Sections de Poincaré pendule simple, excitation verticale zoom
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Pendule excité et amorti - attracteurs

◼ Section de Poincaré: on représente une projection 

dans un plan de l’espace de phase des positions à 

chaque période de l’excitation.

◼ Attracteur: toute condition initiale (dans un domaine 

appelé « bassin d’attraction ») conduit à une section 

de Poincaré de structure similaire.

◼ Attracteur « étrange »: cas chaotique.

❑ L’ «étrangeté» vient du fait que (1) des conditions initiales 

même infinitésimalement voisines conduisent en un temps 

relativement court à des orbites qui divergent 

exponentiellement l’une de l’autre; (2) des conditions 

initiales même très éloignées l’une de l’autre conduisent au 

même attracteur pour des temps longs. 
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Galerie d’attracteurs étranges



Simulation numérique de systèmes 

en régime chaotique
◼ La sensibilité extrême aux conditions initiales, 

avec divergence ~ exp (l t) conduit à 

l’impossibilité de converger 

numériquement la solution pour des 

temps t > ~ 1/l

◼ Cependant:

❑ La structure de l’espace de phase (p.ex. l’étendue 

de la  zone stochastique et/ou la forme de 

l’attracteur étrange) converge numériquement
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Exercice 4: Rentrée d’un vaisseau spatial dans

l’atmosphère.
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Apollo 13 est à 310’000km de la terre. Ils doivent interrompre leur mission suite à 

une grave avarie. Ils demandent les paramètres de la trajectoire qui les ramènera 

sains et saufs sur terre. Sans qu’ils ne ratent la cible. Sans qu’ils s’écrasent. 

Sans qu’ils ne subissent d’accélération trop forte. Sans que leur vaisseau ne se 

consume sous l’effet de la puissance des forces de friction aérodynamiques.

Houston, 

we’ve had

a problem..
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Pour l’Exercice 4: Runge-Kutta ordre 4
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Atmosphère planétaire

◼ 3.1.1 Cas 1D, traité comme problèmes à valeur initiale 
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Théorie de base:

Newton

Thermodynamique

Statistique

Modèle:

Fluide

Equation(s) du 
problème:

EDO

Hypothèses:

1. Fluide

2. Equilibre

3. Statique

4. Faible épaisseur → Gravitation ~ constante

5. Equation d’état polytropique (« adiabatique »)

6. Symétrie plane (négliger courbure planète)



Atmosphère planétaire (suite)

◼ Problème: singularité des équations lorsque r=0 
❑ Singularité physique: on passe du fluide au vide

❑ Singularité mathématique: dérivées d’ordre m > 1/(g-1)
singulières → non analytique au voisinage de r=0 

❑ Problème avec l’intégration numérique

❑ Méthode: obtenir analytiquement le comportement de la 
solution au voisinage de la singularité

❑ Initialiser l’intégration numérique à partir d’un point voisin 
de la position singulière, (distance e), en satisfaisant les 
conditions analytiques précédemment obtenues.

❑ Faire une étude en variant e (lim e→0)

13
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Gravitation - 1 corps

◼ Comète de Halley

◼ Orbite elliptique fortement excentrique 
rmax/rmin=59.6. T=75.986 ans

◼ Unités astronomiques (UA):
❑ Demi grand axe orbite terre (150 mio km)

❑ Période de l’orbite de la terre (1 an)

Intégration numérique avec Runge-Kutta d’ordre 4 et pas temporel Dt constant
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Halley, Verlet, 1000 ans

◼ Précession non physique. 

◼ Bonne conservation de Emec en moyenne sur de longs temps. 
Mauvaise lorsque r=rmin, (accélération maximale).

◼ La période obtenue converge en Dt2, mais pas très grande précision.
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Schémas à pas de temps adaptatif

◼ On a constaté que l’erreur était importante aux 
instants où le corps est fortement accéléré

◼ Raffiner le Dt à ces instants, augmenter Dt
autrement… comment faire ceci avant de connaître 
la solution?

◼ Algorithme de Dt adaptatif: à chaque pas de temps, 
comparer les résultats obtenus après 
❑ a) 1 pas de Dt

❑ b) 2 pas de Dt/2

◼ En supposant une loi de convergence pour 
l’algorithme de base utilisé, on peut en déduire quel 
Dt choisir, i.e. contrôler l’algorithme. 
(développements au tableau)



Schéma à pas de temps adaptatif
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Chacune des flèches symbolise un pas complet d’un algorithme de base: 

par exemple les 4 étapes d’un schema Runge-Kutta du 4e ordre.

On veut choisir Dt de telle sorte que d soit inférieur à une valeur donnée e

d < e
e joue le rôle d’un paramètre de contrôle de l’algorithme, et n’est PAS la 

précision obtenue sur y à la fin de la simulation. Cette dernière doit être 

obtenue par une étude de convergence: lim e→ 0 



PhysNum. Semaines 9-10 18

Halley, Runge-Kutta 4e ordre, Dt variable

Runge-Kutta a une tendance à long terme de diminuer Emec

Le pas Dt variable permet une très grande efficacité

Convergence très rapide
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Halley, Verlet, Runge-Kutta 4, Dt fixe ou 

variable, convergence de la période

Pour 5000 pas de 

temps, on est 10 

millions de fois plus 

précis avec le schéma 

adaptatif qu’avec Dt 

fixe!



PhysNum. Semaines 9-10 20

En résumé:

◼ Verlet conserve bien Emec en moyenne sur de longues 
périodes, mais donne une précession non physique. 

◼ Runge-Kutta 4e ordre: converge très rapidement la 
période, la distance maximale, etc, mais dimunution 
séculaire non physique de Emec

◼ Un algorithme à pas Dt adaptatif est de plusieurs 
ordres de grandeur plus efficace qu’à Dt fixe.
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Problème à 2 corps

◼ On se place dans le référentiel du centre de masse

◼ Le mouvement relatif (i.e. pour r2-r1) est identique au 

mvmt à 1 corps, mais avec une « masse réduite » 

◼ Le mvmt de chacun des 2 corps dans le référentiel 

du centre de masse est donc identique au mvmt à 1 

corps (à des rapports de masse près)

❑ Les lois de Kepler s’appliquent!

◼ Orbites= côniques avec un des foyers au centre de masse

◼ Loi des aires
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Problème à 3 corps: exemples

Pythagore joue au billard cosmique

◼ 3 corps de masses 3,4,5, placées initialement aux sommets d’un 
triangle rectangle de côtés de longueurs 3,4,5 (unités 
astronomiques). Les vitesses initiales sont nulles.

◼ Runge-Kutta ordre 4, pas variable adaptatif.

tfin=5 ans
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80 ans

◼ Quasi-collisions: problème difficile, même avec Dt adaptatif

❑ Format « long double »

◼ Formation d’une étoile double et éjection de la troisième
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3 corps: soleil, « Jupiter », terre

◼ Mvmt de la terre dans le système (soleil, 

« jupiter »), où on a multiplié la masse réelle de 

Jupiter par un facteur arbitraire f.

◼ Cf Notes de Cours, sections 2.5.1 et 2.5.2

◼ Simulations avec les schémas de Verlet et de 

Runge-Kutta 4e ordre
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Jupiter*300

◼ Mouvement quasi-périodique



PhysNum. Semaines 9-10 26

Jupiter*700

◼ La terre se fait capturer par « Jupiter », puis est « éjectée »…

◼ Chaos: sensitivité aux conditions initiales, difficulté de convergence

100 ans

Dt=0.001 an

Verlet


