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Physique Numérique I semaine 4

❑Infos

➢Groupes d’étudiants par assistant et répartition dans 

les salles: voir liste sur Moodle

➢Paires d’étudiants: dès l’Exercice 2, un rapport pour la 

paire, avec deux auteurs

→ participation de chacun des deux requise!
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◼ Notes de Cours: Section 2.2.3 et Section 2.3

◼ Exercice 2: particule dans champ électromagnétique. 

Plusieurs schémas numériques:

◼ (1) Euler explicite

◼ (2) Euler implicite:

◼ (3) Euler semi-implicite, 

◼ (4) Runge-Kutta d’ordre 2 explicite:

◼ Autres schémas numériques:

❑ (4) Euler-Cromer (explicite, symplectique)              

❑ (5) Boris-Buneman (semi-implicite, conservatif, d’ordre 2)

◼ Analogie avec l’effet Magnus et avec l’oscillateur harmonique

◼ Expériences

Plan



Force de portance, effet Magnus
◼ Expériences
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◼ Formule semi-empirique

vRFp
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(dans le référentiel de l’obstacle)

(dans le référentiel du sol)
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◼ Eq. Bernouilli
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(le long d’une ligne de courant)
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Magnus tire un coup franc au football
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Eq.(2.27)
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Oscillateur harmonique, particule dans champ B, 

effet Magnus: même structure mathématique

◼ Effet Magnus:

5


















−
=









v

x

v

x

t 0

10

d

d
2

0























−


=









y

x

y

x

v

v

v

v

t 0

0

d

d

m

qB
=

m

k
=0

BvqF


=




−= vRF 3

◼ Lorentz:
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𝑦𝑛+1 = 𝑦𝑛 + 𝑓(𝑦𝑛+1 , 𝑡𝑛+1 ) Δ𝑡 + Ο(Δ𝑡)2 (*)

𝑦𝑛+1 −𝑦𝑛

Δ𝑡
= 𝑓(𝑦𝑛+1 , 𝑡𝑛+1 ) + Ο(Δt)

Euler implicite (2.3.5)
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𝑦𝑛+1
(𝑘+1)

= 𝑦𝑛 + 𝑓(𝑦𝑛+1
(𝑘)

, 𝑡𝑛+1 )

Résoudre cette équation (*) par itérations («point fixe»)

k=0: 𝑦𝑛+1
(𝑘=0)

= 𝑦𝑛

k→k+1

Arrêter les itérations lorsque l’erreur sur la résolution 

de (*) est inférieure à une tolérance spécifiée, voir 

Notes de Cours Eq.(2.68)



𝑦𝑛+1 = 𝑦𝑛 + [𝛼𝑓 𝑦𝑛, 𝑡𝛼 + (1 − 𝛼)𝑓(𝑦𝑛+1, 𝑡𝛼)]Δ𝑡

𝑦𝑛+1 −𝑦𝑛

Δ𝑡
= 𝛼𝑓(𝑦𝑛 , 𝑡𝛼 ) +(1 − 𝛼)𝑓(𝑦𝑛+1 , 𝑡_𝛼 )

Euler semi-implicite
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Résoudre cette équation par itérations («point fixe»)

k=0: 𝑦𝑛+1
(𝑘=0)

= 𝑦𝑛

k→k+1

Arrêter les itérations lorsque l’erreur d est inférieure à une 

tolérance spécifiée e

𝑦𝑛+1
(𝑘+1)

= 𝑦𝑛 + [𝛼𝑓 𝑦𝑛, 𝑡𝛼 + (1 − 𝛼)𝑓(𝑦𝑛+1
(𝑘)

, 𝑡𝛼 )] Δ𝑡

𝑑 = |𝑦𝑛+1
(𝑘+1)

− 𝑦𝑛 − [𝛼𝑓 𝑦𝑛, 𝑡𝛼 + (1 − 𝛼)𝑓(𝑦𝑛+1
(𝑘+1)

, 𝑡𝛼 )] Δ𝑡|



Runge-Kutta d’ordre 2 (2.3.7)
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Euler-Cromer («symplectique») (2.3.6)

◼ Pour la force de portance de Magnus, comme pour la force de 

Lorentz due au champ magnétique, l’accélération en x dépend de 

vz, et l’accélération en z dépend de vx.

◼ Le schéma d’Euler-Cromer, s’écrit, pour la particule dans un champ 

magnétique selon z:

◼ (Euler: vx,n)

◼ Pour l’Ex.2, similaire (mais (x,z) au lieu de (x,y), … et attention aux 

signes!)
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nynxnx vvv ,,1, +=+

1,,1, ++ −= nxnyny vvv
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Boris – Buneman (2.7.2)

◼ Conserve Emec exactement, quel que soit Dt

◼ Ordre 2 en Dt

◼ Pour l’effet Magnus (Ex.2 2019), c aura une autre 

expression
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2Semi-implicite

Posons:

◼ Cas d’une particule dans un champ magnétique



Particule dans champ magnétique: Boris - Buneman

◼ B-B Conserve Emec exactement, (quel que soit Dt !)
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Exercice 2: indications
◼ On utilisera des ‘valarray’ dans le code C++, par exemple:

❑ valarray<double> x=valarray<double>(3); // position de la particule 

❑ valarray<double> v=valarray<double>(3); // vitesse de la particule

◼ On peut additioner des valarrays et les multiplier par un scalaire, p.ex.:

❑ x += v * dt;   // mise à jour de la position

◼ On a déjà défini dans le squelette de code C++ des fonctions pour le 

produit scalaire de deux vecteurs:

❑ produitInterne(valarray1,valarray2)

◼ Et la norme d’un vecteur:

❑ norm2(valarray)

◼ On donne un script ParameterScan.m qui lance une série de 

simulations avec plusieurs valeurs d’un paramètre d’entrée, (nsteps, 

pour faire une étude de convergence)

◼ Des fonctions Python sont également données
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