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Physique Numérique I semaine 5

Swiss Plasma Center

◼ Retour indicatif avant dimanche 23 octobre à minuit

◼ Info-échanges: vendredi 28 octobre 09:00 Ce1 3

◼ Rappel des semaines précédentes:

❑ Notions de convergence et de stabilité numériques

❑ Analogie oscillateur harmonique, particule dans un champ 

magnétique et effet Magnus

◼ (1) Euler explicite: instable pour oscillateur harmonique

◼ (2) Euler implicite: stable, mais dissipation numérique

◼ (3) Euler semi-implicite: ?

◼ (4) Runge-Kutta (explicite, d’ordre 2) : ?

◼ (5) Euler-Cromer (explicite, symplectique)              

◼ (6) Boris-Buneman (semi-implicite, conservatif, d’ordre 2)



Exercice 2: indications
◼ On utilisera des ‘valarray’ dans le code C++, par exemple:

❑ valarray<double> x=valarray<double>(3); // position de la particule 

❑ valarray<double> v=valarray<double>(3); // vitesse de la particule

◼ On peut additioner des valarrays et les multiplier par un scalaire, p.ex.:

❑ x += v * dt;   // mise à jour de la position

◼ On a déjà défini dans le squelette de code C++ des fonctions pour le 

produit scalaire de deux vecteurs:

❑ produitInterne(valarray1,valarray2)

◼ Et la norme d’un vecteur:

❑ norm2(valarray)

◼ On donne un script ParameterScan.m qui lance une série de 

simulations avec plusieurs valeurs d’un paramètre d’entrée, (nsteps, 

pour faire une étude de convergence)

◼ Des fonctions Python sont également données
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Mouvement oscillatoire harmonique et 

mouvement circulaire uniforme

◼ Représentation complexe:

𝑥 𝑡 = ℜ ො𝑥 ⅇ−ⅈ𝜔𝑡 , 𝜔 ∈ 𝑅, ො𝑥 = |ො𝑥|ⅇⅈ𝜑 ∈ 𝐶

◼ Rotation dans le plan complexe à la fréquence 𝜔

◼ Projection sur l’axe réel: oscillation à la fréquence 𝜔

◼ Généralisation: fréquence complexe 𝜔 ∈ 𝐶,𝜔 = 𝜔𝑟 + 𝑖𝛾

𝑥 𝑡 = |ො𝑥|ⅇ𝛾𝑡cos(𝜔𝑡 + 𝜑)

𝛾 > 0 : amplitude exponentiellement croissante

𝛾 < 0 : amplitude exponentiellement décroissante

Substituer la représentation complexe dans une équation différentielle 

linéaire la transforme en une équation algébrique, après simplification 

par ⅇ−ⅈ𝜔𝑡 :

𝑑

𝑑𝑡
𝑥 → −𝑖𝜔ො𝑥
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LaTeX
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Plan

◼ Oscillateur harmonique

◼ Démonstrations et analyse de la stabilité du schéma d’Euler 

explicite

◼ Démonstrations d’un schéma symplectique (Euler-Cromer)

◼ Démonstrations d’un schéma semi-implicite (Boris-

Buneman), appliqué au mouvement d’une particule dans un 

champ magnétique curviligne non-uniforme.
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◼ Le schéma d’Euler explicite est toujours instable lorsqu’il est 
appliqué à l’oscillateur harmonique. La norme de l’erreur augmente 
à chaque pas de temps

◼ L’amplitude des oscillations croît exponentiellement, avec un taux 
de croissance proportionnel à Dt

Euler explicite et oscillateur harmonique
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2.3.1 Oscillateur harmo. Euler expl. Conservation Emec

L’énergie 

mécanique, au 

lieu d’être 

conservée, croît 

exponentiellement 

dans le temps.

Le taux de 

croissance de 

Emec est 

proportionnel à Dt.

FIG. 2.8 (bas)
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◼ 2.3 Oscillations

❑ 2.3.1 Oscillateur harmonique. Instabilité du schéma d’Euler

❑ 2.3.2-2.3.3 Analyses de stabilité numérique

Simulation de Systèmes Oscillatoires
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Section 2.3.2 – Von Neumann Section 2.3.3 Section 2.3.4
Swiss Plasma Center



2.3.2. Analyse de stabilité de Von 

Neumann

◼ Sera présentée au tableau

◼ Voir aussi les Notes de Cours, section 2.3.2.
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2.3.3 Stabilité. Oscillations, (dé)croissance

exponentielle. Sol. Analytique des Eqs. Discrètes.
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2.3.3 Euler expl. osc. harmo. Conservation Emec 1
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2.3.3 Euler expl. osc. harmo. Conservation Emec 2
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◼ Le schéma d’Euler est toujours instable lorsqu’il est appliqué à 
l’oscillateur harmonique. La norme de l’erreur augmente à chaque 
pas de temps

◼ L’amplitude des oscillations croît exponentiellement, avec un taux 
de croissance proportionnel à Dt

◼ L’énergie mécanique n’est pas conservée, mais croît 
exponentiellement, avec un taux de croissance proportionnel à Dt

◼ Paramètre numérique crucial: Dt

❑ Dt << 1 veut dire plusieurs pas temporels par période

◼ Amélioration des schémas numériques nécessaire!

❑ Euler – Cromer ~Dt (*)

❑ Stormer-Verlet ~(Dt)2

❑ Runge-Kutta ordre 4 ~(Dt)4

❑ Augmenter l’ordre du schéma augmente la précision

◼ (*) changement apparemment minime, mais… (demo)

2.3.1-5 Oscillateur harmonique. Conclusions

Symplectiques: Emec=const en moyenne
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Euler-Cromer: déjà un grand progrès!

◼ Les schémas d’Euler-Cromer et de Verlet seront 
présentés au tableau et seront illustrés par des 
simulations numériques.

FIG. 2.8 FIG. 2.9
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◼ En combinant Euler-Cromer « A » et « B » pour deux demi-pas 
de temps, on aboutit au schéma de Verlet. La dérivation sera 
présentée au tableau.

Euler-Cromer: pied gauche ou pied 

droite d’abord?
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Euler-Cromer («symplectique») (2.3.6)

◼ Pour la force de portance de Magnus, comme pour la force de 

Lorentz due au champ magnétique, l’accélération en x dépend de 

vz, et l’accélération en z dépend de vx.

◼ Le schéma d’Euler-Cromer, s’écrit, pour la particule dans un champ 

magnétique selon z:

◼ (Euler: vx,n)

◼ Pour l’Ex.2, similaire … et attention aux signes!)
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nynxnx vvv ,,1, +=+

1,,1, ++ −= nxnyny vvv
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Boris – Buneman (2.7.2)

◼ Conserve Emec exactement, quel que soit Dt

◼ Ordre 2 en Dt

◼ Pour l’effet Magnus (Ex.2 2019), c aura une autre 

expression
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Posons:

◼ Cas d’une particule dans un champ magnétique



Quiz

◼ La force de Lorentz                       est toujours

perpendiculaire au champ magnétique.

◼ Donc la composante parallèle au champ 

magnétique est toujours nulle,  F//=0

◼ Donc, la composante de la vitesse parallèle

au champ magnétique est constante, 

puisque:

◼ … Qui est d’accord avec ce raisonnement?

◼ Si vous n’êtes pas d’accord, où est l’erreur?
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Particule dans champ magnétique: Boris - Buneman

◼ B-B Conserve Emec exactement, (quel que soit Dt !)
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