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5.1.2 Théorie du champ moyen . . . . . . . . . . . . . . . . . . . . . . . 181

5.1.3 Monte Carlo, algorithme de Metropolis . . . . . . . . . . . . . . . 184

A From Taylor to Abramowitz to Pascal 191

A.1 Even order derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.2 Odd order derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.3 Pascal triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.4 Forward finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
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Chapitre 1

Introduction

1.1 Présentation du cours

Ce cours est destiné aux étudiants de la Section de Physique de l’EPFL de deuxième

année. Il suppose avoir acquis les notions des cours de mathématiques (analyse et algèbre

linéaire), d’analyse numérique, de physique et d’informatique de l’année propédeutique.

Ce cours n’est ni un cours de programmation scientifique avancée, ni un cours de mathé-

matiques discrètes. C’est un cours de physique.

Il n’a pas pour objectif de former des théoriciens spécialistes pointus des algorithmes

numériques. Cependant, il est clair aujourd’hui que tout physicien sera confronté un jour

ou l’autre à un problème de nature numérique, que ce soit seulement en tant qu’uti-

lisateur d’un “package”, ou que ce soit un expérimentateur confronté à des problèmes

d’échantillonage et d’analyse du signal. D’autre part, il serait dommage, vu la puissance

de calcul et l’aisance d’utilisation des ordinateurs, de se passer d’un outil qui, comme

l’outil analytique, et en complément de celui-ci, permet de résoudre des problèmes de

physique et ainsi aider à la compréhension de nombreux phénomènes.

Les problèmes que l’on peut résoudre “exactement” (c.a.d. par des méthodes analytiques)

sont très restreints, dans le sens qu’ils sont souvent basés sur une idéalisation, une sim-

plification de la réalité : par exemple, on néglige la résistance de l’air, ou on néglige la

présence d’un troisième corps céleste pour calculer les trajectoire d’une planète, etc. La

réalité est bien plus complexe, et la confrontation théorie - expérience doit faire face au

dilemne suivant : les différences entre prédictions et mesures sont-elles dues à des effets

négligés (pour pouvoir résoudre exactement des équations représentant une approximation

de la réalité), ou à des imprécisions de mesure, ou encore indiquent-elles une défaillance

fondamentale de la théorie utilisée ?

1



CHAPITRE 1. INTRODUCTION

L’approche numérique permet de tenir compte de plusieurs effets traditionnellement

négligés. Mais elle a elle-même ses limites : la solution numérique est fragmentaire et

approximative. C’est pourquoi il est absolument crucial de pouvoir évaluer la qua-

lité de la solution numérique. C’est un des objectifs essentiels de ce cours que de

développer ce type d’attitude face à la solution numérique.

Objectifs

— Aborder, formuler et résoudre des problèmes de physique pouvant être décrits par

des équations différentielles ordinaires ou aux dérivées partielles, en utilisant des

méthodes numériques.

— Comprendre les avantages et les limites de ces méthodes.

— Etendre les applications aux problèmes difficilement traitables par les méthodes

analytiques.

— Apprendre à utiliser les concepts physiques pour vérifier et valider les résultats

numériques.

— Contrôler la précision en estimant les erreurs, en examinant la stabilité et la conver-

gence.

— Compléter et illustrer différents sujets de physique traités dans d’autres cours.

Organisation

Le cours est organisé avec une partie d’enseignement “frontal”, où les problèmes physiques

et leur modélisation, ainsi que les méthodes numériques sont présentées. Il est suivi d’une

partie de “travaux pratiques”, où il s’agit de résoudre des exercices. Ces exercices feront

l’objet de rapports à rendre, qui seront ensuite évalués et notés.

Contenu

Après une introduction à la discrétisation et aux concepts de la convergence et de la

stabilité numériques, le cours aborde les problèmes d’évolution temporelle à valeur initiale,

en partant du cas le plus simple.

On s’intéresse ensuite aux problèmes, essentiellement tirés de la mécanique Newtonienne,

pour lesquelles divers intégrateurs numériques sont développés et analysés, et qui per-

mettent d’aller au-delà, dans les applications, des exemples traditionnellement choisis.

On verra, par exemple, l’apparition de mouvement chaotique dans des systèmes simples,

ce qui aura des conséquences sur les notions de prédictabilité et de déterminisme.

On aborde ensuite les problèmes d’intégration d’équations différentielles dans l’espace, à

une, puis deux dimensions. Les applications physiques seront tirées de la thermodyna-

mique et de l’électromagnétisme.

2 Physique Numérique LV SPC EPFL



1.1. PRÉSENTATION DU COURS

Physique Numérique

1. Introduction 1. Discrétisation, erreurs, convergence,
stabilité

2. Evolution temporelle. Problèmes à
valeur initiale décrits par des équations
différentielles ordinaires. Oscillations.
Chaos. Gravitation à 1,2 et 3 corps.
Particules dans champ EM. Problèmes
1D à valeurs aux bords traités comme à
valeur initiale.

2. Schémas explicites : Euler explicite, Eu-
ler symplectique, Verlet, Leapfrog, Runge-
Kutta. Schéma d’Euler implicite. Schéma
semi-implicite : Boris-Buneman. Stabilité
et convergence. Pas de temps adaptatif.
Traitement de la singularité des équations.

3. Intégration spatiale. Problèmes à
valeurs aux bords. Electrostatique,
magnétostatique, chaleur stationnaire.

3. Différences finies. Méthodes
accélératrices : Gauss-Seidel, surrrelaxa-
tion. Elements finis. Grille non-uniforme.

4. Intégration spatio-temporelle :
problèmes décrits par des équations aux
dérivées partielles. Advection-Diffusion.
Ondes : propagation, réflexion, superpo-
sition, milieux inhomogènes. Mécanique
quantique : Schrödinger dépendante du
temps, principe d’incertitude, puits et
barrières de potentiel, effet tunnel, oscil-
lateur harmonique, potentiel périodique.
Schrödinger stationnaire, états propres.

4. Différences finies. Schémas explicites à
2 et 3 niveaux. Application de diverses
conditions initiales et conditions aux
bords. Analyse de stabilité. Monte Carlo
Langevin (marche aléatoire). Schéma
semi-implicite de Crank-Nicholson. Pro-
priétés de conservation.

5. Physique statistique. Transitions de
phase.

5. Monte Carlo. Algorithme de Metropo-
lis.

Table 1.1 – Correspondance entre les problèmes de physique abordés (colonne de gauche)
et les méthodes numériques introduites (colonne de droite). Les numéros correspondent
aux chapitres du cours.

Physique Numérique LV SPC EPFL 3



CHAPITRE 1. INTRODUCTION

Les problèmes d’évolution spatio-temporelles seront évoqués, avec applications possibles

aux problèmes de l’advection-diffusion, de la propagation d’ondes et de la mécanique

quantique.

Un exemple simple d’application de la méthode de Monte Carlo, permettant de simuler

le comportement statistique des systèmes à plusieurs degrés de liberté, sera présenté.

Enfin, le lecteur pourra à profit consulter les quelques ouvrages de référence, articles

scientifiques et liens sur la toile mentionnés dans la Bibliographie, p. 206.

Structure

La présentation de ce cours suit une double logique. D’une part, la motivation est basée

sur la physique, où des problèmes de complexité croissante sont abordés. Ces problèmes

servent de motivation à l’introduction de méthodes numériques. La table 1.1 indique cette

correspondance.

1.2 Discrétisation

On appelle discrétisation le processus de remplacer un système d’équations sur un

espace continu, généralement des équations différentielles, en le représentant de façon

approximative en termes d’un ensemble discret (dénombrable et fini) de quantités.

La figure 1.1 illustre ce propos, avec, sur la partie gauche, la représentation continue, et

à droite, la représentation discrète.

Les quantités discrètes peuvent par exemple être les valeurs des fonctions en des points

d’un réseau (appelé aussi maillage). Pour obtenir une estimation de la dérivée de ces

fonctions, on peut, par exemple, utiliser alors des différences finies, qui seront une ap-

proximation, plus ou moins bonne, selon l’ordre utilisé. L’annexe A décrit plus en détail

comment obtenir les formules de différences finies.

Une autre possibilité est de représenter les fonctions en termes d’une somme de fonctions

de base ayant un support fini, également défini sur un réseau (maillage). Les méthodes

d’éléments finis sont un exemple d’une telle approche. Les méthodes dites spectrales, avec

des fonctions de base globales, typiquement harmoniques ou polynomiales, sont un autre

exemple.

On obtient ainsi, à partir du système originel d’équations différentielles, un système

d’équations algébriques, qui peut être résolu par des opérations arithmétiques. Moyen-

4 Physique Numérique LV SPC EPFL



1.3. ERREURS DE TRONCATURE ET D’ARRONDI

10

1.2 Discrétisation 
t continu

y(t) continue

{tn}, n=0,1,2,3,… 

{yn}, n=0,1,2,3,… yn=y(tn)

y

yn

y0
t

t0 t1 t2 t3 tn-1 tn

t

y

Equation différentielle, p.ex. Approximation, p.ex. différences finies

),(
1

1
nn

nn

nn tyf
tt

yy







),( tyf
dt

dy


Solution exacte y(t)
Solution approchée yn(tn), en 
un nombre fini de points

?

Calcul différentiel et intégral
?

Opérations arithmétiques

Swiss Plasma Center

Figure 1.1 – Correspondance entre la représentation continue, à gauche, et la
représentation discrète, à droite.

nant traduction par un langage de programmation, ces opérations peuvent s’exécuter par

le processeur arithmétique d’un ordinateur.

Il est crucial de comprendre à quel point la solution discrétisée de notre problème repésente

fidèlement, ou non, la solution du problème continu initial. Il s’agit ici de pouvoir quan-

tifier cette ”fidélité”. Un des objectifs principaux de ce cours est donc la compréhension

des erreurs, des proprétés de convergence et de stabilité numériques. Ces concepts

sont introduits briv̀ement dans les prochaines sections.

1.3 Erreurs de troncature et d’arrondi

Tout processus de discrétisation s’accompagne généralement d’erreurs. On parle d’er-

reurs de troncature et d’arrondi. Les erreurs de troncature sont directement liées à la

façon dont on a approximé le problème continu. L’effet de ces erreurs dépend du type

d’équations et peut être bénin. Un ”bon” schéma numérique est tel que plus on utilise

un réseau (maillage) fin, plus l’erreur de discrétisation diminue, pour tendre vers zéro.

Cette propriété s’appelle la convergence numérique.

On verra que les conséquences des erreurs de discrétisation peuvent parfois être drama-

tiques et conduire à des instabilités totalement non-physiques : l’erreur crôıt exponentiel-

lement dans le temps.

Physique Numérique LV SPC EPFL 5



CHAPITRE 1. INTRODUCTION

Les erreurs d’arrondi sont dues à la représentation des nombres réels par un nombre fini

de bits : c’est le cas de toute arithmétique exécutée par un processeur.

Nous nous bornerons ici à évoquer brièvement le problème des erreurs et de leur accumu-

lation. Les formules de différences finies sont introduites, pour certaines d’entre elles, ’‘a la

section suivante et à l’ annexe A. Des formules d’intégration numérique sont démontrées

à l’annexe B.

La plupart des problèmes de physique que nous allons aborder aboutissent à une (ou

plusieurs) équation(s) différentielle(s). Au coeur du problème de leur résolution numérique

se trouve donc la question de la représentation et du calcul d’une dérivée. Par exemple,

la formule d’ordre le plus bas en h = ∆x de la dérivée de premier ordre pour une fonction

f(x), Eq.(A.22), est :

df

dx
(x) =

f(x+∆x)− f(x)

∆x
+O(∆x) . (1.1)

Le symbole O(∆x) signifie que l’erreur commise dans l’approximation de la dérivée sera

linéairement proportionnelle à ∆x, dans la limite ∆x→ 0. C’est l’erreur de troncature

(on a tronqué ici le développement limité de la fonction f pour obtenir cvette formule de

différence finie). On retrouve donc l’erreur de troncature lors de l’évaluation numérique

de la dérivée.

Mais il y a un autre type d’erreur : non seulement les fonctions ne sont connues qu’en

un ensemble discret de points, la représentation numérique d’un nombre réel dans un

processeur utilise un nombre fini de bits, autrement dit la représentation de chaque valeur

fj et chaque xj est elle-même discrète. On appelle ce type d’erreur l’erreur d’arrondi

(le nombre réel est “arrondi” à sa plus proche représentation binaire sur le processeur).

Ces deux types d’erreurs sont illustrées à la FIG. 1.2 pour le cas de l’évaluation numérique

de d sin(x)/dx en x = π/4. On a représenté, avec des axes logarithmiques, l’erreur par

rapport à la solution exacte en fonction du choix de ∆x. pour des ∆x pas trop petits,

l’erreur diminue effectivement linéairement avec ∆x (la pente est +1 sur ce graphique

logarithmique). Mais pour ∆x tendant vers zéro, l’erreur diverge et l’évaluation de la

dérivée diverge : ce comportement est dû aux erreurs d’arrondi, exemplifiées par la

formule ci-dessus qui, au numérateur, évalue la différence de deux nombres voisins : il

y a perte d’information. On constate que si le comportement de l’erreur de troncature

est régulier, celui de l’erreur d’arrondi est erratique. Cela tient à la nature discrète de la

représentation binaire d’un nombre réel. En conséquence de ces deux sources d’erreur, la

précision sur le résultat est en pratique limitée à ∼ 10−7 − 10−8, qui est à peu près la

moitié de la précision de la représentation à 64 bits.

Dans la suite du cours, nous allons intégrer des équations différentielles en prenant un

grand nombre de points de la grille, ou de pas temporels, et la question de l’accumulation

des erreurs de troncature et d’arrondi doit être surveillée.
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Figure 1.2 – Erreur sur l’évaluation numérique de la dérivée d sin(x)/dx en x = π/4,
en fonction de ∆x. On a utilisé la formule de différence finies “forward”, Eq.(1.1).

1.4 Différences finies et développements limités

Dans la plupart des situations, des considérations d’ordre physique nous permettent de

supposer que les fonctions décrivant le système et son évolution sont continues et n fois (si

ce n’est indéfiniment) différentiables. On peut donc se baser sur le développement limité

de Taylor de ces fonctions au voisinage des points de discrétisation (appelés “points du

réseau” ou “points du maillage”).

Soit une fonction f ∈ C∞(R). Soit une discrétisation xj avec des points de maillage

équidistants, hj = xj+1 − xj = h,∀j. Soit fj = f(xj) et f ′
j = df(xj)/dx. On écrit les

développements limités de la fonction f au voisinage du point de maillage xj, que l’on

exprime aux points de maillage xj±1, xj±2 :

fj−2 = fj − 2hf ′
j + 2h2f ′′

j − 8

6
h3f

(3)
j +

16

24
h4f

(4)
j − 32

120
h5f

(5)
j +O(h6) (1.2)

fj−1 = fj − hf ′
j +

1

2
h2f ′′

j − 1

6
h3f

(3)
j +

1

24
h4f

(4)
j − 1

120
h5f

(5)
j +O(h6) (1.3)

fj+1 = fj + hf ′
j +

1

2
h2f ′′

j +
1

6
h3f

(3)
j +

1

24
h4f

(4)
j +

1

120
h5f

(5)
j +O(h6) (1.4)

fj+2 = fj + 2hf ′
j + 2h2f ′′

j +
8

6
h3f

(3)
j +

16

24
h4f

(4)
j +

32

120
h5f

(5)
j +O(h6) (1.5)

De l’Eq.(1.3), on obtient :

fj−1 − fj = −hf ′
jO(h2) .

Physique Numérique LV SPC EPFL 7
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En divisant par −h, on obtient :

f ′
j =

fj − fj−1

h
+O(h) . (1.6)

C’est la formule de la première dérivée ”en arrìre” (”backward”) ou ”rétrograde”. Elle

est d’ordre 1 en h (autrement dit, l’erreur de troncature est proportionnelle à la taille du

maillage h).

On peut procéder de même à partir de l’Eq.(1.4) :

fj+1 − fj = hf ′
jO(h2) .

En divisant par h, on obtient :

f ′
j =

fj+1 − fj
h

+O(h) . (1.7)

C’est la formule de la première dérivée ”en avant” (”forward”) ou ”progressive”. Elle a

une erreur d’ordre 1 en h (autrement dit, l’erreur de troncature est proportionnelle à la

taille du maillage h).

On peut faire mieux. En faisant la différence de l’Eq.(1.3) et de l’Eq.(1.4), on élimine les

termes de dérivées d’ordre pair et on obtient :

fj+1 − fj−1 = 2hf ′
j +O(h3)

En divisant cette expression par 2h, on a :

f ′
j =

fj+1 − fj−1

2h
+O(h2) . (1.8)

C’est la formule de la première dérivée centrée. Elle a une erreur d’ordre 2 en h (au-

trement dit, l’erreur de troncature est proportionnelle au carré de la taille du maillage,

h2).

On constate que prendre un schéma centré augmente l’ordre, donc la précision

obtenue, par rapport aux schémas décentrés. Ceci est illustré à la Fig.1.3, où on a

représenté l’erreur sur l’évaluation de d sin(x)/dx en x = π/4 en utilisant le schéma centré,

Eq.(1.8) (en rouge). On constate que l’erreur de troncature varie bien en h2 (la pente est

2 sue le diagramme log-log). Par rapport au schéma décentré ”forward”, Eq.(1.7) (en

noir), on constate bien l’avantage du schḿa centré. Pour une taille de maillage donnée,

la précision est bien meilleure, tant qu’on n’est pas dominé par les erreurs d’arrondi. Le

minimum de l’erreur est ∼ 10−11, bien meilleur que les 10−8 du schéma forward.

Mais quelle que soit la qualité du schéma et son ordre de convergence, les erreurs d’arrondi

sont inévitables. On trouve une divergence de l’erreur en ∼ 1/h, indépendemment de

l’ordre du schéma utilisé.
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Figure 1.3 – Erreur sur l’évaluation numérique de la dérivée d sin(x)/dx en x = π/4,
en fonction de ∆x, avec la formule de différences finies centrées, Eq.(1.8), (rouge) et
avec la formule de différences finies ”forward”, Eq.(1.7) (noir).

Une formule de différences finies que nous allons utiliser plusieurs fois dans la suite du

cours est pour la deuxième dérivée. Elle s’obtient en additionnant les Eqs.(1.3) et Eq.(1.4),

ce qui élimine les termes de dérivées d’ordre impair :

fj−1 + fj+1 = 2fj + h2f ′′
j +O(h4) . (1.9)

En divisant par h2, on obtient

f ′′
j =

fj−1 − 2fj + fj+1

h2
+O(h2) . (1.10)

C’est également une expression centrée. Elle a une erreur d’ordre 2 en h. Pour augmenter

l’ordre de l’erreur - et donc la précision - des formules de différences finies, il faut inclure

non seulement les points immédiatement voisins du point j, j ± 1, mais aussi les points

au-delà : j±2,±3, .... Par exemple, on obtient la deuxième dérivée avec une erreur d’ordre

4 en faisant la somme des Eqs(1.3) et(1.4), puis de Eqs(1.2) et (1.5)

fj−1 + fj+1 = 2fj + h2f ′′
j +

1

12
h4f

(4)
j +O(h6) (1.11)

fj−2 + fj+2 = 2fj + 4h2f ′′
j +

4

3
h4f

(4)
j +O(h6) (1.12)

En prenant 16× Eq.(1.11) - Eq.(1.12), on élimine f
(4)
j :

−fj−2 + 16fj−1 + 16fj+1 − fj+2 = 30fj + 12h2f ′′
j +O(h6)

et on obtient :

f ′′
j =

1

12h2
(−fj−2 + 16fj−1 − 30fj + 16fj+1 − fj+2) +O(h4) . (1.13)
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On trouvera en annexe A la dérivation d’autres formules de différences finies.

1.5 Convergence numérique

Dans cette section, nous abordons la question de savoir comment les erreurs de tronca-

ture des schémas numériques peuvent être quantifiés. En particulier, il est important de

déterminer comment la solution numérique se comporte avec une discrétisation de plus en

plus fine. Par exemple, pour les problèmes d’évolution temporelle avec des pas de temps

∆t :

1. La solution numérique, pour ∆t→ 0, tend-elle vers une solution finie ?

2. Cette solution cöıncide-t-elle avec la solution exacte (analytique) du problème ?

3. De quelle façon la précision du résultat numérique augmente-t-elle lorsque ∆t

diminue ?

En d’autres termes : (1) le schéma numérique converge-t-il, (2) converge-t-il vers la

bonne solution, et (3) à quelle ordre le schéma converge-t-il ?

Ces questions sont typiquement abordées dans un cours d’analyse numérique, avec des

démonstrations mathématiques rigoureuses. Nous nous bornerons ici à donner la définition

de l’ordre de convergence, dans le cas d’une équation différentielle pour une fonction y(t),

du type
dy

dt
= f(y, t)

avec une fonction connue f(y, t) et une condition initiale connue y(0) = y0. On s’intéresse

à la solution obtenue au temps final t = tf . On supposera que la solution exacte du

problème est analytique, c’est-à-dire qu’elle possède un développement en série entière

au voisinage de tout point. La plupart des méthodes numériques ne s’appliquent cor-

rectement que si une telle hypothèse est vérifiée. La solution numérique en t = tf sera

généralement différente de la solution exacte en ce point. En discrétisant l’intervalle [0, tf ]

en N points de maillage équidistants, ∆t = tf/N , on dit que la solution numérique

converge à l’ordre n si on peut écrire :

ynum(tf ) = yexact(tf ) + cn(∆t)
n + cn+1(∆t)

n+1 + ... (1.14)

Autrement dit, tous les termes en cm(∆t)
m, avec m < n, doivent être tels que cm=0.

Dans ce qui suit, nous nous intéresserons à la façon d’exécuter une étude de convergence

et de représenter (“montrer”) les résultats.

Deux cas de figure peuvent se présenter. Dans le premier cas, si on dispose d’une solution

exacte du problème, alors on peut calculer une erreur, qui est la différence entre la

solution numérique et la solution exacte. En effectuant une série de simulations avec des

10 Physique Numérique LV SPC EPFL
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Figure 1.4 – Convergence numérique de la période de révolution de la comète de
Halley, obtenue avec le schéma de Verlet (noir) et le schéma de Runge-Kutta d’ordre
4. Ici, on connâıt la solution exacte et donc on peut calculer une ereur = différence
entre solutions numérique et exacte. On a représenté l’erreur en fonction du nombre
de pas de temps sur une échelle log-log. Les lignes traitillées sont de pente −2 (noir),
respectivement −4 (rouge), indiquant que l’ordre de convergence de ces schémas est de 2
(Verlet), respectivement 4 (RK4).

discrétisations de plus en plus fines, on peut alors représenter la valeur absolue de cette

erreur en fonction de ∆t. En choisissant des échelles log-log, on obtient la réponse aux trois

questions ci-dessus. En particulier, la pente du graphe de l’erreur en fonction de

∆t sur un diagramme log-log, dans la limite ∆t→ 0, est l’ordre de convergence

numérique. En effet, à partir de l’Eq.(1.14), on obtient :

log(|ynum(tf )− yexact(tf )|) = log(cn) + n log(∆t) + ... (1.15)

On peut aussi représenter le logarithme de l’erreur en fonction du logarithme du nombre

de pas de temps N :

log(|ynum(tf )− yexact(tf )|) = log(cnt
n
fin)− n log(N) + ... (1.16)

Au signe près, la pente est l’ordre de convergence. Un exemple est montré à la Fig. 1.4. Il

s’agit de la période de révolution d’une comète, obtenue avec divers schémas numériques

qui seront examinés au Chapitre 2.]

Dans le deuxième cas, si on ne dispose pas d’une solution exacte, on ne peut alors pas

calculer une erreur, et la question (2) restera ouverte. Par contre, on peut néanmoins

répondre aux questions (1) et (3). Il n’est pas opportun de représenter la quantité

calculée en fonction de ∆t sur un diagramme log-log : ce genre de diagramme de

Physique Numérique LV SPC EPFL 11
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Figure 1.5 – Convergence numérique de la position finale d’un pendule simple soumis
à une excitation verticale et un amortissement, obtenue avec le schéma de Verlet. Ici, on
ne connâıt pas la solution exacte, et donc on ne peut pas a priori calculer l’erreur. On a
représenté la valeur de la position finale du pendule en fonction de (∆t)2 ; le fait que les
points s’alignent sur ce graphique indique que l’ordre de convergence de ce schéma est de
2.

nous apporte pas l’information recherchée. En effet, en prenant le log de l’Eq.(1.14), on

obtient :

log(ynum(tf )) = log(yexact(tf )) + (cn/yexact(tf ))(∆t)
n + ...) (1.17)

dont la représentation graphique en fonction de log(∆t) ne donne pas d’information

évidente sur n. La bonne méthode est de représenter la quantité calculée en

fonction de (∆t)n, sur une échelle linéaire-linéaire. On utilise alors directement

l’expression de l’Eq.(1.14). Si les points de mesure s’alignent sur une droite (dans la li-

mite des petits ∆t), alors on illustre ainsi que l’ordre de convergence est n. Un exemple est

montré à la Fig. 1.5. Il s’agit ici de la position finale d’un pendule simple avec amortisse-

ment et excitation extérieure, pour lequel il n’existe pas de solution exacte. On peut alors,

en supposant que le comportement en (∆t)n se prolonge jusque dans la limite ∆t → 0,

extrapoler les données pour prendre lim∆t→ 0 : cette valeur sera la valeur convergée.

On peut alors définir une “erreur” comme la différence entre un résultat pour un ∆t donné

et cette valeur convergée. Ensuite, on peut représenter cette “erreur” en fonction de ∆t

sur un diagramme log-log. On devrait alors confirmer que la pente sur se diagramme est

bien n, l’ordre de convergence.

Pratiquement tous les schémas numériques sont basés sur des développements limités des

fonctions jusqu’à un certain ordre. Par exemple, si l’erreur d’un schéma, pour un pas

de temps, est O(∆t)2, diminuer le pas de temps d’un facteur 2 résulte un une erreur 4

fois plus petite. Cependant, la solution à un temps t = tfin donné, sera entachée d’une

12 Physique Numérique LV SPC EPFL
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erreur O(∆t)1 : ceci parce que les erreurs faites à chaque pas de temps s’additionnent,

et le nombre de pas de temps est tfin/(∆t). Ainsi, dans cet exemple, diminuer le pas de

temps d’un facteur 2 résulte en une erreur diminuée d’un facteur 2 au temps t = tfin, et

on parle de schéma d’ordre 1. Notons cependant qu’il existe des situations où l’ordre de

convergence observé est supérieur à celui attendu : il peut en effet arriver que les erreurs

d’ordre le plus bas s’annullent.

1.6 Stabilité numérique

Dans les problèmes d’évolution temporelle, on s’intéresse ici à la façon dont l’erreur

numérique commise à un pas de temps t = tn se “propage” aux pas de temps ultérieurs

t = tn+1, t = tn+2, ....

Il arrive malheureusement, pour certains schémas numériques et pour certaines équations,

que la norme de l’erreur numérique soit amplifiée à chaque pas de temps par un facteur

supérieur à 1. L’erreur numérique augmente ainsi exponentiellement au cours du temps.

Le schéma numérique est alors dit instable pour l’équation considérée.

Il ne faut pas confondre les notions de stabilité et de convergence numériques. Un schéma

peut très bien converger et être instable : en effet, on peut avoir une solution numérique

qui tend vers la solution exacte dans la limite ∆t→ 0, à un instant t = tfin donné, mais

dont l’erreur numérique augmente exponentiellement en fonction de tfin.

Réciproquement, un schéma numérique qui est stable peut ne pas converger. L’erreur

numérique, dans ce cas, n’augmente pas exponentiellement au cours du temps, mais ne

tend pas vers zéro lorsque ∆t tend vers zéro.

Notons encore qu’un schéma numérique peut être stable pour une certaine équation

mais instable pour une autre équation. Par exemple, nous verrons que le schéma d’Euler

explicite est stable pour le problème de la désintégration, mais instable pour le problème

de l’oscillateur harmonique.

Nous reviendrons plus en détail sur ces questions dans le chapitre suivant.

Physique Numérique LV SPC EPFL 13



CHAPITRE 1. INTRODUCTION

14 Physique Numérique LV SPC EPFL



Chapitre 2

Evolution Temporelle - Problèmes à
valeurs initiales

Dans ce chapitre, nous allons présenter quelques-unes des méthodes numériques utilisées

pour la résolution de problèmes donnés par un système d’équations différentielles ordi-

naires (EDO) couplées, dont la solution unique requiert la connaissance des conditions

initiales. Nous commencerons par le cas le plus simple d’une EDO du premier ordre pour

une seule fonction inconnue du temps, y(t), avec une condition initiale y0 donnée :

dy

dt
= f(y, t) y(0) = y0 (2.1)

Nous commencerons avec le schéma le plus simple : Euler explicite. Puis nous généralserons

aux systèmes d’équations couplées et introduirons progressivement des schémas numériques

plus sophistiqués.

2.1 Schéma d’Euler explicite

Nous introduisons dans cette section un des schémas numériques les plus simples :

la méthode d’Euler explicite (appelée parfois Euler progressive). Nous partirons d’un

exemple physique simple.

2.1.1 Exemple : force de visosité

Soit un corps, point matériel de masse m, soumis à une force de viscosité F⃗visc = −κv⃗,
avec κ un coefficient constant. En restreignant le mouvement à une dimension d’espace,
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INITIALES

on a donc, de la deuxième loi de Newton, en posant γ = κ/m :

dv

dt
= −γv (2.2)

avec la condition initiale

v(0) = v0 . (2.3)

On trouve facilement la soution exacte de (2.2)-(2.1.1) :

v(t) = v0 e
−γt . (2.4)

La solution numérique s’obtient sur un ensemble discret de valeurs du temps, {tn}nstepsi=0 .

Nous posons, pour simplifier, que ces valeurs discrètes sont équidistantes, avec tn+1−tn =

∆t,∀n.

Notre point de départ est le développement en série de Taylor de la fonction

v(t), Eq.(1.4) avec f = v et h = ∆t :

v(t+∆t) = v(t) +
dv

dt
(t)∆t+

1

2

d2v

dt2
(t)(∆t)2 +O(∆t)3 . (2.5)

Le schéma numérique le plus simple s’obtient en négligeant les termes d’ordre supérieur

à 1 en ∆t :

v(t+∆t) ≈ v(t) +
dv

dt
(t)∆t . (2.6)

Autrement dit, en écrivant cette relation pour les temps discrétisés {tn}, on a

v(tn+1) ≈ v(tn) +
dv

dt
(tn)∆t . (2.7)

En substituant avec l’équation différentielle (2.2), on obtient :

v(tn+1) ≈ v(tn)− γv(tn)∆t . (2.8)

Cette approche pour calculer v(t) s’appelle la méthode d’Euler explicite. Le quali-

ficatif “explicite” vient du fait que l’on obtient une expression pour l’état du système

au temps tn+1 explicitement en fonction de l’état au pas de temps précédent tn, supposé

connu. Nous verrons plus loin, à la section 2.5 une méthode implicite, et à la section

2.11.2 une méthode semi-implicite.

Pour que le schéma fonctionne, il faut l’initialiser avec la valeur v(t0) = v0 donnée. En

détaillant, le schéma d’Euler explicite consiste donc :

1. déclaration des variables nécessaires, tableaux, etc

2. initialisation : lire la valeur de γ, celle de v0, celles du temps de début et de fin de

la simulation et de la taille du pas temporel ∆t

3. calcul de valeurs auxiliaires : nombre de pas temporels nsteps
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4. boucle temporelle : obtenir la valeur de vn+1 = vn − γ ∗ vn ∗∆t
5. n→ n+ 1

6. répéter la boucle temporelle tant que n < nsteps

7. imprimer et faire un graphique du résultat

8. diagnostic de la solution : comparer si possible avec la solution exacte

On peut utiliser le schéma d’Euler explicite pour intégrer d’autres équations différentielles

que celles décrivant le mouvement d’un corps soumis à une force visqueuse. On peut

généraliser à toute équation de la forme

dy

dt
= f(y, t) , (2.9)

avec f une fonction donnée de deux variables. Il suffit, dans le schéma d’Euler explicite,

de substituer le point 4 ci-dessus par

yn+1 = yn + f(yn, tn)∆t (2.10)

et d’écrire la fonction f(y, t).

La solution numérique obtenue avec (2.10) n’est qu’une approximation de la solution

exacte. Un des problèmes auxquels nous serons régulièrement confrontés est de déterminer

à quel point la solution numérique est précise, voire même si elle a un sens physique :

la solution numérique ne va-t-elle pas se “noyer” par une accumulation d’erreurs faites à

chaque pas temporel ?

Un bon moyen est d’effectuer des tests de convergence numérique : choisissant des

pas temporels ∆t de plus en plus petits, on examine quelle est la valeur de la solution

numérique, à un instant t donné, en fonction de ∆t. On devrait pouvoir ensuite effectuer

une extrapolation des résultats dans la limite ∆t→ 0.

Dans les cas où on dispose d’une solution exacte, on peut calculer l’erreur de façon précise,

et vérifier si l’erreur converge bien vers zéro. On note cependant qu’ à cause des erreurs

d’arrondi dues à la représentation avec un nombre fini de bits des nombres réels, on ne

peut pas excéder la précision machine ; et, dans certains cas, ces erreurs peuvent faire

diverger la solution !

Le schéma d’Euler explicite (2.10) est dit d’ordre 1, parce qu’il provient d’un développement

limité d’ordre 1 en ∆t, les termes en (∆t)2 ayant été négligés. A chaque pas de temps, on

fait une erreur proportionnelle à (∆t)2. Pour simuler jusqu’à un temps final donné tfin, on

doit faire un nombre de pas de temps inversément proportionnel à ∆t, Nsteps = tfin/∆t.

L’erreur au temps final est le résultat de l’accumulation des erreurs faite à chaque pas de

temps et est donc proportionnelle à Nsteps(∆t)
2 ∼ (∆t)1.

L’application du schéma d’Euler explicite au problème du corps soumis à une force de vis-

cosité, Eq.(2.2), donne les résultats de la Fig. 2.1. On voit clairement la différence entre
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Figure 2.1 – Vitesse d’un corps soumis à une force de viscosité (γ = 1), calculée avec
le schéma d’Euler explicite et pour différentes valeurs du pas temporel (lignes avec croix).
La solution exacte est la ligne bleue.
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Figure 2.2 – Etude de convergence du temps caractéristique de ralentissement pour le
cas de la Fig. 2.1. A gauche, résultats en fonction de ∆t sur des échelles linéaires. A
droite, valeur absolue de l’erreur en fonction de ∆t sur des échelles logarithmiques. La
ligne mince est de pente 1. La solution numérique converge bien vers la valeur analytique
exacte, et l’ordre de convergence est 1.
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Figure 2.3 – Schéma d’Euler explicite pour un corps soumis à une force de viscosité
pour de grandes valeurs de γ∆t. A gauche : pour γ∆t = 1.0, 1.5, 20.0. A droite pour
γ∆t = 2.5.

la solution exacte et la solution numérique. Fort heureusement, la solution numérique

converge vers la solution exacte lorsque le pas temporel ∆t est choisi de plus en plus

petit. On représente à la Fig. 2.2 deux façons de faire une étude de convergence. Comme

quantité pour laquelle nous vérifions la convergence, nous avons ici choisi le temps ca-

ractéristique de ralentissement, défini comme le temps pour que la vitesse décroisse d’un

facteur 1/e (v0/e est représenté par la ligne horizontale traitillée de la Fig. 2.1). La

première méthode consiste à reporter la quantité voulue en fonction de ∆t (Fig. 2.2,

à gauche), sur des échelles linéaires. Dans la limite ∆t → 0, les résultats numériques

s’alignent bien, ce qui indique une convergence d’ordre 1 (parce que l’axe des x est (∆t)1).

La deuxième méthode, qui s’applique ici car on connâıt la solution exacte, consiste à

représenter la valeur absolue de l’erreur sur le résultat en fonction de ∆t, sur des échelles

logarithmiques (Fig. 2.2, à droite). La pente du graphe est 1, ce qui indique une conver-

gence d’ordre 1. Ainsi, l’ordre de convergence de 1, tel que prédit par la théorie, est bien

vérifié par nos simulations numériques.

Après avoir examiné le comportement du schéma numérique dans la limite des petits ∆t

(convergence), explorons ce qui se passe pour les grandes valeurs de ∆t. Les résultats

sont montrés à la Fig. 2.3. Pour ∆t = 1/γ, le schéma d’Euler explicite donne la solution

nulle après un pas temporel. Pour 1/γ < ∆t < 2/γ, la solution numérique oscille autour

de zéro ; elle tend bien vers zéro pour t → ∞, mais comme elle a v < 0 à certains pas

de temps, on rejette cete solution comme étant non physique : une force de viscosité

ne peut jamais, à elle seule, inverser le sens de la vitesse. Pour ∆t > 2/γ, la solution

numérique oscille avec une amplitude qui crôıt exponentiellement : il y a instabilité

numérique.

En résumé :

• lim γ∆t→ 0, la solution numérique converge vers la solution exacte.

• γ∆t = 1, solution nulle après 1 pas temporel.
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• 1 < γ∆t, solution non physique car présentant des inversions du sens de la vitesse.

• 2 < γ∆t, solution numériquement instable : erreur d’amplitude croissant exponentiel-

lement dans le temps.

Ainsi, il est nécessaire de choisir le pas temporel ∆t plus petit que le temps caractéristique

de l’équation considérée 1/γ : γ∆t << 1 .

2.1.2 Généralisation à un système d’équations couplées

Le schéma d’Euler explicite se généralise aisément aux systèmes d’équations différentielles

ordinaires couplées. Notant l’ensemble de Nf fonctions du temps {y(j)(t)}Nf

j=1 par un

vecteur de fonctions y(t), et l’ensemble de Nf fonctions à Nf +1 variables (fonctions des

y(j) et du temps t) par un vecteur f(y, t), on écrit le système d’équations différentielles

ordinaires couplées comme

dy(j)

dt
= f (j)(y(1), ..., y(Nf), t), j = 1..Nf ⇔ dy

dt
= f(y, t) . (2.11)

Le schéma numérique d’Euler explicite s’écrit

y
(j)
n+1 = y(j)n + f (j)(y(1)n , ..., y(Nf)

n , tn)∆t ⇔ yn+1 = yn + f(yn, tn)∆t . (2.12)

On a distingué, dans les notations, les indices (subscripts), qui indiquent le numéro du

pas temporel, des exposants (superscipts), qui indiquent le numéro de la fonction.

Application : système à trois niveaux

Nous allons voir un des éléments constituant le LASER. Soit un ensemble d’atomes

identiques, dont on considère trois niveaux d’énergie. Depuis le niveau fondamental no.1,

les atomes ont une probabilité de transiter vers un état excité no.2, par exemple parce

qu’ils sont illuminés par des photons. Voir la FIG. 2.4.

Le niveau excité no.2 se désintègre spontanément en un niveau intermédiaire no.3. Celui-

ci de désintègre dans le niveau fondamental. On note la probabilité par unité de temps

de chacune de ces transitions par γ1, γ2, γ3. La population d’atomes dans chacun de ces

niveaux, notée N1, N2, N3, est donc décrite par :

dN1

dt
= γ3N3 − γ1N1 (2.13)

dN2

dt
= γ1N1 − γ2N2 (2.14)

dN3

dt
= γ2N2 − γ3N3 (2.15)
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Figure 2.4 – Laser à trois niveaux. Schéma de principe. Absorption (“pompe”) de
photons d’énergie ℏω1 = E2 − E1, avec probabilité γ1 ; émission spontanée de photons
d’énergie ℏω2 = E2 − E3, avec probabilité γ2 ; émission induite de photons d’énergie
ℏω3 = E3 −E1 avec probabilité γ3. Inversion de population : il y a plus d’atomes dans le
niveau 3 que dans le niveau 1 si la “pompe” est d’intensité suffisante, si le niveau E2 est
instable (donc temps de vie court), et si le niveau E3 est métastable.

Suggestion d’exercice Résoudre ce problème. La figure 2.5 montre un résultat pour

γ1 = 1, γ2 = 10/3, γ3 = 1/4, avec ∆t = 0.05, à partir d’une condition initiale où tous les

atomes sont dans l’état fondamental. Le niveau 1 se dépeuple au profit du no.2, qui atteint

un peuplement transitoire maximal, puis se dépeuple au profit du no.3. On analysera le

comportement asymptotique (t → ∞) et on comparera avec le calcul analytique. On

vérifiera également que le nombre total d’atomes est conservé.

Un résultat physique intéressant est qu’on observe une inversion de population : pour des

temps longs, le nombre d’atomes dans l’état excité no.3 est supérieur à celui dans l’état

fondamental (no.1). Un tel processus joue un rôle important dans les lasers.

2.2 Désintégration. Modélisation statistique (Monte

Carlo).

On observe un processus de désintégration dans de nombreux systèmes physiques. Par

exemple, de nombreux noyaux atomiques sont instables. Ou encore, les niveaux d’énergie

supérieurs des atomes sont généralement instables, à cause du couplage avec le champ

électromagnétique : un atome, dans un niveau d’énergie dit excité, se relaxe spontanément
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Figure 2.5 – Populations dans 3 niveaux en fonction du temps, calculées avec le schéma
d’Euler explicite pour ∆t = 0.05.

en un niveau d’énergie inférieur, tout en émettant un photon dont l’énergie est égale à la

différence des niveaux d’énergie (initial - final).

Le processus semble aléatoire, dans le sens qu’il est impossible, en ne considérant qu’un

noyau atomique, de savoir exactement quand il va se désintégrer. On ne peut prédire que

la probabilité qu’un noyau donné se désintègre pendant un intervalle de temps donné.

Cette probabilité est constante au cours du temps.

Donc, en considérant un grand nombre de noyaux instables (ou d’atomes excités), le

nombre de désintégrations par unité de temps est proportionnel au nombre de noyaux

instables (ou atomes excités) non encore désintégrés. La constante de proportionnalité

est le taux de désintégration γ. On exprime ceci mathématiquement (en faisant la limite

statistique d’un très grand nombre) par :

dN

dt
= −γN (2.16)

avec la condition initiale

N(0) = N0 (2.17)

donnée. On définit un “temps de vie”, ou “constante de temps” τ = 1/γ. C’est la

mécanique quantique, et la physique atomique ou nucléaire, qui permet, en principe,

de calculer la valeur de γ pour un niveau d’énergie atomique ou un noyau donné. Nous

ne ferons pas ce calcul ici, mais supposerons γ donné. Le but est de résoudre l’équation

ci-dessus donnant l’évolution temporelle du nombre d’atomes ou de noyaux. On trouve

facilement la solution de (2.16)-(2.17) :

N(t) = N0e
−γt . (2.18)
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On a donc une équation de même nature que celle pour le corps soumis à une force de

viscosité, et on peut donc résoudre le problème avec le schéma d’Euler explicite, comme

à la section précédente.

On présente ci-dessous une autre approche. Le processus de désintégration étant in-

trinsèquement aléatoire, on est tenté d’essayer de reproduire cette caractéristique numéri-

quement. Ci-dessus, on a construit, à partir d’une nature discrète et aléatoire (les désinté-

grations ont lieu de façon aléatoire, soudaine et spontanée), un modèle continu et détermi-

niste (voir l’Eq.2.16) : connaissant le nombre de particules à un instant donné, Eq.2.17,

on connâıt exactement, pour tous les temps ultérieurs, le nombre restant de particules :

la solution du problème mathématique existe et est unique. Or, dans la réalité, deux

échantillons identiques (par example de matière radioactive) ne vont jamais donner exac-

tement le même N(t). Il y a une certaine dispersion statistique des résultats. C’est ce que

nous aimerions obtenir par un calcul numérique.

On notera au passage que la résolution numérique de ce modèle continu que nous avons

faite à la Section 2.1 faisait appel à des équations discrètes (et déterministes). Cependant,

la nature discrète de ce type de méthodes numériques n’a rien à voir avec la nature discrète

du phénomène physique de la désintégration.

L’idée est de simuler la réalité. En outre, cela nous permettra de comprendre comment

le modèle continu et déterministe peut être obtenu comme une limite du modèle in-

trinsèquement discret et aléatoire. En d’autres termes, on aura obtenu une autre méthode

pour résoudre l’Eq.(2.16). Dans le processus de désintégration, on ne peut connâıtre que

la probabilité par unité de temps qu’une particule se désintègre. Cette probabilité est :

— constante au cours du temps,

— identique pour chaque particule du même type,

— indépendante de la désintégration ou non des autres particules.

On construit le modèle numérique directement à partir de là.

1. Initialisation : nombre de particules en t = 0 (N0), probabilité par unité de

temps (γ), choix d’un pas temporel (∆t), probabilité par intervalle temporel (P ).

2. Boucle temporelle

3. Boucle sur les particules non encore désintégrées

4. Pour chaque particule non encore désintégrée et pour chaque intervalle de temps,

on choisit un nombre aléatoire entre 0 et 1 selon une distribution uniforme.

5. Si ce nombre est inférieur à P , on diminue d’une unité le nombre de particules.

6. Fin de la boucle sur les particules

7. Fin de la boucle temporelle

8. Impression des résultats et comparaison avec le modèle continu

Ce type de méthode nécessite un générateur de nombres aléatoires. En fait, comme les

algorithmes sont de nature intrinsèquement déterministe, on parle en fait de générateur

pseudo-aléatoire. Il n’est en fait pas si facile qu’il n’y parâıt de prime abord de construire
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Figure 2.6 – Désintégration d’une population de particules instables, en fonction du
temps, calculé avec le modèle numérique probabiliste présenté à la Section 2.2. N0 = 10
(haut), N0 = 100 (bas), ∆t = 0.1, γ = 1. Pour chaque N0, quatre éxécutions du code
sont représentées.
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un ”bon” générateur pseudo-aléatoire. Nous laissons ce sujet en dehors du champ de ce

cours, et nous bornerons à utiliser de tels générateurs issus de librairies.

Les résultats de ce modèle sont présentés à la FIG. 2.6, pour γ = 1 et différentes va-

leurs de N0. Les résultats de chaque simulation sont différents : ceci est dû au tirage du

nombre aléatoire dans l’algorithme. Ceci reproduit bien l’expérience : 4 échantillons de

10 particules instables ne se désintègrent jamais exactement de la même façon.

Pour une taille de l’échantillon initial de 10 (FIG. 2.6, haut), on note en particulier une

grande disparité des résultats pour N au temps de vie caractéristique τ = 1/γ (=1 dans

ce cas) : entre 2 et 6 particules. La moyenne de ces prédictions est 4, ce qui s’approche

du résultat de la solution exacte du modèle continu.

Ceci suggère la façon dont les prédictions du modèle discret aléatoire probabiliste vont

tendre vers le résultat du modèle continu déterministe. Augmentant la taille de l’échantillon

initial à N0 = 100, on obtient les résultats de la FIG. 2.6 (bas). On constate que les écarts

entre les 4 échantillons pour le nombre de particules relatif, N(t)/N0, sont nettement plus

faibles que pour les simulations avec une taille de N0 = 10 de la FIG. 2.6.

On peut aussi considérer que les simulations avec un N0 donné correspondent à un

échantillonage d’un système physique réel contenant un grand nombre de particules.

Plus N0 est élevé, meilleur est l’échantillonage, et plus petite est la dispersion statistique

des résultats. On peut montrer que cette dispersion statistique σ tend vers zéro comme

σ ∼ 1√
N
. (2.19)

Ces simulations sont aussi discrétisées dans le temps, et on peut vérifier (suggestion

d’exercice) que les résultats des simulations convergent vers la solution exacte du modèle

continu lorsque N0 → ∞ et ∆t→ 0. Il faut effectuer une double convergence.

Ainsi, on peut considérer cet algorithme comme une façon de résoudre numériquement

l’Eq.(2.16). Ce type de méthode, faisant appel à un échantillonage statistique, est souvent

appelé Monte Carlo. On y aura recours à la Section 4.1.4 et au Chapitre 5.

2.3 Applications du schéma d’Euler explicite

Le schéma numérique très simple (Euler explicite) présenté à la Section 2.1.2 permet déjà

de résoudre de nombreux problèmes physiques que l’on ne peut pas résoudre analytique-

ment, ou du moins très difficilement.

Un exemple typique est l’étude de la dynamique Newtonienne (mécanique classique),
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où de nombreux problèmes commencent par la phrase “on négligera l’effet des forces de

frottement”. Ou alors, il s’agit de problèmes que l’ on ne peut résoudre que dans certaines

limites (du style chute d’un corps dans la limite t→ ∞, en régime stationnaire, etc).

Mais la dynamique Newtonienne est bien plus riche que ne le laisseraient supposer les

quelques problèmes que l’on sait résoudre analytiquement. De plus, toute théorie devant

être confrontée à l’expérience, on aimerait disposer d’un outil permettant cette confron-

tation dans des situations réalistes.

On observera toujours un certain écart entre valeurs théoriques et mesures expérimentales.

Il est important de déterminer quelle est la part de cet écart qui est due aux imprécisions

de mesure de la part qui est due aux effets que l’on a négligés dans la résolution des

équations... C’est une étape indispensable pour la validation d’une théorie ou d’un modèle.

2.3.1 Véhicule avec force de trâınée aérodynamaique

Une voiture de masse m a un moteur de puissance maximale Pmax et un couple maximal

donnant une force de poussée maximale Fmax. [Dans la réalité cette puissance et cette

force sont fonction du nombre de tours/minute du moteur et du rapport de transmission.

Ici, pour simplifier, on supposera Fmax et Pmax constantes.] On aimerait calculer la vitesse

au cours du temps pour un départ arrêté, sur une route horizontale. On tiendra compte

de la force de trâınée aérodynamique, avec un coefficient Cx (que l’on suposera constant,

pour simplifier)

F⃗t = −1

2
ρSCxv

2e⃗v (2.20)

avec S une surface effective de la voiture, ρ la densité de l’air, et e⃗v = v⃗/|v⃗|.

L’équation du mouvement pour v(t) est donnée par le théorème de l’énergie cinétique

dEcin

dt
= Pmax − Ftv (2.21)

⇒ mv
dv

dt
= Pmax − Ftv (2.22)

⇒ dv

dt
=
Pmax

mv
− Ft

m
. (2.23)

Sans force de trâınée, et sans tenir compte de la limite de la force de poussée Fmax, la

solution exacte donne

v(t) =
√
v20 + 2Pmaxt/m , (2.24)

où v0 est la vitesse en t = 0. Cette solution, pour un départ arrêté (v0 = 0), donne une

accélération infinie en t = 0. Ce n’est pas physique. Il faut tenir compte de la limite de
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Figure 2.7 – Véhicule en accélération départ arrêté, en tenant compte de la force
de trâınée aérodynamique. Le cas sans force de trâınée est en traitillés. Paramètres :
m = 1200kg, Pmax = 60kW, Fmax = 5000N, Cx = 0.4, S = 2m2, schéma d’Euler explicite
avec ∆t = 0.015625s.

la force de poussée Fmax. L’équation à résoudre est finalement :

dv

dt
=

1

m

(
min{Pmax

v
, Fmax} − Ft

)
. (2.25)

On applique le schéma d’Euler explicite pour résoudre ce problème.

Un exemple est donné à la FIG. 2.7, avec pour paramètres m = 1200kg, Pmax = 60kW,

Fmax = 5000N, Cx = 0.4. Pour comparaison, le cas sans effet de trâınée aérodynamique

est représenté en traitillés.

Suggestion d’exercice. Calculer le temps pour une accélération de 0 à 100 km/h et

tester la convergence numérique. On peut obtenir aussi la limite asymptotique limt→∞ v(t)

analytiquement et la comparer aux résultats numériques. On calculera le même problème,

mais pour une route en pente. On peut aussi regarder ce qui se passe lorsque le conducteur

coupe le moteur à partir d’une vitesse initiale v0 ̸= 0, quelle est la vitesse limite en fonction

de la pente, etc.

2.3.2 Rentrée dans l’atmosphère

La chute des corps au voisinage de la surface terrestre est fortement influencée par la

présence de l’atmosphère. On verra dans cet exemple à quel point l’atmosphère joue un
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INITIALES

rôle de “bouclier protecteur” contre les objets célestes (météorites, etc) attirés par la

gravitation terrestre.

On considère une météorite de masse m, densité ρM = 5000kg/m3, arrivant “ de l’infini”

à proximité de la terre. Elle a une vitesse v0 de 11 km/s verticale lorsque son altitude

est z0 = 200km. On aimerait connâıtre quelle sera la vitesse d’impact au sol. On tiendra

compte de l’atmosphère, avec une densité ρ(x) = ρ0 e
−x/λ, ρ0 = 1.3kg/m3 et une épaisseur

caractéristique λ = 20km. On supposera la météorite de forme sphérique et un Cx = 0.3

constant donné.

[N.B. : d’où vient cette dépendance de la densité exponentiellement décroissante avec

l’altitude ? La valeur de λ = 20km est/elle réaliste pour l’atmosphère terrestre ?].

Suggestion d’exercice. On appliquera le schéma d’Euler explicite à ce problème. On

remarque que les équations de base sont semblables à celles de la voiture, mais avec la

gravitation en plus et la puissance du moteur en moins. Un résultat est montré à la FIG.

2.8.

Suggestion d’exercice. On étudiera la convergence numérique des résultats avec ∆t,

et on fera une étude de la vitesse d’impact en fonction de la masse de la météorite. On

calculera la puissance de la force de trâınée en fonction du temps.

Dans la réalité, la puissance de cette force de trâınée est convertie en chaleur. Une partie

de cette chaleur chauffe l’atmosphère, à des températures telles que l’air devient partiel-

lement ionisé (plasma) [Dans un tel plasma les ondes RF utilisées pour la communication

avec les astronautes ne se propagent plus : c’est la raison du “blackout” observé lors des

rentrées dans l’atmosphère des astronautes]. Une autre partie de cette chaleur chauffe le

météorite [ou l’engin spatial... cause de la catastrophe d’Atlantis] et le sublime : c’est une

bonne nouvelle pour nous s’il s’agit d’une météorite, mais une difficulté pour le design

des vaisseaux spatiaux [bouclier thermique, tuiles céramiques, etc]. Une simulation plus

réaliste tiendrait compte de cet effet d’ablation, la masse de la météorite se réduisant

lors de sa chute, avec émission de gaz très chauds, qui forment la trâınée lumineuse des

“étoiles filantes”.

On peut aussi étudier ce qui se passe avec un projectile lancé depuis le sol, avec une vitesse

initiale vers le haut ; on comparera avec ce qui se passerait s’il n’y avait pas d’atmosphère.

Il est aisé de généraliser ces problèmes au cas où la vitesse n’est pas purement verticale
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Figure 2.8 – Impact d’une météorite de densité 5 × 103kg/m3, tenant compte de la
force de frottement de l’air de l’atmosphère terrestre. Méthode d’Euler explicite. Position
(haut) et vitesse (milieu) en fonction du temps, pour une masse m = 1000kg. Vitesse en
fonction de l’altitude (bas), pour 3 météorites de masses m = 10, 100 et 1000kg.
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(vz), mais a aussi des composantes horizontales vx, vy. On définit le “vecteur” de fonctions

y =


x(t)
y(t)
z(t)
vx(t)
vy(t)
vz(t)

 . (2.26)

On a

dy

dt
=


vx
vy
vz

− 1
2m
ρSCxvvx

− 1
2m
ρSCxvvy

− 1
2m
ρSCxvvz − g

 (2.27)

avec v = |v⃗|.

2.3.3 Balistique avec rotation : portance, effet Magnus

Il s’agit de tenir compte d’une force de portance aérodynamique qui s’exerce sur les corps

en mouvement combiné de translation et de rotation dans les fluides. Un corps en rotation

dans un fluide va entrâıner l’air dans son voisinage de telle sorte que, combinées à la vitesse

de translation, les vitesses résultantes du fluide soient différentes d’un côté et de l’autre du

corps. L’application de l’équation de Bernoulli donne une force résultante perpendiculaire

au vecteur vitesse de rotation et perpendiculaire à la vitesse de translation. C’est l’effet

Magnus. Voir Cours de Physique III. On obtient une résultante

F⃗p = ρvtLCe⃗ω × e⃗v (2.28)

avec ρ la densité du fluide, v la vitesse de translation, L la dimension transversale du

corps, e⃗ω la direction de l’axe de rotation du corps et C =
∮
Γ
v⃗ · d⃗l la circulation de

la vitesse autour du corps. La circulation de la vitesse est proportionnelle à la vitesse

angulaire de rotation ω, au carré des dimensions linéaires du corps et à la vitesse de

translation v. On a donc une force |F⃗p| ∝ ρv2S, avec S ∼ l2, que l’on écrit habituellement

sous la forme

Fp =
1

2
ρSCyv

2 (2.29)

C’est une force de portance, avec Cy le coefficient de portance et S une surface de

référence du corps considéré. Dans le cas du corps en rotation, le Cy est proportionnel

à la vitesse de rotation. Le calcul détaillé du Cy n’est pas possible analytiquement, sauf

pour des cas très simples, et moyennant un certain nombre d’hypothèses simplificatrices :

par exemple un écoulement fluide stationnaire, incompressible, 2D, autour d’un cylindre

de rayon R. On trouve Cy ∼ 2πωR/v (Evt. en exercice). Pour un ballon sphérique, il est
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extrêmement difficile de le calculer analytiquement. On supposera dans la suite la force

de portance de l’effet Magnus donnée par

F⃗p = µR3ρω⃗ × v⃗ (2.30)

avec un coefficient (sans dimensions) µ donné.

Cette force de portance est responsable des effets de courbure de la trajectoire de la

balle dans de nombreux sports (football, ping-pong, baseball, etc). On se propose ici de

calculer numériquement de telles trajectoires.
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Figure 2.9 – Tir d’un coup franc, avec rotation de la balle, incluant la force de trâınée
et la force de portance due à l’effet Magnus. Vue en 3D (à gauche), et vue d’en haut (à
droite). Méthode d’Euler explicite, 4 exécutions avec ∆t = 0.1, 0.05, 0.025, 0.0125s. Pour
comparaison, on a représenté en rouge traitillés la trajectoire sans rotation de la balle.

Pour simplifier, on supposera ω⃗ = constant, négligeant ainsi le ralentissement de la vitesse

de rotation par l’effet des forces de viscosité. Le vecteur ω⃗ fait un angle γ avec la verticale,

dans le plan (y, z). On a donc, dans les notations de l’Eq.(2.27),

dy

dt
=


vx
vy
vz

− 1
2m
ρSCxvvx +

1
m
µR3ρω(sin γ vz − cos γ vy)

− 1
2m
ρSCxvvy +

1
m
µR3ρω cos γ vx

− 1
2m
ρSCxvvz − g − 1

m
µR3ρω sin γ vx

 . (2.31)
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Ceci est implémenté en utilisant l’algorithme d’Euler explicite. Un résultat est montré à

la FIG. 2.9. On tire un coup franc au football, avec |v⃗0| = 20m/s, v⃗0 faisant un angle

α = 30o avec l’horizontale, et le ballon faisant 2 tours/s autour de l’axe vertical (γ = 0).

Les paramètres sont : m = 0.42kg, Cx = 0.4, µ = 6.28, ρ = 1.3kg/m3, R = 0.11m. Le tir

est initialement dans le plan (x, z), mais on voit clairement la déviation du ballon selon

y, qui atteint environ 7m à son point de chute.

Suggestion d’exercice. Considérer le tir d’une balle de tennis, avec vecteur vitesse de

rotation dans le plan horizontal. Etudier les effets (lift, slice) sur les trajectoires.

2.4 Instabilité numérique - schéma d’Euler explicite

- mouvements oscillatoires

Dans cette section, nous allons résoudre des problèmes oscillatoires. Ils sont donnés par

une équation différentielle du 2e ordre du type

d2x

dt2
=
F (x, v, t)

m
. (2.32)

2.4.1 Desciption de l’instabilité numérique - oscillateur harmo-
nique

Dans l’exemple le plus simple du ressort linéaire, on a F (x, v, t) = F (x) = −kx, où k est

une constante. On obtient alors la solution générale de cette équation :

x(t) = A cos(ωt+ φ) (2.33)

avec ω =
√
k/m. A et φ sont des constantes réelles, déterminées par les conditions

initiales (position et vitesse en t = 0).

Pour résoudre numériquement cette équation, (et ultérieurement avec des forces F (x, v, t)

plus compliquées que le ressort linéaire), on commence par la réécrire en définissant un

vecteur de fonctions y(t) dont les composantes sont

y(1)(t) = x(t), y(2)(t) =
dx

dt
(t) . (2.34)

Ceci permet d’écrire l’équation du 2e ordre Eq.(2.32) comme un système d’équations

différentielles couplées du 1er ordre

d

dt
y = f(y) (2.35)
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avec

f (1) = y(2) (2.36)

f (2) = F (y(1),y(2), t)/m (2.37)

Ceci est donc équivalent à l’Eq.(2.11), écrit ici sous une forme vectorielle. Avec v(t) =

dx(t)/dt, l’Eq. (2.32) est équivalente au système

d

dt

(
x
v

)
=

(
v

F (x, v, t)/m

)
. (2.38)

Pour le problème du ressort linéaire, cela revient à

d

dt

(
x
v

)
=

(
v

−(k/m)x

)
. (2.39)

En utilisant le schéma d’Euler explicite, Eq.(2.12), on obtient le résultat de la FIG.

2.10. Il y a manifestement un problème. La solution est bien proche de la solution exacte

pour les temps courts, mais pour les temps longs elle s’en écarte avec une amplitude des

oscillations qui crôıt exponentiellement.

On peut donc imaginer qu’en choisissant un ∆t plus petit on va converger vers le bon

résultat. Mais le problème subsiste, il est simplement repoussé à des temps ultérieurs :

l’amplitude des oscillations finit toujours par crôıtre exponentiellement. Aussi petit soit

∆t ̸= 0, il existe donc un temps au delà duquel le calcul numérique s’écarte complètement

de la solution physique correcte.

C’est un problème d’instabilité numérique.

2.4.2 Analyse de stabilité du schéma d’Euler explicite : propa-
gation de l’erreur

Soit y(t) la solution exacte de l’équation différentielle (2.35). Soit yn la valeur de y au

temps tn produite par le schéma numérique. Soit en l’erreur, telle que yn = y(tn) + en.

Le but du calcul ci-dessous est de déterminer l’erreur au temps n+1, en d’autres termes

de déterminer comment l’erreur va se “propager”.

Le schéma d’Euler explicite est

yn+1 = yn + f(yn)∆t ⇒ (2.40)

yn+1 = y(tn) + en + f(y(tn) + en)∆t ⇒ (2.41)

yn+1 ≈ y(tn) + en +

[
f(y(tn)) +

∂f

∂y
en

]
∆t . (2.42)
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INITIALES

0 5 10 15 20 25 30
−20

−15

−10

−5

0

5

10

15

t

x

Euler oscillateur

0.2 

0.1

0.05

0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

10
3

t

E
ne

rg
ie

 m
ec

an
iq

ue

Euler oscillateur

0.2 

0.1

0.05

Figure 2.10 – Oscillateur harmonique avec la méthode d’Euler explicite, k = 1, m = 1.
Trois exécutions avec ∆t = 0.2, 0.1, 0.05. Le schéma est instable, avec une croissance
exponentielle de l’amplitude des oscillations (haut) et de l’énergie mécanique (bas) (qui
devrait être conservée). Le taux de croissance est proportionnel à ∆t.
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Avec yn+1 = y(tn+1) + en+1 et y(tn+1) ≈ y(tn) + (dy/dt)∆t = y(tn) + f(y(tn))∆t, on a

en+1 =

(
I+∆t

∂f

∂y

)
en , (2.43)

où I est la matrice identité et (∂f/∂y)ij = ∂fi/∂yj. En définissant la matrice de gain G

telle que

en+1 = Gen (2.44)

on a

G =

(
I+∆t

∂f

∂y

)
. (2.45)

La norme de l’erreur va s’amplifier, et donc le schéma numérique sera instable s’il existe

une valeur propre de λi de G avec

|λi| > 1 . (2.46)

Réciproquement, le schéma sera stable si les valeurs propres λi de G sont telles que

|λi| ≤ 1 , ∀i . (2.47)

Appliquons cette analyse de stabilité au schéma d’Euler explicite dans le cas de l’oscilla-

teur harmonique. Avec f1 = v et f2 = −(k/m)x, on a

G =

(
1 ∆t

−(k/m)∆t 1

)
. (2.48)

On a l’équation caractéristique pour les valeurs propres λi de G :

(1− λ)2 + (k/m)(∆t)2 = 0 (2.49)

dont les solutions sont

λ1,2 = 1± i
√
k/m∆t . (2.50)

On a

|λ1,2| =
√

1 + (k/m)(∆t)2 ⇒ |λ1,2| > 1 , ∀∆t , (2.51)

ce qui veut dire que le schéma d’Euler explicite est toujours instable pour le

problème de l’oscillateur harmonique.

2.4.3 Analyse de stabilité du schéma d’Euler explicite : solution
analytique des équations discrétisées

Dans cette section, on donne une autre analyse du phénomène d’instabilité numérique.

Pour des équations linéaires, on peut écrire le systèmes d’équations différentielles de la

forme
d

dt
y = My (2.52)

Physique Numérique LV SPC EPFL 35



CHAPITRE 2. EVOLUTION TEMPORELLE - PROBLÈMES À VALEURS
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où M est une matrice nf × nf (nf est le nombre de fonctions dans le vecteur y). Pour

illustration, dans le cas de l’oscillateur harmonique, on a

d

dt

(
x
v

)
=

(
0 1

−k/m 0

)(
x
v

)
. (2.53)

Le schéma d’Euler explicite s’écrit alors

yn+1 = (I+M∆t)yn . (2.54)

Cherchons une solution à ces équations discrétisées du type y(t) = Aeiωt, avec A ∈ Cnf

et ω ∈ C. 1 [On rappelle que si ω est réel, cela correspond à une oscillation non amortie ; si

ω est purement imaginaire, cela correspond à une solution exponentiellement décroissante

ou croissante, selon le signe de ℑ(ω) ; si ω a une partie réelle et une partie imaginaire,

cela correspond à une solution oscillante dont l’amplitude crôıt ou décrôıt selon le signe

de ℑ(ω)]. Introduisant cet Ansatz dans le schéma d’Euler explicite ci-dessus, on a

Aeiωteiω∆t = (I+M∆t)Aeiωt (2.55)

En supposant

ω∆t << 1 , (2.56)

on fait un développement limité à l’ordre 2 en ω∆t :

eiω∆t = 1 + iω∆t− 1

2
ω2∆t2 +O((ω∆t)3) . (2.57)

Insérant dans (2.55), on obtient le système d’équations linéaire homogène[
(iω − 1

2
ω2∆t)I−M

]
A = 0 (2.58)

qui a une solution non triviale si et seulement si son déterminant est nul. Pour le problème

de l’oscillateur harmonique, on a(
iω − 1

2
ω2∆t −1

k/m iω − 1
2
ω2∆t

)
A = 0 . (2.59)

A l’ordre 1 en ω∆t, on obtient −ω2(1 + iω∆t) + k/m = 0 ⇒ ω2 = (k/m)(1− iω∆t) ⇒

ω = −i k
m

∆t

2
±
√
k

m
. (2.60)

Ainsi (
x
v

)
= Ae

i
(√

k/m
)
t
e(k/m)(∆t/2) t . (2.61)

On retrouve bien le résultat numérique de la FIG. 2.10 : une oscillation sinusöıdale de

fréquence
√
k/m, avec une amplitude croissant exponentiellement dans le temps, avec un

taux de croissance γ = (k/m)(∆t/2). Cette croissance exponentielle, non-physique, est

la signature d’une instabilité numérique.

1. La solution “physique” est la partie réele de cete fonction complexe.
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2.4.4 Vérification de la conservation de l’énergie, schéma d’Eu-
ler explicite

Dans le cas de l’oscillateur harmonique, on sait que l’énergie mécanique est conservée :

Emec(t) =
1

2
mv2(t) +

1

2
kx2 = const. (2.62)

Nous allons vérifier cette propriété pour le schéma d’Euler explicite. La méthode est

simple : il s’agit d’écrire l’énergie mécanique au temps tn+1 et au temps tn, puis comparer

les deux expressions. On a :

Emec,n+1 =
1

2
mv2n+1 +

1

2
kx2n+1 .

On substitue le schéma d’Euler pour vn+1 et xn+1 :

Emec,n+1 =
1

2
m

(
vn −

k

m
xn∆t

)2

+
1

2
k (xn + vn∆t)

2

Emec,n+1 =
1

2
mv2n +

1

2
kx2n − vnkxn∆t+ vnkxn∆t+

1

2

k2

m
x2n∆t

2 +
1

2
kv2n∆t

2 .

On identifie Emec,n et on obtient :

Emec,n+1 = Emec,n +
k

m
Emec,n∆t

2 . (2.63)

Comme k > 0, m > 0 et Emec > 0 (sauf pour le cas trivial x(t) = 0, v(t) = 0), on a que

Emec,n+1 > Emec,n ,∀n. (2.64)

Ainsi, l’énergie mécanique, au lieu de rester constante, crôıt à chaque pas de

temps. On peut même écrire l’Eq.(2.63), soustrayant Emec,n puis en divisant par ∆t :

Emec,n+1 − Emec,n

∆t
=

(
k

m
∆t

)
Emec,n

Cette équation n’est autre que l’approximation par différences finies de l’équation différentielle

dEmec

dt
=

(
k

m
∆t

)
Emec

Dont la solution est

Emec(t) = Emec(0) exp(γ̃t) , (2.65)

L’énergie mécanique du schéma d’Euler explicite, au lieu de rester constante,

crôıt exponentiellement dans le temps, avec un taux de croissance γ̃ = (k/m)∆t.

On note que ce taux de croissance est le double de celui trouvé pour la solution analytique

du schéma d’Euler, voir Eq.(2.61).

Bien que cette instabilité numérique ait un taux de croissance qui tende vers zéro avec

∆t, on aimerait avoir un algorithme qui évite complètement l’instabilité. C’est le but des

trois sections suivantes.
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2.5 Schéma d’Euler implicite

Le schéma d’Euler explicite est basé sur l’approximation de la première dérivée des fonc-

tions inconnues y au temps tn, c’est-à-dire au début de l’intervalle temporel [tn, tn+1] :

yn+1 − yn

∆t
= f(yn, tn) +O(∆t) (2.66)

On en avait obtenu le schéma d’Euler explicite, que l’on réécrit ici :

yn+1 = yn + f(yn, tn)∆t , (2.67)

qui est directement utilisable pour implémenter l’algorithme.

L’idée de la méthode implicite se base sur l’approximation de la première dérivée de la

fonction y au temps tn+1, c’est-à-dire à la fin de l’intervalle temporel [tn, tn+1] :

yn+1 − yn

∆t
= f(yn+1, tn+1) +O(∆t) (2.68)

On obtient, en multipliant par ∆t et négligeant les termes d’ordre 2 en ∆t, une équation

pour yn+1 :

yn+1 = yn + f(yn+1, tn+1)∆t . (2.69)

La résolultion de cette équation n’est pas toujours triviale, selon la complexité des fonc-

tions f . Il y a plusieurs méthodes possibles, dont des méthodes itératives. Nous présentons

ici la plus simple de celles-ci : la méthode du point fixe. L’idée est de choisir comme

première estimation (k = 0, k sera un compteur des itérations) :

y
(k=1)
n+1 = yn (2.70)

Ensuite, on effecture une boucle itérative, k → k + 1 :

y
(k+1)
n+1 = yn + f(y

(k)
n+1, tn+1)∆t (2.71)

Pour arrêter la boucle itérative, on mesure l’erreur que l’on fait sur la résolution de

l’Eq.(2.69) :

d = ||y(k+1)
n+1 − yn − f(y

(k+1)
n+1 , tn+1)∆t|| , (2.72)

et on indique à l’algorithme d’arrêter les itérations lorsque cette erreur d est plus petite

qu’une tolérance spécifiée ϵ. Cette méthode fonctionne bien dans le cas de l’oscillateur

harmonique.

Ainsi, l’algorithme d’Euler implicite consiste en deux itérations imbriquées :

— Une boucle itérative sur le temps (tn → tn+1),

— ... et, à chaque pas de temps, une itération du point fixe (k → k + 1).

On suggère de l’implémenter et de le tester en exercice.

En résumé :
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1. Le schéma d’Euler implicite converge : à un intant donné t, la solution numérique

tend vers la solution exacte pour ∆t→ 0.

2. La convergence est d’ordre un en ∆t : l’erreur (i.e. la différence entre solution

numérique et solution convergée) est proportionnelle à (∆t)1.

3. Le schéma d’Euler implicite est inconditionnellement stable pour le problème de

l’oscillateur harmonique. Cela signifie que, quelle que soit la valeur de ∆t, l’erreur

numérique ne crôıt pas exponentiellement dans le temps. En effet, en appliquant

l’analyse de stabilité de propagation de l’erreur, comme à la section 2.4.2, on

obtient cette fois :

en+1 =

(
I−∆t

∂f

∂y

)−1

en , (2.73)

et pour l’oscillateur harmonique la matrice de gain est :

G =

(
1 −∆t

(k/m)∆t 1

)−1

=
1(

1 + k
m
∆t2
) ( 1 ∆t

−(k/m)∆t 1

)
(2.74)

Les valeurs propres de G sont

λ1,2 =
1(

1 + k
m
∆t2
) (1± i

√
k

m
∆t

)
(2.75)

et leur norme est

|λ1,2| =
1√

1 + k
m
∆t2

< 1, ∀∆t . (2.76)

4. La solution analytique du schéma d’Euler implicite pour le problème de l’os-

cillateur harmonique est une sinusöıdale avec une amplitude exponentiellement

décroissante dans le temps. Cet amortissement est d’origine numérique, le

taux de décroissance est γ = −(k/m)(∆t/2). En appliquant la même démarche et

les mêmes définitions qu’à la section 2.4.3, le schéma d’Euler implicite s’écrit :

(I−M∆t)yn+1 = yn . (2.77)

Avec l’Ansatz

yn = Aeiωtn (2.78)

et le développement linité de exp(iω∆t) au 2e ordre, on obtient :[(
1 + iω∆t− 1

2
(ω∆t)2

)
(I−∆tM)− I

]
yn = 0 . (2.79)

Ce système algébrique d’équations linéaire homogène pour yn n’admet de solution

non triviale que si son déterminant est nul, ce qui donne :(
ω2 − k

m

)
+ i

(
2
k

m
− ω2

)
ω∆t = 0 . (2.80)
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En rśolvant perrturbativement ordre par ordre en (ω∆t), on a, à l’ordre 0 :

ω(0) = ±
√
k

m
(2.81)

et à l’ordre 1 :

ω(1) = i
k

m

∆t

2
(2.82)

Donc

ω = +i
k

m

∆t

2
±
√
k

m
. (2.83)

Ainsi (
x
v

)
= Ae

i
(√

k/m
)
t
e−(k/m)(∆t/2) t . (2.84)

C’est une oscillation sinusöıdale de fréquence
√
k/m, d’amplitude décroissant ex-

ponentiellement avec le taux γ = −(k/m)∆t/2. Cela décrit bien un mouvement

amorti. Cependant, cet amortissement est d’origine purement numérique. Compa-

rez avec le cas du schéma d’Euler explicite, Eq.(2.61).

5. Le schéma d’Euler implicite ne conserve pas l’énergie mécanique. En fait, quelle

que soit la valeur de ∆t, il dissipe l’énergie mécanique. Cette dissipation, d’origine

numérique et non physique, implique que le mouvement tend toujours asymptoti-

quement (limt→∞) vers la position d’équilibre. En faisant la même démarche qu’à

la section 2.4.4, on obtient :

Emec,n+1 = Emec,n −
k

m
Emec,n∆t

2 . (2.85)

Comme k > 0, m > 0 et Emec > 0 (sauf pour le cas trivial x(t) = 0, v(t) = 0), on

a que

Emec,n+1 < Emec,n ,∀n. (2.86)

Ainsi, l’énergie mécanique, au lieu de rester constante, dimunue à chaque

pas de temps. On peut même écrire l’Eq.(2.63), soustrayant Emec,n puis en divi-

sant par ∆t :
Emec,n+1 − Emec,n

∆t
= −

(
k

m
∆t

)
Emec,n

Cette équation n’est autre que l’approximation par différences finies de l’équation

différentielle
dEmec

dt
= −

(
k

m
∆t

)
Emec

Dont la solution est

Emec(t) = Emec(0) exp(−γ̃t) , (2.87)

avec γ̃ = (k/m)∆t. Le taux d’amortissement est proportionnel à ∆t. Il est donc

bien d’origine numérique. Ce taux tend vers zéro lorsque ∆t ⇒ 0 : la méthode

converge.
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Figure 2.11 – A gauche : convergence de l’erreur sur la vitesse finale des schémas
d’Euler explicite et implicite. La ligne traitillée est une droite de pente 1. A droite :
énergie en fonction du temps. La ligne horizontale en traitillés est la solution analytique :
l’énergie est constante. Proton dans un champ magnétique.

En résumé, le schéma d’Euler implicite, appliqué à l’oscillateur harmonique :

— converge à l’ordre 1 en ∆t,

— est stable,

— n’est pas conservatif,

— est dissipatif.

Illustration : application au mouvement d’une particule chargée dans un

champ magnétique uniforme et constant.

On montre facilement (exercice) que les équations du mouvement pour la vitesse sont

mathématiquement semblables à celles de l’oscillateur harmonique. On a appliqué les

schémas d’Euler explicite et implicite pour les comparer. Le problème est résoluble ana-

lytiquement, on a la solution exacte et donc on peut obtenir l’erreur numérique.

Le cas physique est celui d’un proton, de masse m = 1.6726 × 10−27kg, de charge q =

1.6022 × 10−19C, dans un champ magnétique B = 4T, avec une vitesse initiale v0 =

5 × 105m/s. L’étude de convergence de l’erreur sur la vitesse finale après 5 périodes

de rotation est montrée à la Fig.2.11. On observe bien une convergence d’ordre 1 pour

les deux schémas. Le schéma explicite tend systématiquement à produire une erreur

supérieure à cele du schéma implicite.

Pour ce qui est de la stabilité numérique et des propriétés de conservation de l’énergie

cinétique, on montre à la Fig.2.11 l’évolution temporelle de l’énergie. L’énergie du schéma

explicite crôıt exponentiellement dans le temps, ce qui est bien le signe d’une instabilité,

alors que celle du schéma implicite décrôıt exponentiellement dans le temps, ce qui est

signe de stabilité, mais malheureusement aucun des deux schéma ne conserve l’énergie.
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Figure 2.12 – A gauche : convergence de l’erreur sur la vitesse finale des schémas
d’Euler semi-implicite, explicite et implicite. Les lignes traitillées sont des droites de
pente 1 et 2, respectivement. A droite : énergie en fonction du temps. Le schéma semi-
implicite satisfait la conservation de l’énergie. Proton dans un champ magnétique.

2.6 Schéma d’Euler semi-implicite

L’inspection de la Fig.2.11 suggère qu’un schéma qui mélangerait les aspects explicite et

implicite serait meilleur que chacun des deux schémas pris séparément. D’où l’idée d’un

schéma semi-implicite.

On peut unifier la présentation de ces trois schémas d’Euler (explicite, implicite, semi-

implicite) en faisant la moyenne pondérée des Eqs.(2.67) et (2.69) :

yn+1 = yn + (αf(yn, tn) + (1− α)f(yn+1, tn+1))∆t (2.88)

avec α = 1 pour le schéma explicite, α = 0 pour le schéma implicite et α = 1/2 pour le

schéma semi-implicite.

Le schéma semi-implicite implique la résolution de la partie implicite. On peut utiliser, en

l’adaptant, la méthode du point fixe présentée à la section précédente, Eq.(2.71). Comme

précédemment, on choisit comme première estimation (k = 0, k sera un compteur des

itérations) :

y
(k=1)
n+1 = yn (2.89)

Ensuite, on effecture une boucle itérative, k → k + 1 :

y
(k+1)
n+1 = yn + (αf(yn) + (1− α)f(y

(k)
n+1, tn+1))∆t . (2.90)

Pour arrêter la boucle itérative, on mesure l’erreur que l’on fait sur la résolution de

l’Eq. (2.88) :

d = ||y(k+1)
n+1 − yn − (αf(yn) + (1− α)f(y

(k+1)
n+1 , tn+1))∆t|| , (2.91)
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et on indique à l’algorithme d’arrêter les itérations lorsque cette erreur d est plus petite

qu’une tolérance spécifiée ϵ.

On illustre à la Fig.2.12 les résultats obtenus pour le problème de la particule chargée

dans un champ magnétique, en reportant les trois schémas pour les comparer.

Pour ce qui est de la convergence, les résultats du schéma semi-implicite ne se situent

pas entre ceux des schémas explicite et implicite. On observe un ordre de convergence

d’ordre 2, et non d’ordre 1. La précision du résultat numérique est plusieurs ordres de

grandeur meilleure. Nous avions déjà observé qu’un schéma de différences finies centré

offre un ordre de convergence supérieur pour l’évaluation de la dérivée, voir Fig.1.3.

Pour ce qui est de l’évolution temporelle de l’énergie mécanique, on observe que, à

une tolérance ϵ près sur les itérations du point fixe, le schéma semi-implicite conserve

l’énergie exactement. C’est une propriété très intéressante, qui permet de faire de

longues simulations, en évitant l’instabilité du schéma explicite tout en évitant l’érosion

de l’énergie du schéma implicite.

2.7 Schémas symplectiques : Euler-Cromer, Verlet

et variantes

Voir cours de mécanique analytique : la dynamique Hamiltonienne est une reformula-

tion de la dynamique Newtonienne. Les équations du mouvement sont écrites pour un

système classique à M degrés de liberté, en utilisant les coordonnées généralisées q et

les moments conjugués p, et l’Hamiltonien H(p,q). On a utilisé la notation vectorielle

q = (q1, q2, ..., qM) , p = (p1, p2, ..., pM).

dq

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂q
. (2.92)

Par exemple, pour un système de particules de masses m, d’énergie cinétique K =∑
i p

2
i /2m, soumises à des forces dérivant d’un potentiel V (q1, q2, .., qM), les équations

s’écrivent

dp

dt
= −∂V

∂q
= F , (2.93)

dq

dt
= p/m . (2.94)

On sait bien que dans de tels systèmes l’énergie mécanique (qui n’est autre que la valeur

numérique de l’Hamiltonien) est une constante du mouvement. On vérifie cette propriété

pour contrôler la qualité de la solution numérique. Mais il y a bien d’autres quantités qui
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sont conservées. En reliant les deux vecteurs q et p pour former un vecteur z (appelé

vecteur de l’espace de phase) :

z =

(
q
p

)
, (2.95)

on peut écrire les équations du mouvement Hamiltoniennes, Eq.(2.92), comme une équation

d’évolution temporelle pour z
dz

dt
= J · ∂H

∂z
(2.96)

avec la matrice J

J =

(
0 I

−I 0

)
(2.97)

appelée “matrice symplectique”. Une propriété des transformations canoniques est de

conserver la “forme symplectique” définie par

s(z1, z2) = zT1 · Jz2 . (2.98)

Par exemple, si z1(0) et z2(0) représentent deux conditions initiales différentes, la quan-

tité s(z1(t), z2(t)) est une constante du mouvement. L’idée est d’utiliser cette quantité

conservée comme indicateur de qualité des schémas numériques.

2.7.1 Algorithme d’Euler-Cromer

Le schéma d’Euler explicite, Section 2.1.2, appliqué au problème Eqs. (2.93-2.94) donne-

rait

p(t+∆t) = p(t) + ∆tF(q(t)) (2.99)

q(t+∆t) = q(t) + ∆tp(t)/m (2.100)

L’idée est, au lieu d’utiliser le moment p(t) pour avancer les coordonnées dans (2.100),

d’utiliser le moment à l’instant t + ∆t obtenu de (2.99). On a ainsi l’algorithme Euler-

Cromer “A” :

p(t+∆t) = p(t) + ∆tF(q(t)) (2.101)

q(t+∆t) = q(t) + ∆tp(t+∆t)/m (2.102)

On peut aussi inverser l’ordre dans lequel on évalue p et q, ce qui donne l’algorithme

Euler-Cromer “B” :

q(t+∆t) = q(t) + ∆tp(t)/m (2.103)

p(t+∆t) = p(t) + ∆tF(q(t+∆t)) (2.104)

Ces algorithmes ont des propriétés remarquables lorsqu’ils sont appliqués au problème de

l’oscillateur harmonique, par exemple. La FIG. 2.13 montre que l’instabilité numérique a

disparu. La convergence numérique avec ∆t est bien supérieure : les trois résultats, pour
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Figure 2.13 – Oscillateur harmonique avec la méthode d’Euler-Cromer, k = 1, m = 1.
Trois exécutions avec ∆t = 0.2, 0.1, 0.05. Le schéma est stable, l’amplitude des oscillations
(haut) est constante et l’énergie mécanique (bas) est conservée en moyenne, avec une
erreur instantanée qui tend vers zéro avec ∆t.
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∆t = 0.2, 0.1, 0.05 sont pratiquement indiscernables à l’échelle de la figure (comparer avec

le schéma d’Euler explicite, FIG. 2.10). On note que l’énergie mécanique, bien que pas

exactement conservée à tous les temps, est conservée exactement en moyenne temporelle,

la non-conservation instantanée tendant vers zéro proportionellement à ∆t. C’est une

propriété intéressante, surtout lorsque l’on veut faire de longues simulations.

Les algorithmes “A” et “B” donnent des résultats très similaires (FIG. 2.14). On remarque

que les erreurs sur l’énergie mécanique des deux schémas sont opposées. Cela suggère de

combiner ces deux algorithmes.

2.7.2 Algorithme de Verlet et ses variantes

On obtient cet algorithme en divisant le pas temporel ∆t en deux. Pour la première

moitié, on utilise l’algorithme Euler-Cromer “A”, et pour la deuxième moitié l’algorithme

Euler-Cromer “B”. On obtient

p(t+∆t/2) = p(t) + (∆t/2)F(q(t))
q(t+∆t/2) = q(t) + (∆t/2m)p(t+∆t/2)
q(t+∆t) = q(t+∆t/2) + (∆t/2m)p(t+∆t/2)
p(t+∆t) = p(t+∆t/2) + (∆t/2)F(q(t+∆t))

(2.105)

En éliminant les quantités évaluées au milieu de l’intervalle temporel (t + ∆t/2), on

obtient

q(t+∆t) = q(t) + (∆t/m)p(t) + ((∆t)2/2m)F(q(t)) +O ((∆t)4)
p(t+∆t) = p(t) + (∆t/2) [F(q(t+∆t)) + F(q(t))]

(2.106)

L’algorithme de Stormer-Verlet existe en plusieurs formulations. Celle que nous avons

présentée ici est due à Swope en 1982 ; elle est parfois appelée velocity Verlet. Une autre

formulation est le Verlet leapfrog, (ou saute-mouton), due à Vineyard en 1962 :

p(t+∆t/2) = p(t−∆t/2) + ∆tF(q(t))
q(t+∆t) = q(t) + (∆t/m)p(t+∆t/2) +O ((∆t)4)

(2.107)

Dans cette formulation, lorsque les conditions initiales sont connues en t = 0, l’algo-

rithme doit être initialisé par un “demi-pas temporel” pour p. Plus précisément, pour

le premier pas temporel, on remplace la première ligne de l’Eq.(2.107) par p(∆t/2) =

p(0) + (∆t/2)F(q(0)). L’algorithme peut ensuite se poursuivre normalement.

Une troisième formulation (celle de Verlet en 1967) 2 s’obtient de l’équation

d2q

dt2
=

1

m
F(q(t)) (2.108)

2. Stormer avait déjà utilisé ce schéma en ... 1907 pour le calcul des trajectoires des particules piégées
dans le champ magnétique terretre.
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Figure 2.14 – Oscillateur harmonique avec la méthode d’Euler-Cromer, k = 1, m = 1,
∆t = 0.2. Les algorithmes “A” et “B” donnent des résultats très similaires.
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avec l’approximation par différences finies

d2q

dt2
(t) =

1

(∆t)2
(q(t+∆t)− 2q(t) + q(t−∆t)) +O

(
(∆t)2

)
(2.109)

ce qui conduit à

q(t+∆t) = 2q(t)− q(t−∆t) +
(∆t)2

m
F(q(t)) +O

(
(∆t)4

)
. (2.110)

Cet algorithme requiert une estimation pour q(−∆t) pour être initialisé.

On remarque que les moments p n’interviennent pas explicitement dans cet algorithme.

On peut les obtenir a posteriori à partir de la deuxième des équations Eq.(2.106), ou

avec une estimation de différences finies centrées :

p(t) =
m

2∆t
(q(t+∆t)− q(t−∆t)) +O

(
(∆t)2

)
(2.111)

Les formulations de “velocity-Verlet”, Eq.(2.106) et “Verlet”, Eq.(2.110) sont strictement

équivalentes. En effet, en notant, pour simplifier, qj = q(tj), pj = p(tj), l’Eq.(2.106)

s’écrit, pour le pas tj+1 et le pas tj :

qj+1 = qj + (∆t/m)pj + ((∆t)2/2m)F(qj) (2.112)

qj = qj−1 + (∆t/m)pj−1 + ((∆t)2/2m)F(qj−1) (2.113)

pj+1 = pj + (∆t/2)(F(qj+1 + F(qj))) (2.114)

pj = pj−1 + (∆t/2)(F(qj + F(qj−1))) (2.115)

Soustrayant (2.112)-(2.113), on a :

qj+1 − qj = qj − qj−1 + (∆t/m)(pj − pj−1) + ((∆t)2/2m)(F(qj)− F(qj−1)) (2.116)

Substituant pj − pj−1 à partir de l’Eq.(2.115), on obtient

qj+1 = 2qj − qj−1 + ((∆t)2/m)F(qj) (2.117)

qui est bien l’expression de l’Eq.(2.110).

2.7.3 Analyse de la stabilité du schéma de Verlet

On fait une analyse des erreurs comme à la Section 2.4.2. Pour le problème de l’oscillateur

harmonique, en utilisant l’algorithme Eq.(2.110), les erreurs e(t) obéissent à :

e(t+∆t) = (2− (k/m)(∆t)2)e(t)− e(t−∆t) . (2.118)
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Définissons une matrice d’amplification d’erreurs G par(
e(t+∆t)
e(t)

)
= G

(
e(t)
e(t−∆t)

)
. (2.119)

On a donc dans notre cas

G =

(
(2− (k/m)(∆t)2) −1

1 0

)
. (2.120)

La condition de stabilité est que toutes les valeurs propres λi de G soient de

module inférieur ou égal à 1. L’équation caractéristique pour ces valeurs propres est

det(G− λI) = 0 , (2.121)

ce qui donne

λ2 − (2− (k/m)(∆t)2)λ+ 1 = 0 ⇒ λ1,2 =

(
1− k

m

(∆t)2)

2

)
±
√
k2

m2

(∆t)4

4
− k

m
(∆t)2 .

(2.122)

Pour (k/m)(∆t)2 < 4, on a |λ1,2| = 1 et l’algorithme de Verlet est stable.

Suggestion d’exercice. On vérifiera les propriétés de stabilité et de convergence de cet

algorithme.

On montre un example à la FIG. 2.15 d’application du schéma, sous la forme de l’Eq.(2.106) ;

la précision est bien meilleure que pour l’algorithme d’ Euler-Cromer (voir FIG. 2.13)

pour un même pas temporel ∆t. Cependant, l’intérêt majeur de cet algorithme

est qu’il peut être utilisé pour de longues simulations, sans qu’il y ait accu-

mulation systématique d’erreurs. Par exemple, l’énergie mécanique reste conservée

en moyenne sur une période. De plus, l’erreur instantanée sur Emec converge vers zéro en

(∆t)2 (voir exercice).

La propriété “symplectique” de l’algorithme est illustrée à la FIG. 2.16. La forme sym-

plectique, Eq.(2.98), peut être interprétée géométriquement dans l’espace de phase (q,p)

comme l’aire du quadrilatère construit sur z1 et z2. Ainsi, les systèmes Hamiltoniens

conservent les aires dans l’espace de phase. Dans la FIG. 2.16 on a choisi 4 condi-

tions initiales voisines de (x = 1, v = 0), formant un quadrilatère. On a représenté des

instatntanés de ce quadrilatère au cours de son évolution temporelle. S’il y a très légère

déformation, l’aire est par contre exactement conservée.

Suggestion d’exercice. Pendule simple (force en sin θ), étudier la période des oscil-

lations en fonction de l’amplitude. A partir de la conservation de l’énergie mécanique,

dériver une expression pour la période, que l’on intégrera numériquement (avec, p.ex. la

méthode des trapèzes, voir Annexe B). Comparer avec les résultats des simulations.
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INITIALES

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x

Velocity Verlet oscillateur

0 5 10 15 20 25 30
0.495

0.496

0.497

0.498

0.499

0.5

0.501

t

E
ne

rg
ie

 m
ec

an
iq

ue

Velocity Verlet oscillateur

Figure 2.15 – Oscillateur harmonique avec la méthode de Verlet (“velocity Verlet”,
Eq.(2.106)), k = 1, m = 1, ∆t = 0.2. Le schéma est stable, l’amplitude des oscillations
(haut) est constante et l’énergie mécanique (bas) est conservée en moyenne, avec une
erreur instantanée qui tend vers zéro avec (∆t)2.
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Figure 2.16 – Oscillateur harmonique avec la méthode de Verlet (“velocity Verlet”,
Eq.(2.106)), k = 1, m = 1, ∆t = 0.2, 4 conditions initiales au voisinage de (x = 0, v =
0) formant un quadrilatère dont l’évolution temporelle est illustrée par des instantanés.
L’algorithme reproduit fidèlement la propriété fondamentale de conservation de l’aire de
l’espace de phase.

2.7.4 Extension de Verlet à des forces dépendant explicitement
du temps et de la vitesse

La section précédente a présenté des algorithmes qui s’appliquent directement à des

systèmes dynamiques où les forces ne dépendent explicitement que de la position. Ainsi,

l’algorithme de Verlet ”velocity-Verlet”, Eq.(2.106), pour les équations

d

dt

(
x⃗
v⃗

)
=

(
v⃗

F⃗ (x⃗)/m

)
(2.123)

s’écrit, en posant a⃗(x⃗) = F⃗ (x⃗)/m,

x⃗j+1 = x⃗j + v⃗j∆t+
1
2
a⃗(x⃗j)(∆t)

2

v⃗j+1 = v⃗j +
1
2
(⃗a(x⃗j) + a⃗(x⃗j+1))∆t

(2.124)

Une première généralisation, à des forces dépendant explicitement du temps, est immédiate,

en posant a⃗(x⃗, t) = F⃗ (x⃗, t)/m :

x⃗j+1 = x⃗j + v⃗j∆t+
1
2
a⃗(x⃗j, tj)(∆t)

2

v⃗j+1 = v⃗j +
1
2
(⃗a(x⃗j, tj) + a⃗(x⃗j+1, tj+1))∆t

(2.125)

Si on a des forces qui dépendent explicitement de la vitesse, alors il n’est souvent pas

possible de trouver un algorithme symplectique, tout simplement parce que le système
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d’équations ne satisfait alors plus la condition symplectique. C’est le cas par exemple

des forces de friction ou de trâınée aérodynamique. On peut néanmoins proposer un

algorithme qui sera encore d’ordre 2 et qui sera symplectique dans la limite des forces de

friction ou de trâınée tendant vers zéro.

On se restreindra au cas où la partie de la force dépendant explicitement de la vitesse est

additive :

F⃗ (x⃗, v⃗, t) = F⃗1(x⃗, t) + F⃗2(v⃗, t) (2.126)

On définit alors, en divisant par la masse m :

a⃗(x⃗, v⃗, t) = a⃗1(x⃗, t) + a⃗2(v⃗, t) . (2.127)

Dans la boucle temporelle, on commence par faire la mise à jour de la position, comme

dans l’algorithme de base :

x⃗j+1 = x⃗j + v⃗j∆t+
1

2
a⃗(x⃗j, v⃗j, tj)(∆t)

2 (2.128)

On fait alors un demi-pas pour la vitesse :

v⃗j+1/2 = v⃗j +
1

2
a⃗(x⃗j, v⃗j, tj)∆t (2.129)

La mise à jour de la vitesse se fait avec la même expression que dans l’algorithme de base

pour la partie a⃗1(x⃗, t), et avec un pas centré en j + 1/2 pour la partie a⃗2(v⃗) :

v⃗j+1 = v⃗j +
1

2
(⃗a1(x⃗j, tj) + a⃗1(x⃗j+1, tj+1))∆t+ a⃗2(v⃗j+1/2, tj+1/2)∆t (2.130)

L’algorithme est constitué des expressions (2.128)(2.129) (2.130). Il implique l’écriture de

deux fonctions distinctes a1(x⃗, t) et a2(v⃗, t). A chaque pas de temps, ces fonctions sont

appelées deux fois.

On peut formuler l’expression (2.130) autrement, en écrivant le dernier terme comme

(1/2)⃗a2(v⃗j+1/2, tj+1/2)∆t+(1/2)⃗a2(v⃗j+1/2, tj+1/2)∆t et en l’insérant dans la parenthèse du

2e terme, pour obtenir :

v⃗j+1 = v⃗j +
1

2

(
a⃗1(x⃗j, tj) + a⃗2(v⃗j+1/2, tj+1/2) + a⃗1(x⃗j+1, tj+1) + a⃗2(v⃗j+1/2, tj+1/2)

)
∆t

(2.131)

Si a⃗1 et a⃗2 ne dépendent pas tous deux explicitement du temps, alors en regrou-

pant et se rappelant la définition de la fonction a⃗ = a⃗1 + a⃗2, on a :

v⃗j+1 = v⃗j +
1

2

(
a⃗(x⃗j, v⃗j+1/2, tj) + a⃗(x⃗j+1, v⃗j+1/2, tj+1)

)
∆t (2.132)

L’algorithme est alors composé des expressions (2.128)(2.129) (2.132). Il implique à

chaque pas de temps 3 appels à la fonction accéleration, a⃗(x⃗, v⃗, t), avec 3 combinai-

sons différentes d’arguments.
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Figure 2.17 – Schéma de Runge-Kutta d’ordre 2.

2.8 Schémas de Runge-Kutta

Ces schémas s’appliquent à des équations différentielles du 1er ordre

dy

dt
= f(y, t) . (2.133)

On se limitera ici à énoncer l’idée de base de tels schémas. Si on revient au schéma

d’Euler, Eq.(2.10), il approxime la valeur de f sur l’intervalle [ti ti+1] par une constante,

évaluée au début de l’intervalle temporel. Une meilleure approche est de calculer d’abord

un “prédicteur” pour y à la mi-temps ti+1/2, évaluer fi+1/2 = f(yi+1/2, ti+1/2), puis refaire

un pas complet en utilisant fi+1/2 au lieu de fi. Cela donne l’algorithme de Runge-Kutta

d’ordre 2, voir Fig. 2.17 :

k1 = ∆t f(yi, ti)
k2 = ∆t f(yi +

1
2
k1, ti+1/2)

yi+1 = yi + k2

(2.134)

Cet algorithme est d’ordre 2, autrement dit l’erreur sur un pas de temps est d’ordre

O(∆t)3, et l’erreur numérique globale jusqu’à un temps donné t = tfin est O(∆t)2,

ceci pour autant que la fonction f et la solution y soient infiniment différentiables. La

preuve mathématique est présentée ci-dessous. De plus, on peut se poser la question si

l’algorithme ci-dessus, Eq.(2.134), est le seul algorithme d’ordre 2 possible : par exemple,

peut-on choisir un autre point que le milieu de l’intervalle, ti+1/2, pour évaluer la fonction

f ? La réponse est qu’il y a une infinité d’autres choix possibles.

Essayons de généraliser l’algorithme Eq.(2.134). Soit 3 nombres a, b, λ entre 0 et 1. On

pose alors un schéma généralisé :

k1 = ∆t f(yi, ti)
k2 = ∆t f(yi + λk1, t+ λ∆t)

yi+1 = yi + ak1 + bk2

(2.135)
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Figure 2.18 – Schéma de Runge-Kutta d’ordre 4.

Ainsi, on obtient la solution au pas suivant en prenant comme estimation de dy/dt (donc

de f) une somme pondérée d’une évaluation en début d’intervalle (k1) et d’une évaluation

quelque part entre le début et la fin de l’intervalle (k2). Le but est de trouver un ensemble

d’équations qui nous donnera les valeurs de a, b, λ telles que l’algorithme soit d’ordre 2.

Pour que l’algorithme soit d’ordre 2, il faut que la solution numérique cöıncide avec le

développement limité de la solution exacte au moins jusqu’aux termes d’ordre 2. A partir

du schéma Eq.(2.135), on obtient :

yi+1 = yi + a∆tf(yi, ti) + b∆tf(yi + λk1, ti + λ∆t) (2.136)

En développant la fonction f au voisinage de (yi, ti), on obtient :

yi+1 = yi +∆t(a+ b)f + (∆t)2
(
λb
∂f

∂y
f + λb

∂f

∂t

)
+O(∆t)3 (2.137)

D’autre part, nous obtenons le développement limité de la solution exacte :

y(ti +∆t) = y(ti) + ∆tf + (∆t)2
1

2

(
∂f

∂t
+
∂f

∂y
f

)
+O(∆t)3 . (2.138)

(NB : pour obtenir cette relation, on a substitué dy/dt par f , conformément à l’équation

différentielle). En comparant ces deux dernières expressions, nous obtenons les conditions

suivantes pour que le schéma soit d’ordre 2 :

a+ b = 1 , λb =
1

2
; . (2.139)

L’algorithme donné précédemment, Eq.(2.134), correspond ainsi à a = 0, b = 1, λ = 1/2.
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On peut aussi choisir, par exemple, a = b = 1/2, λ = 1, ce qui donne :

k1 = ∆t f(yi, ti)
k2 = ∆t f(yi + k1, t+∆t)

yi+1 = yi +
1
2
(k1 + k2)

(2.140)

Dans cet algorithme, on estime ainsi la “pente” comme la moyenne des estimations en

début et fin d’intervalle.

On peut faire mieux encore avec l’algorithme deRunge-Kutta d’ordre 4, voir Fig. 2.18 :

k1 = ∆t f(yi, ti)
k2 = ∆t f(yi +

1
2
k1, ti+1/2)

k3 = ∆t f(yi +
1
2
k2, ti+1/2)

k4 = ∆t f(yi + k3, ti+1)
yi+1 = yi +

1
6
[k1 + 2k2 + 2k3 + k4]

(2.141)

Les schémas de Runge-Kutta du 4e ordre sont très utilisés dans toutes sortes d’applica-

tions de la physique et des sciences de l’ingénieur. Ce sont des schémas qui ont montré

leur “robustesse”, dans le sens qu’ils donnent de bons résultats dans la plupart des cas.

Leur avantage principal réside dans la précision élevée obtenue avec relativement peu

de pas temporels : la convergence est très rapide, à cause de l’ordre élevé du schéma.

Mais il faut malgré tout faire attention : il y a des situations pour lesquelles ces schémas

Runge-Kutta ne convergent pas du tout ou sont instables. Nous ne ferons pas l’analyse

numérique de la convergence et de la stabilité des schémas Runge-Kutta dans ce cours,

mais nous en ferons des applications dans la suite. De même que pour le schéma Runge-

Kutta d’ordre 2, il existe une infinité de schémas de type Runge-Kutta d’ordre 4. On

trouve dans la littérature plusieurs variantes de ces schémas.

2.9 Applications à divers systèmes oscillants

On considère un pendule à ressort amorti, puis un pendule simple excité et amorti, et

enfin un pendule articulé. On observe dans certains cas l’apparition du chaos.

2.9.1 Pendule amorti

Um corps de masse m est attaché à un ressort de constante k. Il subit également une

force de frottement visqueux Fv = −ν v.

Equation du mouvement : ma = F , avec F = −kx− ν v ⇒

d2x

dt2
+ (ν/m)

dx

dt
+ (k/m)x = 0 . (2.142)
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Figure 2.19 – Oscillateur harmonique amorti, Eq.(2.142), avec la méthode de Verlet
(“velocity Verlet”, Eq.(2.106)), k = 1, m = 1, ν = 0.1, ∆t = 0.4. Position x(t) (en haut
à gauche), énergie mécanique Emec(t) (en haut à droite), vérification du théorème de
l’énergie mécanique dEmec/dt (courbe avec +) et puissance des forces non conservatives
Pnc = −ν v2 (courbe avec o) (en bas à gauche), et orbite dans l’espace de phase (x, v) (en
bas à droite).
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Nous utiliserons la méthode de “velocity Verlet”, Eq.(2.106). La force dépend de la posi-

tion et de la vitesse. Cela requiert une modification de l’algorithme (suggestion d’exercice).

Un exemple de résultat est donné à la FIG. 2.19.

2.9.2 Pendule avec excitation extérieure. Résonance. Régime
chaotique.

Soit un point matériel de masse m attaché à une tige mince rigide de masse négligeable,

de longueur l, à un point O fixe. En plus de la gravitation, il est soumis à une force de

frottement visqueux Fv = −κv et à un couple de force ME = M sin(Ωt). Et bien sûr, il

y a la force de liaison (= force de soutien = “tension du fil”). En partant de

dL⃗O

dt
= M⃗ext , (2.143)

écrite en utilisant les coordonnées polaires (r, θ), on obtient

ml2θ̈ = −lmg sin θ − l2κθ̇ +M sin(Ωt) . (2.144)

En posant ν = κ/m, A =M/(ml2), on a

θ̈ + νθ̇ +
g

l
sin θ = A sin(Ωt) . (2.145)

Pour de petits mouvements (sin θ ≈ θ), ω0 =
√
g/l est la fréquence propre du système

libre (A = 0) non amorti (ν = 0). Lorsqu’on excite le pendule avec un couple extérieur

de fréquence Ω = ω0, apparâıt le phénomène de résonance, illustré à la FIG. 2.20. L’am-

plitude des oscillations est bien plus élevée que lorsque la fréquence d’excitation ne cor-

respond pas à la fréquence propre. Le système accumule ainsi une plus grande quantité

d’énergie mécanique.

Le mouvement devient vraiment intéressant pour des amplitudes d’excitation plus im-

portantes. A la FIG. 2.21, on compare le mouvement périodique, régulier, obtenu avec

A = 1 au mouvement irrégulier, “capricieux”, chaotique avec une amplitude légèrement

plus élevée, A = 1.25. Il ne s’agit pas d’une phase transitoire juste un peu plus longue :

ce comportement chaotique se poursuit indéfiniment (image du bas de la FIG. 2.21).

2.9.3 Section de Poincaré. Attracteurs étranges. Divergence des
orbites.

L’orbite dans l’espace de phase (θ, ω), où on a défini ω ≡ θ̇ ≡ dθ/dt, FIG. 2.22, montre

clairement que le pendule ne suit pas un mouvement régulier. On a l’impression que si

Physique Numérique LV SPC EPFL 57



CHAPITRE 2. EVOLUTION TEMPORELLE - PROBLÈMES À VALEURS
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Figure 2.20 – Résonance d’un pendule amorti excité , Eq.(2.145), avec la méthode de
Verlet (“velocity Verlet”, Eq.(2.106)), g/l = 1, ν = 0.1, A = 0.1. Position θ(t) (en haut),
énergie mécanique Emec(t) (en bas), pour trois valeurs de Ω.
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Figure 2.21 – Transition vers le chaos d’un pendule amorti excité , Eq.(2.145), avec
la méthode de Verlet (“velocity Verlet”, Eq.(2.106)), g/l = 1, ν = 0.5, Ω = 2/3. On
a représenté la vitesse angulaire ω(t) ≡ θ̇(t). Avec A = 1.0 (haut), le mouvement est
régulier, périodique. Avec A = 1.25, le mouvement est chaotique.
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Figure 2.22 – Mouvement d’un pendule amorti excité , Eq.(2.145), en régime chaotique,
avec la méthode de Verlet (“velocity Verlet”, Eq.(2.106)), g/l = 1, ν = 0.5, Ω = 2/3,
A = 1.25. On a représenté l’orbite dans l’espace de phase (θ, ω) (haut) et la section
de Poincaré (bas) pour deux conditions initiales très différentes : (θ(0) = 1, ω(0) = 0)
(points noirs) et (θ(0) = 0, ω(0) = 1) (points rouges) .
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Figure 2.23 – Sections de Poincaré pour diverses conditions initiales d’un pendule
simple avec excitation verticale et sans amortissement, g = l = 1, ν = 0, Ω = 1, A = 0.5.
L’image du bas est un zoom d’une région de l’image du haut.
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Figure 2.24 – Caractérisation du mouvement chaotique d’un pendule amorti excité,
Eq.(2.145), par la sensitivité aux conditions initiales. Haut : écart |∆θ| entre deux trajec-
toires obtenues à partir de conditions initiales qui diffèrent de 10−5 Pour comparaison,
un régime non chaotique, avec A = 1.0, est représenté en traitillés : dans ce cas l’écart
entre les trajectoires reste du même ordre que l’écart initial. Bas : écart |∆θ| entre 2
trajectoires obtenues à partir de la même condition initiale, mais deux valeurs différentes
de ∆t. Les droites traitillées soulignent le caractère exponentiellement divergent, dans le
cas chaotique.
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on continue la simulation assez longtemps, l’orbite va finir par “remplir” uniformément

l’espace de phase, tout point de cet espace pouvant être atteint par le pendule à un

moment donné ou un autre, et ceci avec une densité de probabilité uniforme (c.a.d. la

même probabilité quel que soit le point de l’espace de phase), ce qui serait le cas si le

mouvement du pendule était parfaitement aléatoire. Mais la réalité est bien différente.

Le mouvement du pendule n’est pas aléatoire ; bien qu’irrégulier, il y a une certaine

“structure” au mouvement.

On peut s’en rendre compte graphiquement en ne représentant pas tous les points de

l’orbite, mais seulement ceux aux temps multiples de la période d’excitation, donc l’en-

semble des points (θ(t), ω(t)) tels que t = n 2π/Ω, avec n entier. On appelle ce type

de représentation une section de Poincaré. On voit sur la FIG. 2.22 (en bas) qu’une

structure apparâıt : les points sont arrangés selon un ensemble de lignes de formes com-

pliquées, que l’on appelle attracteur étrange. La notion d’attracteur se comprend à partir

d’un exemple plus simple : celui du pendule amorti mais non excité. Danc ce cas, toute

condition initiale va résulter en une solution (θ = 0, ω = 0) pour des temps suffisamments

longs. Le point (θ = 0, ω = 0) “attire” toutes les conditions initiales, c’est l’attracteur,

trivial, dans ce cas. Dans le cas qui nous intéresse, avec amortissment ET excitation,

toute condition initiale va résulter en une section de Poincaré ayant la même structure de

lignes complexes sur lesquelles les points vont se trouver. La FIG. 2.22 (en bas) montre en

fait deux sections de Poincaré, l’une avec les points noirs, l’autre avec les points rouges,

correspondants à deux conditions initiales très différentes. (Note technique : on a ignoré

dans cette figure les 50 premiers points, i.e. les 50 premières périodes d’oscillation). Au-

cun point rouge ne cöıncide exactement avec un point noir, et cependant les points noirs

et rouges se rassemblent selon de la même structure de lignes. Cette structure “attire”

toutes les conditions initiales, d’où le nom d’attracteur.

Pour compléter la discussion, lorsqu’il n’y pas pas d’amortissement, il n’y a généralement

pas d’attracteur. Par exemple, pour un pendule simple sans excitation ni amortissement,

le mouvement oscillatoire va continuer indéfiniment, et le point (θ = 0, ω = 0) n’est

plus un attracteur. Si on considère un pendule simple, avec excitation verticale 3 et sans

amortissement, chaque condition initiale produit sa section de Poincaré généralement

distincte des autres, voir FIG.2.23. L’espace de phase se sépare en régions avec des sections

imbriquées les unes dans les autres, des régions avec des châınes d’ilôts et des régions

stochastiques où le mouvement est chaotique.

Une des “signatures” du mouvement chaotique est la sensibilité aux condi-

tions initiales. Dans le régime chaotique, deux trajectoires obtenues à partir de condi-

tions initiales infinitésimalement voisines finissent toujours par diverger exponentielle-

ment. On l’illustre à la FIG. 2.24. Dans le cas non chaotique (A = 1.0, traitillés), les

deux trajectoires restent proches l’une de l’autre tout au long du mouvement. Alors que

dans le cas chaotique (A = 1.25), il y a toujours un moment où les trajectoires s’écartent

3. L’équation différentielle est alors quelque peu différente de l’Eq.(2.145) (suggestion d’exercice).
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l’une de l’autre de plusieurs ordres de grandeur, aussi petit que soit l’écart entre les deux

conditions initiales. Une conséquence de ce comportement est d’empêcher la convergence

numérique avec ∆t au dela de quelques secondes (image du bas).

On sait de la théorie des équations différentielles ordinaires qu’une fois que les condi-

tions initiales sont spécifiées, la solution du mouvement est unique. Le système est dit

déterministe. Mais comment se fait-il que le mouvement en régime chaotique soit à la

fois déterministe et pratiquement imprédictible ?

Suggestion d’exercice. Avec les paramètres des FIGS.2.22-2.24, choisir différentes

conditions initiales et montrer que l’attracteur étrange (section de Poincaré) est tou-

jours le même. Choisir des ∆t différents, pour une même condition initiale, et montrer

que les trajectoires simulées finissent par s’écarter l’une de l’autre. Changer l’amplitude

et essayez d’obtenir d’autres attracteurs. Essayez de trouver A pour que le mouvement

devienne périodique avec une période multiple de la période d’excitation. (Indication :

essayez A ∈ [1.4 1.5] ou A ∈ [1.6 1.8]).

Suggestion d’exercice. Considérer un pendule de longueur l, masse m, avec amortisse-

ment, dont le point d’attache est un point O′ mobile animé d’un mouvement oscillatoire

vertical yO′(t) = d sin(Ωt).

a) Mettre le pendule “à l’envers” (condition initiale θ0 proche de π). Etudier ce qui se

passe lorsque le point d’attache est immobile (d = 0). Prendre ensuite les paramètres

l = 1m, ν = 0.1, d = 0.3m, Ω/2π = 3. C’est le phénomène de stabilisation non linéaire.

b) Avec l = 1m, ν = 0.1, d = 0.07m, choisissez une condition initiale autour de θ0 = 0.15

et variez la fréquence entre Ω/2π = 0.7 et Ω/2π = 1.2. Observez ce qui se passe autour

de la fréquence Ω/2π = 1.0 : on obtient des oscillations de grande amplitude, dont la

fréquence est la moitié de la fréquence d’excitation. Alors que pour des autres valeurs de

la fréquence, les oscillations restent de petite amplitude. C’est le phénomène de résonance

paramétrique.

2.9.4 Pendule articulé. Chaos dans un système conservatif.

On considère un système formé de deux tiges minces de longueurs L1, L2, masses m1,m2,

attachées l’une à l’autre par une extrémité. Une des tiges est attachée à un point fixe O.

On négligera les forces de frottement. Voir FIG. 2.25.

C’est un système conservatif à deux degrés de liberté. On choisira θ1 et θ2, les angles de

chacune des deux tiges par rapport à la verticale.
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Figure 2.25 – Pendule articulé.

Les équations du mouvement peuvent s’obtenir soit directement à partir des équations de

Newton (2e et 3e loi) et le théorème du moment cinétique. Ou encore par le Lagrangien,

ou par l’Hamiltonien (voir cours de Mécanique Analytique). On préfèrera la méthode des

équations de Lagrange (exercice).

[N.B. : L’Hamiltonien est en effet non séparable. Ceci a pour conséquence qu’il n’est pas

aisé de trouver un algorithme symplectique. En particulier, l’application de l’algorithme

de Verlet, Eq.(2.106) à ce problème (en exercice), montre que l’énergie mécanique n’est

pas bien conservée, sauf pour les petits mouvements.]

On comparera la méthode de Verlet avec une méthode Runge-Kutta du 4e ordre. On

montre aux FIGS.2.26, 2.27 et 2.28 le cas de 2 tiges de densité uniforme, de masses

m1 = m2 = 0.2kg, et longueurs L1 = L2 = 0.2m. Pour des conditions initiales voisines de

la position d’équilibre θ1 = θ2 = 0, le mouvement reste dans le voisinage, c’est un point

d’équilibre stable. On observe un mouvement quasi-périodique de plus en plus complexe à

mesure que l’on augmente les amplitudes des conditions initiales. A partir d’une certaine

amplitude, le mouvement devient chaotique.

Suggestion d’exercice. On vérifiera une des caractéristiques du chaos, à savoir la sen-

sibilité aux conditions initiales. On contrôlera la qualité de la simulation numérique en

mesurant la conservation de l’énergie mécanique et en variant ∆t.
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Figure 2.26 – Mouvement du pendule articulé pour de faibles amplitudes, pour une
condition initiale θ10 = −θ20 = π/100. : θ1(t), θ2(t) (en haut), (θ1, ω1) (au milieu), et
analyse de la fréquence du signal (en bas). Le mouvement est constitué d’une supersposi-
tion des 2 modes propres linéaires.
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Figure 2.27 – Mouvement du pendule articulé pour une condition initiale θ10 = −θ20 =
0.3π. θ1(t), θ2(t) (en haut), (θ1, ω1) (au milieu), et analyse de la fréquence du signal (en
bas). Le mouvement apparâıt comme une superposition de plusieurs fréquences dues aux
effets de couplage non linéaire.
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Figure 2.28 – Mouvement du pendule articulé pour une condition initiale θ10 = −θ20 =
π/2. θ1(t), θ2(t) (en haut), (θ1, ω1) (au milieu), et analyse de la fréquence du signal (en
bas). Le mouvement est chaotique.

68 Physique Numérique LV SPC EPFL



2.10. GRAVITATION. SCHÉMAS ADAPTATIFS

Pour de faibles amplitudes, l’algorithme de Verlet conserve bien l’énergie mécanique en

moyenne temporelle, mais ce n’est plus le cas lorsque l’amplitude devient plus importante.

L’algorithme de Runge Kutta du 4e ordre s’avère alors plus performant.

2.10 Gravitation. Schémas adaptatifs

2.10.1 Généralités : 1 ou 2 corps - mais pas plus

Les problèmes de mouvements gravitationnels (force en 1/r2) sont abordables par des

méthodes analytiques pour 1 ou 2 corps. Dès que le système considéré comporte 3 corps

ou plus, les choses deviennent extrêmement complexes et il n’y a pas de solution exacte.

Les méthodes numériques, cependant, peuvent assez aisément se généraliser à un nombre

de corps quelconque. Nous allons en montrer quelques exemples. Dans cette section, on

vérifiera la précision des simulations pour des cas à 1 ou 2 corps en comparant les résultats

avec les solutions analytiques exactes.

Soit un système de N corps de masses mi, i = 1..N . Les équations du mouvement s’ob-

tiennent de la 2e loi de Newton pour chacun des corps :

mi
d2x⃗i
dt2

=
N∑
j ̸=i

−Gmimj

r3ij
r⃗ij , r⃗ij = r⃗i − r⃗j . (2.146)

Le système est conservatif, avec des forces ne dépendant pas de la vitesse et dérivant

d’un potentiel. Les algorithmes d’Euler-Cromer et de Verlet sont appropriés à ce genre

de situation. On peut aussi utiliser l’algorithme de Runge-Kutta.

On simule l’orbite terrestre, sachant que la distance terre-soleil est au minimum rmin =

147098074km, au maximum rmax = 152097701km, et que la vitesse de la terre est au mi-

nimum vmin = 29.291km/s, au maximum vmax = 30.287km/s. On rappelle que l’orbite est

une ellipse. Le moment cinétique est conservé, ce qui veut dire que rmaxvmin = rminvmax.

Avec la méthode Euler-Cromer, on montre les résultats à la FIG. 2.29. L’orbite est

presque circulaire, l’ellipticité étant à peine visible sur la trajectoire dans le plan (x, y).

En représentant r(t), la non-circularité est bien visible. Par une étude de convergence

avec ∆t, on peut obtenir des valeurs précises pour la période, les distances minimales et

maximales, etc.

Suggestion d’exercice. Trouver la masse du soleil, en utilisant l’intégration numérique

d’ Euler-Cromer (ou Verlet ou Runge Kutta), connaissant rmin = 147098074km et vmax =

30.287km/s. On ajustera la masse du soleil jusqu’à trouver la bonne période d’un an

= 365.2564 jours et le bon rmax = 152097701km.
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Figure 2.29 – Simulation de l’orbite terrestre avec l’algorithme d’ Euler-Cromer. En
haut à gauche : vue dans le plan (x, y). En haut à droite : distance terre-soleil en fonc-
tion du temps, 5 simulations à des valeurs de ∆t différentes. Au milieu, convergence de
la période (gauche) et de la conservation de l’énergie mécanique (droite). En bas, conver-
gence de la distance terre-soleil minimale (gauche) et maximale (droite).
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Suggestion d’exercice. Vérifier la 3e loi de Kepler pour diverses planètes et comètes

du système solaire. Rappel : T 2/a3 = const, où T est la période de révolution et a le demi

grand-axe.

Suggestion d’exercice. Considérer un système gravitationnel à 2 corps. Vérifier que le

mouvement relatif r⃗2 − r⃗1 est équivalent au mouvement à 1 corps, mais avec la masse

réduite µ = m1m2/(m1+m2). Vérifier que le centre de masse du système a un mouvement

rectiligne uniforme. Représenter les trajectoires dans le référentiel du centre de masse.

Suggestion d’exercice. Etudier ce qui se passerait si la force de gravitation était en

1/rβ, et examiner 3 cas : β < 1, β = 2.5 et β = 3.

Suggestion d’exercice. Précession de l’orbite de Mercure (effet de relativité générale) :

on modélise cet effet par une force

F ≈ −Gm1m2

r212

(
1 +

α

r2

)
. (2.147)

Considérer d’abord le cas α = 0, et trouver les conditions initiales pour Mercure, sachant

que le demi grand axe est a = 0.39 AU, et l’excentricité e = 0.206. Indications : 1 AU=

distance moyenne terre-soleil = 149 597 870 691 m. rmax = (1 + e)a, rmin = (1 − e)a.

Trouver vmax et vmin.

Prendre ensuite α = 0.005AU−2 et calculer l’angle θ au périhélie de plusieurs révolutions

successives, puis en déduire la vitesse de précession dθ/dt. Prendre des valeurs décroissantes

de α et extrapoler la valeur de dθ/dt pour la valeur physique de α = 1.1 × 10−8AU−2.

Comparer avec la valeur mesurée de 43 secondes d’arc par siècle.

Suggestion d’exercice. Engin spatial avec poussée, transitions d’orbites.

Suggestion d’exercice. Comparer les algorithmes Runge-Kutta d’ordre 2, Runge-Kutta

d’ordre 4, Euler-Cromer et Verlet pour longues simulations d’une orbite gravitationnelle.

Contrôler la précision de la conservation de l’énergie, et celle de la conservation du mo-

ment cinétique.

2.10.2 Problème à 3 corps

Les systèmes gravitationnels que l’on peut résoudre exactement avec des méthodes ana-

lytiques se limitent aux problèmes à 1 ou 2 corps. Pour 1 corps, on suppose un des deux

objets célestes de masse beaucoup plus élevée que l’autre, et ainsi on le suppose fixe. On

obtient un mouvement central en 1/r2, avec les lois de Kepler : I- trajectoires côniques

(ellipse, parabole ou hyperbole) avec le corps central à l’un des foyers ; II- loi des aires
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(conservation du moment cinétique) ; III- le rapport des carrés des périodes de révolution

est égal au rapport des cubes des demi-grands axes dans le cas d’orbites elliptiques. Voir

cours de Physique de 1ere année.

Si les 2 corps célestes ont des masses comparables (étoile double, par exemple), le mou-

vement relatif, r⃗12 = r⃗2 − r⃗1, obéit formellement aux mêmes équations que le problème

à un corps, mais avec la masse réduite µ = m1m2/(m1 +m2) au lieu de la masse d’un

des 2 corps. Une autre façon d’aborder le problème à 2 corps est de se placer dans le

référentiel du centre de masse ; chacun des 2 objets célestes obéira au lois de Kepler, mais

où le centre de masse est un des foyers de chacune des côniques.

Mais le mode réel a bien plus de 2 corps célestes. Nous allons examiner ce qui se passe

avec 3 corps célestes.

Orbite terrestre dans un système d’étoiles doubles

Examinons d’abord l’effet de Jupiter sur l’orbite de la Terre. On considère donc 3 corps :

la terre, Jupiter, et le soleil, que l’on considèrera comme des points matériels (particules).

Les équations du mouvement s’obtiennent de la 2e loi de Newton :

mα
dv⃗α
dt

=
∑
β ̸=α

F⃗αβ, F⃗αβ = −Gmαmβ

r3
(r⃗α − r⃗β) , α, β = 1, 2, 3, (2.148)

où F⃗αβ est la force exercée sur la particule α par la particule β.

Comme schéma numérique, comme il s’agit d’un système conservatif, on utilisera l’al-

gorithme de “Velocity Verlet”, Eq.(2.106). On peut en principe utiliser un algorithme

encore plus simple, Euler-Cromer par exemple, mais la précision n’est pas suffisante et

contraint à prendre des ∆t trop petits.

Plutôt que d’utiliser les unités S.I., on écrit les équations dans le système d’unités nor-

malisées suivant. L’unité de longueur est l’ Unité Astronomique, [UA], définie comme le

demi grand-axe de l’orbite terrestre autour du soleil, qui vaut 149.597871 millions de km,

et 1 année comme unité de temps, soit 365.256898 jours.

Si on prend les valeurs réelles des masses de la terre, de Jupiter et du soleil, on constate

que l’effet de Jupiter sur l’orbite terrestre est extrêmement petit. L’orbite terrestre est

stable, ce qui n’est pas vraiment une surprise, étant donné les 4.6 millards d’années que

cela dure.

Supposons maintenant que Jupiter soit de masse plus élevée. En multipliant la masse

réelle de Jupiter par un facteur de 300, on obtient les résultats de la FIG. 2.30. Les

orbites du soleil et de “Jupiter” sont des ellipses pratiquement circulaires avec un des
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Figure 2.30 – Trajectoires du soleil (rouge, étoile), de “Jupiter” s’il avait 300 fois
sa masse réelle (bleu, diamant) et de la terre (noir, cercle). Algorithme de Störmer-
Verlet (Velocity Verlet), Eq.(2.106), avec ∆t = 0.01an. En bas, l’évolution temporelle des
distances entre les 3 corps est représentée.
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Figure 2.31 – Trajectoires du soleil (rouge, étoile), de “Jupiter” s’il avait 700 fois sa
masse réelle (bleu, diamant) et de la terre (noir, cercle). Algorithme de Störmer-Verlet
(Velocity Verlet), Eq.(2.106), avec ∆t = 0.01an (en haut) et ∆t = 0.001an (au milieu et
en bas). Il y a capture de la terre par Jupiter. Durée de 50 ans (en haut et au milieu) et
de 100 ans (en bas).
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foyers au centre de masse du sous-système {soleil,”Jupiter”}. On a en effet, pour cette

simulation, choisi les conditions initiales du soleil et de “Jupiter” de telle sorte que la

vitesse du centre de masse du sous-système soit nulle. Pour ces paramètres, la masse de la

terre est beaucoup plus petite que les deux autres corps, et ainsi le mouvement du sous-

système {soleil,”Jupiter”} est pratiquement un mouvement à deux corps. Le mouvement

de la terre est par contre fortement différent ! Il serait très difficile de vivre sur cette

terre-là : la distance terre-soleil varierait beaucoup au cours de l’année.

Si Jupiter était encore plus massique, la situation serait vraiment catastrophique pour

nous. On montre à la FIG. 2.31 un résultat avec la masse réelle de Jupiter multipliée par

700. La trajectoire de la terre devient chaotique. Elle est par moments “capturée” par

“Jupiter”. Elle entre presque en collision avec le soleil ou avec “Jupiter”. Il est intéressant

de constater la grande sensibilité de la simulation : l’image du haut a été obtenue avec

∆t = 0.01an, celle du milieu avec ∆t = 0.001an. La durée physique (50 ans) simulée, et

les conditions initiales sont les mêmes. Cependant, dans la première simulation, la terre

se trouve toujours proche du soleil, alors que la deuxième simulation, plus précise, prédit

presque une collision avec “Jupiter”.

2.10.3 Schémas adaptatifs : pas d’intégration variable

Une analyse plus fine des résultats numériques de la section précédente montre que les

erreurs s’accumulent surtout lorsque 2 des corps sont proches l’une de l’autre. C’est à ce

moment-là que leur vitesse et leur accélération sont les plus élevées.

C’est la raison pour laquelle il faut un pas temporel ∆t suffisamment petit. Mais prendre

un ∆t petit est très coûteux en temps de calcul. De plus, la plupart du temps, les corps

célestes sont assez éloignés et un ∆t assez grand suffit à garantir une certaine précision.

L’idée est donc de choisir le pas temporel en l’ajustant dynamiquement au cours

de la simulation, afin de garantir un niveau de précision donné. Les algorithmes

“single full timestep”, comme le Velocity Verlet, Eq.(2.106), et les algorithmes de Runge-

Kutta, Eqs.(2.134-2.141), se prètent relativement facilement à cette modification.

La stratégie est, au pas temporel ti, étant donné la solution yi, de faire 2 estimations de la

solution au pas temporel suivant t = ti+∆t. Voir Fig.2.32. La première estimation, y
(1)
i+1,

s’obtient en faisant un pas temporel entier ∆t. La deuxième estimation, y
(2)
i+1, s’obtient

en faisant un premier demi-pas pour aller de ti à ti+∆t/2, suivi d’un deuxième demi-pas

pour aller de ti +∆t/2 à ti +∆t. On mesure la valeur absolue de la différence obtenue,

d, et on la compare à une précision requise donnée, ϵ.

— Si d < ϵ, on passe au pas de temps suivant, en essayant de l’augmenter par rapport

au pas de temps actuel.
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Figure 2.32 – Principe du schéma adaptatif. On obtient une estimation de l’erreur en
mesurant la différence d entre deux évaluations de la solution en t+∆t.

— Si d > ϵ, il faut recommencer, c’est-à-dire revenir au temps ti, choisir un pas de

temps plus court, et refaire les deux évaluations comme décrit au paragraphe ci-

dessus pour obtenir une nouvelle évaluation de la différence d. Tant que d > ϵ, on

doit recommencer.

La question est donc : comment choisir le pas de temps (plus long ou plus court), étant

donné une mesure de l’écart d ? La réponse à cette question dépend de l’ordre du schéma

numérique considéré. Supposons que le schéma soit convergent au voisinage de (yi, ti),

d’ordre n. Cela implique donc :

y
(1)
i = yexact +C1 (∆t)

n+1 +O (∆t)n+2 (2.149)

y
(2)
i = yexact +C2a (∆t/2)

n+1 +C2b (∆t/2)
n+1 +O (∆t)n+2 (2.150)

avec C1,C2a,C2b des vecteurs de constantes. Pour ∆t suffisamment petit, on peut faire

l’hypothèse simplificatrice C1 = C2a = C2b = C, qui veut dire que la vitesse de conver-

gence est la même dans le voisinage considéré de (yi, ti). Négligeant O (∆t)n+2, on obtient

donc

d = |y(1)
i − y

(2)
i | = |C| (∆t)n+1

(
1− 1

2n

)
(2.151)

On veut choisir une nouvelle valeur de ∆t, ∆tnew, telle que l’écart dnew calculé avec cette

nouvelle valeur soit inférieur à la précision demandée :

|C| (∆tnew)n+1

(
1− 1

2n

)
≤ ϵ (2.152)

En comparant ces deux dernìres expressions, on a donc :

∆tnew = ∆t
( ϵ
d

) 1
n+1

. (2.153)

Pour éviter une éventuelle boucle infinie lorsqu’on raccourcit le pas de temps, il est

judicieux de multiplier par un facteur f < 1, c’est-à-dire tant que d > ϵ, on refait le pas

avec

∆trefaire = f ∆t
( ϵ
d

) 1
n+1

. (2.154)
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Figure 2.33 – Trajectoires du soleil (rouge, étoile), de “Jupiter” s’il avait 700 fois sa
masse réelle (bleu, diamant) et de la terre (noir, cercle). Mêmes paramètres physiques
que la FIG. 2.31. Algorithme de Runge-Kutta du 4e ordre, Eq.(2.141), avec pas temporel
variable, deux éxécutions avec deux précisions différentes : 965 pas (ligne avec +) et 1469
pas (ligne). En bas, l’évolution temporelle de ∆t est représentée pour le cas à 965 pas.
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(noir), Runge-Kutta (rouge) avec ∆t fixe (cercles) ou adaptatif (carrés). Pour compa-
raison, on a également utilisé la fonction Matlab ode45, qui est aussi à pas de temps
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On prend typiquement f ≈ 0.95− 0.99.

On montre un exemple, le problème gravitationnel à trois corps avec un schéma Runge-

Kutta d’ordre 4 à pas adaptatif, à la FIG. 2.33. Avec 965 pas temporels, la méthode

est aussi précise que la méthode de Verlet à pas fixe avec 50000 pas temporels. On a

représenté aussi comment le pas temporel ∆t varie au cours du temps.

Un autre exemple, le problème gravitationnel à un corps, pour la trajectoire de la comète

de Halley, est illustré à la Fig. 2.34, où l’erreur sur la période de révolution est représentée

en fonction du nombre de pas temporels effectués. On varie le nombre de pas en variant

la précision requise ϵ. Cette comète a une trajectoire très elliptique, et la distance avec

le soleil varie fortement au cours de son orbite. Dans de telles situations, un schéma à

pas temporel adaptatif est particulìrement efficace : dans cet exemple, avec la méthode

Runge-Kutta d’ordre 4, pour 5000 pas de temps, le schéma adaptatif est 10 millions de

fois plus précis qu’avec un ∆t fixe !

Suggestion d’exercice. Prendre 3 corps célestes de masses dans le rapport 3 :4 :5.

Condition initiale : positions aux sommets d’un triangle rectangle de longueurs de côtés

3 :4 :5 (faisant face à la masse correspondante), et vitesses initiales toutes nulles. Etudier

et comparer divers schémas numériques à pas temporel fixe, leur comportement avec ∆t,

puis considérer un schéma à pas variable.

Suggestion d’exercice : Points de Lagrange. Problème à 3 corps où un des corps

est de masse bien plus petite que les deux autres (appelé problème réduit). Se placer

dans le référentiel tournant dans lequel les 2 corps massiques sont fixes. Calculer l’énergie

potentielle pour le 3e corps et observer qu’il y a des positions d’équilibre, soit en forme

d’extrema soit en forme de points selle. Prendre pour le mouvement du 3e corps des condi-

tions initiales voisines d’une des positions d’équilibre et étudier la stabilité des orbites

obtenues.

2.10.4 Solide en rotation chaotique dans un champ gravitation-
nel

On considère une planète de masseM autour de laquelle gravite un satellite, modélisé par

un ensemble de 2 points matériels de masses m1,m2 reliés par une tige rigide de masse

négligeable, de longueur L. On étudiera le cas où la tige est dans le plan de l’orbite du

satellite. On supposera M >> m1,m2, de telle sorte que la planète puisse être considérée

comme immobile. La longueur L est beaucoup plus petite que la distance rG du centre

de gravité du satellite au centre de la planète. Mais L n’est pas nul. Donc, puisque les

positions r⃗1 et r⃗2 des deux points matériels au centre de la planète sont différents, les forces

gravitationnelles exercent un couple non nul sur le satellite. Il y aura donc accélération
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Figure 2.35 – Modèle d’un satellite solide rigide en orbite autour d’une planète de
masse M . Pour des raisons de clarté de la figure, la taille du satellite a été fortement
exagérée.

angulaire du satellite. Voir FIG. 2.35. Soit θ l’angle de la tige avec l’axe des x. Soit r⃗G la

position du centre de masse. Le moment des forces de gravitation par rapport à G est

M⃗ ext
G = (r⃗1 − r⃗G)× F⃗1 + (r⃗2 − r⃗G)× F⃗2 , (2.155)

avec

F⃗i = −GMmi

r3i
r⃗i , i = 1, 2. (2.156)

Le moment cinétique relatif à G est

L⃗G = IGω⃗ , ω = dθ/dt , IG =
2∑

i=1

mi(r⃗i − r⃗G)
2 . (2.157)

L’équation du moment cinétique dans le référentiel du centre de masse (rappel : c’est un

référentiel en translation avec G)

dL⃗G

dt
= M⃗ ext

G (2.158)

nous donne, à l’ordre le plus bas en L/rG (exercice) :

dω

dt
= −3GM

r5G
(xG sin θ − yG cos θ)(xG cos θ + yG sin θ) . (2.159)

En utilisant le programme écrit pour le mouvement gravitationnel à 1 corps et y rajoutant

l’intégration de dθ/dt = ω et dω/dt de l’Eq.(2.159) ci-dessus, on obtient les résultats de la

FIG. 2.36. L’algorithme de Runge-Kutta d’ordre 4 avec un pas de temps fixe, ∆t = 10−3

an, a été utilisé.
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0 2 4 6 8 10
−4

−2

0

2

4

t [an]

θ
Gravitation solid rotation RK4

0 2 4 6 8 10
0

2

4

6

8

10

12

14

t [an]

ω

Gravitation solid rotation RK4

0 2 4 6 8 10
−4

−2

0

2

4

t [an]

θ

Gravitation solid rotation RK4

0 2 4 6 8 10
−20

0

20

40

60

80

t [an]

ω

Gravitation solid rotation RK4

0 2 4 6 8 10
10

−10

10
−5

10
0

t [an]

|Δ
θ|

Gravitation solid rotation RK4

Figure 2.36 – Rotation d’un satellite de longueur finie en orbite autour d’une planète.
Cas d’une orbite circulaire (haut) : mouvement régulier, périodique. Cas d’une orbite
elliptique (milieu) : mouvement irrégulier, chaotique. Sensibilité aux conditions initiales
dans le cas chaotique : écart entre 2 trajectoires |∆θ(t)| pour deux conditions initiales
voisines, |∆θ(0)| = 10−6 (bas). Schéma de Runge-Kutta d’ordre 4 à pas de temps fixe
∆t = 10−3 an.
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Tout d’abord, pour une orbite circulaire, le mouvement de rotation du satellite est

régulier, périodique. Pour une orbite elliptique, cependant, le mouvement de rotation

devient chaotique. Il devient effectivement imprédictible, ce que l’on peut vérifier en

prenant deux conditions initiales très proches et en mesurant l’écart ∆θ entre les deux

mouvements : il y a croissance exponentielle au cours du temps.

Il existe un exemple spectaculaire de rotation chaotique dans le système solaire : Hyperion,

une des lunes de Saturne. Elle a une orbite excentrique, qui lui cause ce mouvement de

rotation chaotique. Pour plus de détails, voir par exemple sous

http://solarviews.com/eng/hyperion.htm.

Suggestion d’exercice. Solide en rotation libre. Ecrire, puis résoudre les équations

pour la vitesse angulaire ω⃗ d’un corps solide dont les moments principaux d’inertie sont

I1 < I2 < I3. Choisir des conditions initiales avec ω⃗ proche des axes principaux. Analyser

la stabilité ou l’instabilité de la rotation au voisinage des axes principaux.

Suggestion d’exercice. Solide soumis à des couples de forces. Précession de l’axe des

pôles due au couple de forces exercé par la lune sur la terre (aplatie par l’effet de sa

rotation propre).

2.11 Particules dans un champ magnétique

2.11.1 Dérive des particules dans des champs inhomogènes

Soit une particule chargée, de massem, charge q, en mouvement dans un champ magnétique

statique B⃗(x⃗) et un champ électrique statique E⃗(x⃗). Les équations du mouvement s’ob-

tiennent directement de la force de Lorentz et de la deuxième loi de Newton :

dv⃗

dt
=

q

m

(
E⃗(x⃗) + v⃗ × B⃗(x⃗)

)
. (2.160)

Dans le cas B⃗ uniforme, et E⃗ = 0, il est facile d’obtenir la solution analytique exacte du

mouvement : il est uniforme dans la direction de B⃗, et circulaire uniforme dans le plan

perpendiculaire à B⃗. La fréquence angulaire du mouvement circulaire est la fréquence

cyclotronique ωc = qB/m, le rayon du cercle est appelé rayon de Larmor ρL = v⊥/ωc.

Les choses se compliquent quand B⃗ n’est pas uniforme. Mais il est facile d’intégrer

numériquement les équations du mouvement. Pour fixer les idées, plaçons un système

de coordonnées cartésiennes avec z ∥ B⃗, et supposons

B⃗(x⃗) = B0(1 + αx)e⃗z . (2.161)
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Le mouvement parallèle, selon z, est toujours uniforme. Mais, dans le plan perpendi-

culaire, (x, y), on observe qu’au mouvement circulaire se superpose une dérive dans la

direction y. La FIG. 2.37 montre les résultats de l’intégration numérique avec un schéma

Runge-Kutta d’ordre 4. La dérive a lieu dans la direction ⊥ B⃗ et ⊥ ∇B. La direction de

cette dérive dépend du signe de la charge : on montre les résultats pour un ion positif et

pour un électron.

Cette constatation est à la base de travaux théoriques analysant le mouvement en le

séparant en une composante rapide (le mouvement de gyration cyclotronique) et une

composante lente (la dérive). La dérivation des équations de dérive sort du cadre de ce

cours : elle sera abordée au cours de Physique des Plasmas. Mentionnons juste le résultat :

la vitesse de dérive due au gradient de champ magnétique s’écrit

v⃗∇B =
v2∥ + v2⊥/2

ωcB2
B⃗ ×∇B . (2.162)

Ce mouvement de dérive est représenté en traitillés sur la FIG. 2.37. Le calcul numérique

vérifie donc bien la théorie. On peut aussi vérifier les points suivants : le rayon de gyration

est bien ρL = v⊥/ωc, la fréquence du mouvement de gyration est bien ωc = qB/m, et

l’énergie cinétique de la particule est bien conservée. On montre à la FIG. 2.37 comment

la conservation de l’énergie converge en prenant des ∆t de plus en plus petits.

Suggestion d’exercice. Superposer au champ magnétique B⃗(x⃗) = B0(1 + αx)e⃗z un

champ électrique uniforme dans la direction y. Montrer qu’à la vitesse de dérive due au

gradient de champ magnétique se superpose une dérive v⃗E = E⃗ × B⃗/B2, indépendante

de la charge, de la masse, et de la vitesse de la particule.

Suggestion d’exercice. Considérer un champ magnétique curviligne et non uniforme

avec Bz(z) = B0 + B1 cos(2πz/L), B0, B1 et L étant des constantes données. Utiliser

l’équation ∇ · B⃗ = 0 en coordonnées cylindriques pour trouver Br(r, z). On projettera

ensuite sur les coordonnées cartésiennes. Etudier le mouvement d’une particule chargée

de charge q, masse m dans ce champ magnétique. Choisir différentes conditions initiales,

et observer qu’à partir d’un certain rapport entre v⊥ et v∥ la particule est réfléchie dans

la direction z : c’est l’effet miroir, observé par exemple pour les particules du vent solaire

dans le champ magnétique terrestre. On montre à la FIG. 2.38 quelques résultats typiques.

On a choisi la postition initiale à l’endroit B minimum. Avec v⊥/v∥ au temps t = 0

suffisamment petit, la particule arrive à passer les maxima de B , elle est dite “passante”

(trajectoire noire sur la FIG. 2.38). Avec v⊥/v∥(t = 0) suffisamment large, la particule

est réfléchie là où le champ magnétique est plus intense, elle est dite “piégée” (trajectoire

bleue sur la FIG. 2.38. Dans la théorie des dérives, on montre que le moment magnétique

de la particule

µ =
mv2⊥
2B

(2.163)

est conservé en moyenne : mis à part des oscillations lors du mouvement cyclotronique

rapide, le moment est conservé aux échelles de temps du mouvement de dérive lent. Avec

Physique Numérique LV SPC EPFL 83



CHAPITRE 2. EVOLUTION TEMPORELLE - PROBLÈMES À VALEURS
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Figure 2.37 – Trajectoire d’un électron (en haut à gauche), d’un ion positif (en haut à
droite) dans un champ magnétique rectiligne parallèle à z et d’intensité variable selon x.

Une dérive lente dans la direction ⊥ B⃗ et ⊥ ∇B se superpose au mouvement rapide de
gyration cyclotronique. Schéma de Runge-Kutta d’ordre 4. On vérifie (en bas) la conser-
vation de l’énergie de la particule.
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Figure 2.38 – Effet miroir dans un champ magnétique curviligne. En haut : particule
passante (noir) et particule piégée (bleu). Au milieu : v⊥(t) et v∥(t) pour la particule
piégée (on remarque que le signe de v∥ s’inverse !). En bas : conservation approximative,
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d’ordre 4.
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Figure 2.39 – Energie (à gauche) et moment magnétique (à droite) de la prticule au
cours du temps. Normalement, l’énergie devrait ête consrevée exactement, et le moment
magnétique devrait être conservé en moyenne temporelle. Le schéma de Runge-Kutta ne
conserve pas bien, alors que le schéma de Boris-Buneman est bien meilleur.

le fait que l’énergie cinétique de la particule est conservé, on peut obtenir la condition

pour laquelle une particule sera réfléchie (piégée) :

v∥(t=0)

v⊥(t=0)
<

√
Bmax

B(r⃗(t=0))
− 1 ⇒ piégée. (2.164)

2.11.2 Schéma de Boris-Buneman

Le schéma de Runge-Kutta, même s’il est d’ordre 4, ne conserve pas bien l’énergie et le

moment magnétique pour de longues simulations. Il y a systématiquement une accumu-

lation d’erreurs qui fait que l’énergie de la particule, ainsi que son moment magnétique,

“s’érodent” au cours du temps. La Fig. 2.39 illustre ceci, où on a prolongé la simulation

de la Fig. 2.38.

On peut faire mieux, avec le schéma de Boris-Buneman [9, 10, 11]. Pour simplifier les

notations, nous écrivons v⃗− = v⃗n, la vitesse de la particule à l’instant t = tn, et v⃗+ = v⃗n+1

sa vitesse à l’instant t = tn+1. Pour une particule dans un champ magnétique seulement

(E⃗ = 0), on écrit l’équation différentielle du mouvement, Eq.(2.160), avec des différences

finies centrées pour la dérivée temporelle, et la moyenne des vitesses en début et fin

d’intervalle pour le membre de droite :

v⃗+ − v⃗−
∆t

=
q

m

(
v⃗+ + v⃗−

2

)
× B⃗ . (2.165)

En rappelant la définition ωc = qB/m, et en posant e⃗∥ = B⃗/B, on a :

v⃗+ = v⃗− +
ωc∆t

2
(v⃗+ + v⃗−)× e⃗∥ (2.166)
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C’est un schéma dit semi-implicite : la solution au pas de temps ultérieur dépend de la

solution au pas précédent, v⃗−, (partie dite explicite) et de la solution au temps ultérieur,

v⃗+, (partie dite implicite). Dans le cas précis, on peut en fait résoudre la partie semi-

implicite analytiquement. On obtient, après quelques calculs :

v⃗+ = v⃗− +
ωc∆t

1 + (ωc∆t/2)2

(
v⃗− × e⃗∥ +

ωc∆t

2
(v⃗− × e⃗∥)× e⃗∥

)
. (2.167)

On peut montrer (exercice) que le schéma de Boris-Buneman conserve l’énergie mécanique

exactement. La conservation du moment magnétique est également bien meilleure : voir

Fig.2.39.

Dans le cas d’une présence simultanée d’un champ électrique E⃗(x⃗) et d’un champ magnétique

B⃗(x⃗), le schéma de Boris-Buneman s’écrit :

x⃗− = x⃗n + v⃗n∆t/2

v⃗− = v⃗n + (q/m)E⃗(x⃗−)∆t/2

v⃗+ = v⃗− + ωc(x⃗−)∆t
1+(ωc(x⃗−)∆t/2)2

(
v⃗− × e⃗∥(x⃗−) +

ωc(x⃗−)∆t
2

(v⃗− × e⃗∥(x⃗−))× e⃗∥(x⃗−)
)

v⃗n+1 = v⃗+ + (q/m)E⃗(x⃗−)∆t/2
x⃗n+1 = x⃗− + v⃗n+1∆t/2

(2.168)
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Chapitre 3

Intégration Spatiale : Problèmes aux
limites

On s’intéresse ici à l’évolution de systèmes physiques variant dans l’espace et le temps.

De tels systèmes sont souvent décrit par des Equations aux Dérivées Partielles (EDP)

opérant sur des champs scalaires et/ou vectoriels. Dans ce cours, nous nous limiterons

aux champs scalaires, c’est-à-dire des fonctions f(x⃗, t) à valeurs réelles ou complexes.

Nous considèrerons trois équations fondamentales très importantes de la physique :

l’équation d’advection-diffusion, l’équation d’onde et l’équation de Schrödinger. Trois

schémas numériques seront introduits et utilisés pour résoudre ces trois équations : les

différences finies explicites à deux et trois niveaux et le schéma semi-implicite de Crank-

Nicolson.

3.1 Cas 1-D : méthode de tir

Dans le cas unidimensionnel (1-D), il est souvent possible de se ramener à un problème

aux valeurs initiales. On peut ainsi utiliser les méthodes numériques vues au chapitre

précédent, en remplaçant formellement t→ x.

Dans cette section, nous allons présenter deux exemples : (1) calculer la distribution de

pression, densité et température dans l’atmosphère terrestre, connaissant la température

et la densité au sol ; (2) calculer la distribution de pression, densité et température au

coeur du soleil.

Ces deux études nous permettront d’aborder le problème des singularités des équations.

Elles sont de deux origines différentes : la première est d’origine physique, lorsque la
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densité est nulle ; la deuxième est d’ordre géométrique, il s’agit de la singularité du système

de coordonnées utilisées (sphériques dans le cas du soleil). La présence de ces singularités

nécessite des adaptations des schémas numériques et peuvent altérer leurs propriétés de

convergence.

3.1.1 Modèles fluides d’atmosphère planétaire. Singularité de
l’équation

On supposera l’épaisseur de l’atmosphère négligeable par rapport au rayon de la planète.

On supposera la masse de l’atmosphère négligeable par rapport à celle de la planète. Ceci

nous permet d’approximer l’accélération de la pesanteur par une constante g⃗. On néglige

le mouvement de l’atmosphère et la rotation de la terre. Les équations de base sont celles

de la mécanique des fluides, avec un champ de vitesse fluide v⃗(x⃗, t) = 0, ∀t, ∀x⃗ (statique),

un champ de densité ρ(x⃗, t), un champ de pression P (x⃗, t) et un champ de température

T (x⃗, t). De Navier-Stokes (ou Euler), on a

0 = −∇P + ρg⃗ . (3.1)

De l’équation d’état de la thermodynamique des gaz parfaits, on a

P = (ρ/m)kBT , (3.2)

où m est la masse d’une molécule, kB = 1.3807 × 10−23 est la constante de Boltzmann.

Comme tout système fluide, les équations doivent être complétées par une hypothèse

supplémentaire (on parle de fermeture du système d’équations).

Dans le modèle isotherme, on suppose T = T0 = const. Il vient donc

0 = −∇ρkBT0
m

+ ρg⃗ . (3.3)

Avec les hypothèses d’atmosphère mince et statique, on a des champs qui ne dépendent

que de l’altitude z (axe cartésien vertical). Il vient donc

dρ

dz
+

mg

kBT0
ρ = 0 , (3.4)

qui s’intègre facilement, à partir de la condition initiale ρ0 = ρ(0) = mP0/(kBT0), comme

ρ = ρ0e
−z/λ , λ =

kBT0
mg

. (3.5)

Le modèle isotherme n’est certainement pas très réaliste : on sait bien que la température

varie avec l’altitude. Un autre modèle est basé sur l’hypothèse que les échanges de chaleur

(transport) sont négligeables (δQ ≈ 0). Dans le modèle adiabatique, appelé aussi
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polytropique, on a Pρ−γ = const, avec γ l’indice d’adiabaticité ou rapport des chaleurs

spécifiques. On rappelle que 1 ≤ γ < 2 . On pose P = Cργ, où C est une constante

déterminée par les conditions au bord z = 0 :

C =

(
kBT0
m

)γ
1

P γ−1
0

(3.6)

et on trouve, en substituant dans l’Eq.(3.1) (exercice) :

d

dz

(
ργ−1

)
= −g(γ − 1)

Cγ
(3.7)

dont la solution est, avec la condition au bord ρ(0) = ρ0,

ρ =

(
ργ−1
0 − g(γ − 1)

Cγ
z

)1/(γ−1)

. (3.8)

Nous allons intégrer numériquement ces équations. Cela nous permettra d’illustrer le

problème de la singularité. On réécrit l’équation différentielle ci-dessus, Eq.(3.7), comme

dρ

dz
= − g

Cγ
ρ2−γ . (3.9)

[N.B. : Pour γ = 1, cette équation, avec C tiré de (3.6), conduit à l’Eq.(3.4) pour le

modèle de l’atmosphère isotherme.] C’est une équation différentielle du 1er ordre, et on

peut utiliser le schéma d’Euler, Eq.(2.10), avec la variable d’intégration z remplaçant

la variable temporelle. On trouve le résultat de la FIG. 3.1. L’intégration se passe sans

problème jusqu’au moment où la densité devient nulle, en

z0 =
γ

γ − 1

kBT0
mg

. (3.10)

Mathématiquement, notre équation a des problèmes à ce point-là ; elle est singulière, avec

le comportement suivant :

lim
z→z0

ρ(z) = 0 ; lim
z→z0

dmρ

dzm
(z) = 0,∀m <

1

γ − 1
; lim

z→z0

dnρ

dzn
(z) = ∞ , ∀n ≥ 1

γ − 1
. (3.11)

Pour z > z0, la solution mathématique est complexe, et n’a pas de signification physique :

z0 représente, dans ce modèle adiabatique, le sommet de l’atmosphère.

Il est intéressant d’essayer d’intégrer le problème inverse : supposons la position du som-

met de l’atmosphère, z0, connue, et calculons quelle est la densité au sol. Intégrer “en

marche arrière”, c.a.d. à partir de la condition initiale z = z0, ρ = 0, avec un pas ∆z < 0

donne la solution numérique ρ nulle partout ! Le problème vient de la singularité.

La solution est d’examiner analytiquement le comportement au voisinage de la singularité,

et prendre une condition initiale en z = zinit = z0 − ϵ avec ρ(z0 − ϵ) consistant avec le
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Figure 3.1 – Densité de l’atmosphère terrestre calculée avec le schéma d’Euler explicite.
Modèle adiabatique, γ = 7/5. En z = z0 = γ/(γ−1)(kBT0/mg) (ligne traitillée verticale),
la densité s’annulle. L’intégration numérique “en avant” (ligne noire avec losanges) de-
vient non physique dès que la solution numérique trouve ρ < 0. L’intégration numérique
“en arrière” (lignes rouges avec croix), à partir de z0 − ϵ, doit se faire en tenant compte
du caractère singulier de l’équation au voisinage de z = z0. On peut montrer que la den-
sité au sol, calculée à partir du sommet de l’atmosphère, converge bien avec ∆z → 0.
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comportement singulier de la solution au voisinage de z0. On obtient le comportement

au voisinage de z0 avec l’Ansatz

ρ = A(z0 − z)α = Aϵα (3.12)

que l’on substitue dans l’équation différentielle (3.9) pour obtenir

α =
1

γ − 1
, A =

(
Cγ

g(γ − 1)

)1/(1−γ)

(3.13)

et donc

ρ(zinit) =

(
Cγ

g(γ − 1)

)1/(1−γ)

ϵ1/(γ−1) . (3.14)

On effectue ensuite l’intégration numérique, dont on étudie les propriétés de convergence

avec ∆t, voir à la FIG. 3.1, et la dépendance en ϵ. Le résultat convergé en ∆t ne devrait pas

dépendre du choix de ϵ. Plus exactement, on devrait faire limϵ→0+. Cependant, ceci n’est

pas faisable numériquement, car plus ϵ est petit, plus on se rapproche de la singularité de

l’équation différentielle, et pour ϵ trop petit, les erreurs numériques dues à cette proximité

l’emportent sur l’approximation ϵ fini. En fait, si on utilise un schéma numérique d’ordre

élevé, la proximité de la singularité peut faire perdre l’ordre de convergence du schéma : en

effet, l’ordre de convergence n’est effectif que pour une régularité suffisante de la solution,

ce qui n’est pas le cas au voisinage d’une singularité.

Suggestion d’exercice. Calculer quelle serait la densité au sol si l’atmosphère avait

une hauteur de 50km. Faire les études de convergence avec ∆t et de comportement au

voisinage de la singularité.

3.1.2 Distribution de pression, densité et température au coeur
du soleil

Singularité du système de coordonnées

Quelle est la densité au centre du soleil ? L’impossibilité de mesures expérimentales in

situ implique la nécessité de développer des modèles théoriques, basés sur un certain

nombre d’hypothèses. Le problème est un peu plus compliqué que le cas d’une atmosphère

planétaire mince, où on négligeait la masse de l’atmosphère par rapport à celle de la terre

(solide). Dans une étoile, la masse est celle du gaz, et cette masse dépend du rayon.

Nous allons faire les hypothèses suivantes :

— fluide au repos

— équilibre des forces de pression et des forces gravitationnelles

— équation d’état polytropique :

Pρ−γ = const (3.15)
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Figure 3.2 – Pression, densité, masse et température à l’intérieur du soleil, calculés
avec le modèle polytropique, γ = 4/3, et utilisant un schéma Runge-Kutta d’ordre 4.

avec γ une constante donnée

— symétrie sphérique, on néglige la rotation du soleil

Le soleil est composé majoritairement d’hydrogène complètement ionisé, pour lequel γ =

5/3, et de photons, pour lesquels γ = 4/3. On simplifiera en ne considérant qu’une seule

valeur de γ pour tout l’intérieur du soleil.

Soit (r, θ, φ) les coordonnées sphériques centrées au centre de masse du soleil. Soient

P (r) la pression, m(r) la masse contenue à l’intérieur d’une sphère de rayon r, et ρ(r) la

densité. Les équations de base sont ainsi :

1) Statique des fluides ⇒

dP

dr
= −ρGm

r2
. (3.16)

94 Physique Numérique LV SPC EPFL
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2) Masse dm contenue dans une sphère de rayon r, d’épaisseur dr ⇒

dm

dr
= 4πr2ρ . (3.17)

3) Equation d’état polytropique ⇒

Pρ−γ = K . (3.18)

A partir de ces équations, on peut montrer (exercice) que l’on obtient l’équation suivante

pour la densité :

1

r2
d

dr

(
r2Kγργ−2dρ

dr

)
= −4πρG . (3.19)

Méthode de tir. Elle consiste à intégrer numériquement, avec une des méthodes pour

les valeurs initiales développées précédemment (avec r au lieu de t comme variable

d’intégration) : Euler, Runge-Kutta, etc. Il faut préciser 2 conditions initiales, puisque

c’est une équation du 2e ordre :

{
ρ(0) = ρ0

dρ
dr
(0) = 0

(3.20)

On ajustera la valeur initiale ρ0 jusqu’à obtenir le rayon du soleil R = 7 × 108m et la

masse du soleil M = m(R) = 2× 1030kg.

Singularité en r = 0. L’équation à résoudre est singulière en r = 0. Ce type de sin-

gularité est lié au choix des coordonnées sphériques. Ce n’est donc pas une singularité

d’origine physique : physiquement parlant, tout est régulier en r = 0. Mais ceci impose de

prendre la condition initiale non pas en r = 0, mais en r = ϵ. On choisira ϵ << R. Pour

démarrer l’intégration correctement, il faut choisir dρ/dr(ϵ). En partant des équations de

base (3.16)-(3.18), on obtient

dρ

dr
(ϵ) ≈ − 1

γK
ρ2−γ
0

Gm(ϵ)

ϵ2
(3.21)

avec m(ϵ) ≈ (4/3)πρ0ϵ
3 la masse contenue à l’intérieur de la petite sphère de rayon ϵ.

(N.B. L’approximation vient du fait que l’on a considéré ρ ≈ const = ρ0 à l’intérieur de

cette petite sphère). Un exemple, avec γ = 4/3, est montré à la FIG. 3.2.

Suggestion d’exercice. Calculer la température, la densité et la pression au centre du

soleil. Comparer les cas γ = 5/3 et γ = 4/3. Indication : prendre la densité à la surface

du soleil ρ(R) = 10−1kg/m3 ou ρ(R) = 10−4kg/m3 comme critère de détermination de R.
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3.2 Diifférences finies. Equation de Poisson

3.2.1 Electrodynamique et limite statique

On se bornera dans cette section à rappeler l’essentiel des équations de base. Pour plus

de détails, voir les cours de Physique 3 et 4.

On décrit l’interaction entre particules chargées électriquement par l’intermédiaire du

concept de champs électromagnétiques, abrégé EM : E⃗(x⃗, t), B⃗(x⃗, t), champs vec-

toriels.

Un ensemble de charges qi sera décrit par un champ scalaire densité de charge ρ(x⃗, t).

Un ensemble de charges en mouvement sera décrit par un courant électrique I, ou un

champ vectoriel densité de courant j⃗(x⃗, t).

Les champs E⃗, B⃗ sont créés par les champs ρ, j⃗. Ces champs obéissent aux équations

de Maxwell :

∇ · E⃗ =
ρ

ϵ0
(a) ∇× E⃗ = −∂B⃗

∂t
(b)

∇ · B⃗ = 0 (c) ∇× B⃗ = µ0j⃗ +
1

c2
∂E⃗

∂t
(d) . (3.22)

Les champs E⃗ et B⃗ sont tels qu’une charge q dans un champ EM subit une force, la force

de Lorentz :

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
. (3.23)

Avec les lois de la dynamique de Newton, ma⃗ = F⃗ , on a une théorie décrivant l’en-

semble des phénomènes EM (électrodynamique classique).

Dans la limite de champs statiques, ∂/∂t = 0 et les équations de pour les champs E⃗ et

B⃗ se découplent. Pour l’électrostatique,

∇ · E⃗ =
ρ

ϵ0
, ∇× E⃗ = 0 . (3.24)

De la 2e équation, on tire l’existence d’un potentiel scalaire ϕ(x⃗) tel que

E⃗ = −∇ϕ , ∇2ϕ = − ρ

ε0
. (3.25)
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Pour la magnétostatique 1

∇ · B⃗ = 0 , ∇× B⃗ = µ0j⃗ . (3.26)

De la 1e équation, on tire l’existence d’un potentiel vecteur A⃗(x⃗) tel que

B⃗ = ∇× A⃗ , ∇2A⃗ = −µ0j⃗ . (3.27)

Pour la dernière équation, on a utilisé la jauge de Coulomb : ∇ · A⃗ = 0.

Les équations pour E⃗(x⃗) et pour B⃗(x⃗) dans le vide (cas ρ = 0, j⃗ = 0) sont identiques. Cela

ne signifie pas pour autant qu’elles ont des solutions identiques : la différence tient aux

sources de ces champs et de leur topologie : des charges ponctelles pour E⃗, des boucles

de courant pour B⃗. Cela implique des topologies fondamentalement différentes pour les

lignes de champ E⃗ et B⃗.

Les équations pour ϕ et pour A⃗ sont également de même nature (du moins si on les écrit en

coordonnées cartésiennes). Cela veut dire que les méthodes pour résoudre les problèmes

d’électrostatique sont en principe applicables aux problèmes de magnétostatique. Il faut

cependant faire attention aux conditions aux bords, qui pourront être différentes d’un

problème à l’autre.

3.2.2 Equations aux différences finies. Formulation matricielle

On s’intéresse ici aux problèmes à valeurs aux bords, décrits par un système linéaire

d’équations aux dérivées partielles (EDP). Comme exemple type, on considèrera le problème

électrostatique, décrit par un potentiel scalaire ϕ(x⃗), satisfaisant l’équation de Poisson :

∇2ϕ(x⃗) = −ρ(x⃗)/ε0 , ∀x⃗ ∈ Ω , (3.28)

où ρ(x⃗) est le champ densité de charge, ε0 la permittivité du vide et Ω le domaine spatial

considéré. Le problème a une solution unique si on pose des conditions aux limites, ou

conditions aux bords

ϕ(x⃗) = V (x⃗) , ∀x⃗ ∈ ∂Ω , (3.29)

avec V (x⃗) une fonction connue sur le bord ∂Ω du domaine Ω.

La structure générale de telles équations peut s’écrire

L(ϕ(x⃗)) = b(x⃗) , ∀x⃗ ∈ Ω; ϕ(x⃗) = V (x⃗) , ∀x⃗ ∈ ∂Ω , (3.30)

avec L un opérateur différentiel linéaire.

1. En fait on devrait parler de “magnétostationnaire”, puisqu’il s’agit du champ magnétique créé par
écoulement stationnaire de charges.
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La discrétisation consiste à définir un maillage {(xi, yj, zk)}, équidistant dans chaque

direction, avec hx = ∆x = xi+1 − xi, hy = ∆y = yj+1 − yj, hz = ∆z = zk+1 − zk. On

approxime ensuite les opérateurs différentiels apparaissant dans le système d’EDP par des

différences finies. On obtient ainsi un système d’équations linéaires algébrique pour les

inconnues discrétisées ϕi,j,k = ϕ(xi, yj, zk) qui approxime le problème exact. Par exemple,

les différences finies d’ordre le plus bas, Eq.(A.7), donnent

∂2ϕ

∂x2

∣∣∣
i,j,k

≈ 1

h2x
(ϕi−1,j,k − 2ϕi,j,k + ϕi+1,j,k) . (3.31)

On fait de même pour ∂2ϕ/∂y2 et ∂2ϕ/∂z2 pour obtenir le système linéaire d’équations

algébriques approximant l’équation de Poisson :

−2(h2
yh

2
z+h2

xh
2
z+h2

xh
2
y)

h2
xh

2
yh

2
z

ϕi,j,k +
1
h2
x
(ϕi−1,j,k + ϕi+1,j,k)

+ 1
h2
y
(ϕi,j−1,k + ϕi,j+1,k) +

1
h2
z
(ϕi,j,k−1 + ϕi,j,k+1) = bi,j,k .

(3.32)

Il est intéressant d’écrire ces équations dans le cas particulier hx = hy = hz = h :

1

h2
(−6ϕi,j,k + ϕi−1,j,k + ϕi+1,j,k + ϕi,j−1,k + ϕi,j+1,k + ϕi,j,k−1 + ϕi,j,k+1) = bi,j,k . (3.33)

Dans le cas ρ(x⃗) = 0, ∀x⃗ ∈ Ω− ∂Ω, (équation de Laplace : potentiel électrostatique dans

le vide), on a bi,j,k = 0 pour tous les points intérieurs au domaine Ω. On a alors

ϕi,j,k =
1

6
(ϕi−1,j,k + ϕi+1,j,k + ϕi,j−1,k + ϕi,j+1,k + ϕi,j,k−1 + ϕi,j,k+1) , ∀(xi, yj, zk) /∈ ∂Ω

(3.34)

ce qui veut dire que le potentiel aux points intérieurs du maillage est la moyenne arithmétique

des valeurs du potentiel aux points les plus proches voisins du maillage. Les valeurs du

potentiel aux points du maillage situés sur le bord ∂Ω sont données directement par les

conditions aux bords.

Dans tous les cas, on peut écrire le problème EDP linéaire discrétisé comme

AΦ = b (3.35)

avec A une matrice N × N avec N = NxNyNz le nombre total de points du maillage,

Φ et b des vecteurs de N élements. Pour ce faire, il faut définir une numérotation des

points de maillage. En 1-D, c’est trivial. En 2-D (et 3-D), il faut décider si on numérote

d’abord en suivant x, puis y, (puis z), ou dans un autre ordre. Voir un exemple 2-D en

FIG. 3.3. On obtient la matrice A avec une structure de bande (“multi-diagonale”). Dans
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Figure 3.3 – Numérotation des noeuds d’un maillage 2-D. Ici, on a numéroté en suivant
d’abord selon x, puis selon y.

le cas 2-D de l’équation de Poisson, avec hx = hy = hz = h, on obtient :

A =
1

h2



−4 1 . . 1 . . . . . . .
1 −4 1 . . 1 . . . . . .
. 1 −4 1 . . 1 . . . . .
. . 1 −4 . . . 1 . . . .
1 . . . −4 1 . . 1 . . .
. 1 . . 1 −4 1 . . 1 . .
. . 1 . . 1 −4 1 . . 1 .
. . . 1 . . 1 −4 . . . 1
. . . . 1 . . . −4 1 . .
. . . . . 1 . . 1 −4 1 .
. . . . . . 1 . . 1 −4 1
. . . . . . . 1 . . 1 −4



(3.36)

La matrice A ci-dessus doit encore être modifiée pour inclure les conditions aux bords.

Il faut remplacer, pour tous les indices de ligne et colonne qui correspondent à un point

du bord, l’équation par la condition au bord correspondante : on met 1 sur la diagonale

de A et on met la valeur au bord V (xi, yj, zj) à l’élément correspondant du vecteur b.

Si on n’inclut pas ces conditions aux limites, la matriceA est singulière et il est impossible

de résoudre le système linéaire AΦ = b.

3.2.3 Résolution du système linéaire. Méthodes directes (Gauss)
et itératives (Jacobi, Gauss-Seidel, SOR)

Il y a deux groupes de méthodes pour résoudre le système linéaire AΦ = b. Les méthodes

directes et les méthodes itératives. On se limitera ici à en rappeler et en décrire

quelques-unes.
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Méthodes directes : élimination de Gauss, décomposition A = LLT , décomposition

A = LDU .

Méthodes itératives : La plupart sont applicables seulement aux matrices symétriques

définies positives. C’est notamment le cas de l’opérateur Laplacien discrétisé que nous

étudions, (mais ce n’est pas le cas de toute équation différentielle !). Ecrivons la matrice

A = L+D+R, avec L une matrice triangulaire inférieure, D une matrice diagonale et

R une une matrice triangulaire supérieure.

La méthode de Jacobi consiste à résoudre, à la (n+ 1)-ième itération,

DΦ(n+1) = b− LΦ(n) −RΦ(n) . (3.37)

On notera que dans le cas du problème de Poisson dans le vide, on a un système homogène

(b = 0), et la méthode de Jacobi revient à prendre, à chaque itération, la moyenne des

plus proches voisins, voir Eq.(3.34).

La méthode de Gauss-Seidel consiste à résoudre, à la (n+ 1)-ième itération :

(L+D)Φ(n+1) = b−RΦ(n) . (3.38)

Ce système est facile à résoudre en commençant à un bout de la matrice et en résolvant

une ligne après l’autre, séquentiellement (substitution “forward”).

La méthode SOR, dite aussi de sur-relaxation, est une façon d’accélérer la convergence de

la méthode de Gauss-Seidel. Soit α un nombre réel. En multipliant l’Eq.(3.38) par α et

en soustrayant formellement (α − 1)DΦ de part et d’autre, on résout, à la (n + 1)-ième

l’itération :

(αL+D)Φ(n+1) = αb− (αR+ (α− 1)D) Φ(n) . (3.39)

On peut remarquer que la matrice ((αL + D) reste triangulaire, et on résout, comme

Gauss-Seidel, par substitution. Notons qu’il n’y a pas besoin de stocker explicitement

les matrices L,D,R, etc., en mémoire. L’implémentation de cet algorithme revient, à

l’intérieur de la boucle de substitution (ligne no.i), à faire l’étape Gauss-Seidel

ϕ(∗) =
(
bi − LΦ(n+1) −RΦ(n)

)
/Di , (3.40)

puis la surrelaxation proprement dite :

Φ
(n+1)
i = Φ

(n)
i + α

(
ϕ(∗) − Φ

(n)
i

)
. (3.41)

Avec α < 1 on a une méthode de sous-relaxation, avec α = 1 on retrouve la méthode de

Gauss-Seidel, avec 1 < α < 2 on parle de sur-relaxation, alors qu’avec α ≥ 2 l’algorithme

diverge.

On définit le résidu à l’itération n

r(n) = ||b−AΦ(n)|| (3.42)
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et on choisit un critère d’arrêt pour les itérations r < ϵ, où ϵ est une précision requise.

Il y a bien d’autres méthodes itératives. Par exemple, celles basées sur les gradients

conjugués, qui consistent à choisir judicieusement les directions des relaxations succes-

sives. Elles nécessitent généralement un préconditionnement de la matrice pour être effi-

caces.

Mentionnons que de nombreuses librairies numériques sont disponibles pour résoudre les

systèmes algébriques linéaires.

3.2.4 Electrostatique en 2-D, différences finies, GS-SOR. Conver-
gence des itérations

On applique la discrétisation par différences finies au problème d’un condensateur rec-

tangulaire, de taille finie. On montre des exemples aux FIGS.3.4 et 3.5. Les méthodes de

Gauss-Seidel sans et avec sur-relaxation (SOR) convergent vers la même solution. Pour

un maillage Nx = 101, Ny = 61, après quelques dizaines d’itérations SOR avec α = 1.9,

la solution est convergée “à l’oeil nu”, c.à.d. qu’on ne distingue plus de différence, à

l’échelle de la figure, sur les lignes de niveau du potentiel. Pour ces figures, on a utilisé le

critère d’arrêt des itérations : résidu r < ϵ = 10−6.

On remarque, au niveau de la physique du résultat, le champ électrique plus intense vers

les angles du conducteur intérieur. (Le champ électrique étant le gradient du potentiel,

des équipotentielles serrées indiquent un champ électrique intense). La densité de charge à

la surface d’un conducteur, et donc l’intensité du champ électrique dans son voisinage, est

inversément proportionnelle au rayon de courbure de la surface (voir cours de Physique

III-IV). C’est l’effet de pointe. Sur l’ image du bas de la FIG. 3.5, l’effet de renforcement

de l’intensité du champ électrique est encore plus manifeste lorsque l’électrode intérieure

est mince et est placée à proximité du conducteur extérieur. S’il y a claquage, c’est vers

la pointe que cela se produira : c’est sur ce principe que sont basés les paratonnerres.

On peut utiliser la loi de Gauss pour le champ électrique

O

∫∫
S

E⃗ · d⃗σ = Qenf/ε0 (3.43)

pour calculer la charge sur le conducteur interne. Pour ce faire, il faut d’abord calculer

le champ E⃗ à partir de la solution numérique ϕ(xi, yj). On peut le faire par exemple en

utilisant les différences finies centrées du premier ordre, Eq.(A.16),

Ex|i+1/2 = −∂ϕ/∂x|i+1/2 ≈ −(ϕ(i+ 1, j)− ϕ(i, j))/∆x
Ey|j+1/2 = −∂ϕ/∂y|j+1/2 ≈ −(ϕ(i, j + 1)− ϕ(i, j))/∆y

(3.44)
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Figure 3.4 – Condensateur rectangulaire. Conditions aux bords ϕ = 1V sur le conduc-
teur intérieur, ϕ = 0 sur le conducteur extérieur. Méthode de différences finies, maillage
Nx = 101, Ny = 61 . Problème matriciel résolu avec Gauss-Seidel et SOR, paramètre
de sur-relaxation α = 1.9, précision requise : résidu r < ϵ = 10−6. En haut : lignes de
niveau du potentiel (de 0 à 1V). En bas : lignes de niveau de |E⃗| (de 0 à 13.6 V/m).
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Figure 3.5 – Condensateur rectangulaire. Conditions aux bords ϕ = 1V sur le conduc-
teur intérieur, ϕ = 0 sur le conducteur extérieur. Méthode de différences finies, maillage
Nx = 101, Ny = 61. Problème matriciel résolu avec Gauss-Seidel et SOR, paramètre de
sur-relaxation α = 1.9, précision requise : résidu r < ϵ = 10−6. En haut : lignes de niveau
du potentiel (de 0 à 1V). En bas : lignes de niveau de |E⃗| (de 0 à 26.4 V/m).
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Figure 3.6 – Convergence du résidu avec les itérations des méthodes de Gauss-Seidel
et de sur-relaxation (SOR), pour le cas de la FIG. 3.5.

Il faut noter que le champ E⃗ est défini aux milieux des segments du maillage, et que Ex

et Ey ne sont ainsi pas définis aux mêmes points. On choisit ensuite une surface fermée

S entourant le conducteur interne. On prendra pour surface S un rectangle aligné avec

les milieux des cellules du maillage. Enfin, on doit effectuer l’intégrale. On choisira la

méthode d’ordre le plus bas, étant donné que l’approximation par différences finies que

nous avons choisie est d’ordre le plus bas. On prendra garde à l’orientation de d⃗σ sur les

4 faces du rectangle.

Au niveau de la numérique, on étudie la convergence des itérations pour résoudre le

problème matriciel (FIG. 3.6). Avec sur-relaxation (SOR) et un paramètre de sur-relaxation

α = 1.9, la convergence est fortement accélérée par rapport à Gauss-Seidel (α = 1). On

remarque clairement aussi qu’on ne peut pas aller en dessous d’un résidu de 10−14 : on a

alors atteint la précision machine (64 bits dans ce cas).

Un autre test de validation de la solution numérique consiste à vérifier la loi de Gauss pour

des surfaces fermées S différentes. Pour toute surface fermée S entourant le conducteur

interne et entièrement contenue à l’intérieur du conducteur externe, l’intégrale de Gauss

(flux du champ électrique à travers S) devrait donner le même résultat. Les différences

sont ainsi une mesure de l’erreur numérique. La valeur du résultat permet de calculer,

avec la relation Q = C∆V , la capacité du système. Pour toute surface fermée n’entourant

aucune partie de conducteur, la charge enfermée est nulle, et le flux du champ électrique

devrait être nul. Dans ce cas, la valeur du résultat fournit une autre mesure de l’erreur

numérique.
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L’erreur numérique a en principe trois origines distinctes : premièrement, l’erreur sur la

convergence de la méthode itérative pour résoudre le système matriciel (Gauss-Seidel ou

SOR) ; deuxièmement, l’erreur de discrétisation venant du fait que la taille du maillage

est finie (h), ou erreur de troncature ; troisièmement, les erreurs d’arrondi. Pour le cas

de la FIG. 3.5, l’intégrale de Gauss donne, après 171 itérations de Gauss-Seidel SOR

(α = 1.9), 6.1511173 pour S tout près du conducteur interne et 6.1511178 pour S tout

près du conducteur externe, soit une erreur relative de 10−7. Pour S n’entourant que

du vide, on obtient −3.4 × 10−7 (au lieu de zéro). On vérifie que l’erreur semble tendre

vers zéro avec le nombre d’itérations SOR. L’erreur relative ne peut toutefois pas être

inférieure à la précision machine : les erreurs d’arrondi empêchent d’aller à des précisions

encore meilleures.

Un test similaire, mais avec un réseau plus grossier, conduit au même résultat qualitatif

(mais avec un nombre d’itérations GSSOR moins élevé).

Ces tests montrent que, pour le schéma numérique considéré, la loi de Gauss pour le

champ électrique est satisfaite “exactement” (à la précision machine), indépendamment

des erreurs de troncature, pour autant que l’on résolve le système algébrique linéaire

“exactement” (à la précision machine) et que l’on choisisse des surfaces fermées S passant

par les milieux des cellules du réseau. Lorsqu’on choisit d’autres surfaces S, les erreurs

de troncature réapparaissent à cause des interpolations que l’on doit faire.

Satisfaire la loi de Gauss pour certaines surfaces S bien choisies avec une précision ma-

chine ne veut pas dire que la précision sur la solution du problème est atteinte à la

précision machine quelle que soit la taille du maillage. Il reste les erreurs de troncature.

On les examinera en exercice, en considérant la solution ϕ en des endroits particuliers, et

en observant comment la solution converge en ces endroits, en prenant des maillages de

plus en plus fins.

Suggestion d’exercice. Calculer le potentiel créé par une paire de conducteurs minces

de taille finie placés dans une bôıte conductrice rectangulaire. Vérifier le théorème de

Gauss en prenant différentes surfaces fermées entourant l’un ou l’autre conducteur, ou

les deux. On montre à la FIG. 3.7 un exemple de configuration asymétrique. Le flux du

champ électrique pour une surface S entourant les deux conducteurs intérieurs est-il nul ?

Le flux du champ électrique est-il le même, au signe près, pour S1 autour du conducteur

de gauche et pour S2 autour du conducteur de droite ?

Suggestion d’exercice. Calculer le potentiel créé par une charge ponctuelle, en coor-

données sphériques. Indication : la singularité du problème en r = 0 peut être traitée en

considérant une charge non pas parfaitement ponctuelle, mais avec une taille finie. Il faut

veiller à ce que cette taille ne soit pas plus petite que la taille du réseau ∆r, afin d’avoir

plusieurs points de discrétisation sur la “particule”. Comparer avec le résultat analytique

exact.
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Figure 3.7 – Condensateur rectangulaire asymétrique. Conditions aux bords ϕ = 10V
sur le conducteur intérieur de gauche, ϕ = −10V sur le conducteur intérieur de droite,
ϕ = 0 sur le conducteur extérieur. Méthode de différences finies, maillage Nx = 81, Ny =
81 . Problème matriciel résolu avec Gauss-Seidel et SOR, paramètre de sur-relaxation
α = 1.8, précision requise : résidu r < ϵ = 10−4. En haut : lignes de niveau du potentiel
(de -10V à +10V). En bas : lignes de niveau de |E⃗| (de 0 à 191 V/m).
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3.2.5 Optimisation et complexité de l’algorithme

Dans le problème de l’équation de Laplace 2-D, avec N points de maillage dans chaque

direction, on a au minimum de l’ordre de N2 opérations à effectuer, en supposant un

algorithme “idéal”, qui donnerait la solution ϕij en une seule itération. Un tel algorithme

n’existe généralement pas, sauf bien sûr dans les cas où une solution analytique exacte

du problème peut être trouvée.

Avec le schéma aux différences finies et l’algorithme de Gauss-Seidel, on trouve que le

nombre d’itérations requis pour atteindre une précision donnée est proportionnel à N2

environ. Donc, puisque chaque pas de Gauss-Seidel implique de l’ordre de N2 opérations,

on a un algorithme qui coûte de l’ordre de N4 opérations. Pour des tailles de maillage

importantes, ceci peut vite devenir prohibitif.

Avec la sur-relaxation (SOR), on peut améliorer considérablement les choses. La FIG. 3.8

(haut) montre le nombre d’itérations requis pour une précision sur le résidu r < ϵ = 10−3

en fonction du paramètre de sur-relaxation α, pour différentes taillesN du maillageN×N
utilisé. Le cas physique est celui de la FIG. 3.7. Le choix optimal de α dépend de N , et est

empiriquement donné par αopt ≈ 2− const/N (image du milieu). Le nombre d’itérations

requis pour atteindre une précision donnée est proportionnel à N (image du bas). Le coût

de l’algorithme SOR à l’optimum est donc d’ordre N3, et non N4 comme Gauss-Seidel

sans sur-relaxation.

On pourrait résoudre le système algébrique linéaire AΦ = b, Eq.(3.35), “d’un seul coup”,

c’est-à-dire en une itération. Ce sont les méthodes dites directes qui permettent de le faire,

par exemple l’élimination de Gauss, ou via la décomposition de Cholesky A = LLT . Si

on résout ainsi, en considérant toute la matrice A commme une matrice carrée N2×N2,

l’algorithme requiert de l’ordre de (N2)3 opérations arithmétiques. On obtient un coût

qui est de l’ordre de N6, qui devient vite exorbitant. On peut faire mieux en considérant

le fait que la matrice A a, pour un maillage recangulaire structuré, une structure de

matrice de bande : voir Eq.(3.36). La largeur de la bande est proportionnelle au nombre

de points de maillage dans une direction, N . Les algorithmes directs d’élimination de

Gauss ou de factorisation de Cholesky nécessitent un nombre d’opérations proportionnel

au cube de la largeur de bande. On aboutit donc à un coût de l’algorithme proportionnel

à N4. Il y a un prix à payer supplémentaire, en terme de mémoire, puisqu’il faut stocker

la matrice A et sa décomposition.

La conclusion de cette discussion est que l’algorithme SOR semble le plus performant

pour ce genre de problème (Laplacien). Des difficultés apparaissent lorsque le domaine

de résolution est de géométrie plus complexe et nécessite un maillage non-équidistant,

auquel cas il peut être dificile de trouver un α optimal. Lorsque d’autres opérateurs sont

considérés, il se peut que les méthodes itératives simples, comme SOR, ne convergent tout
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Figure 3.8 – Nombre d’itérations SOR en fonction de α, pour l’équation de Laplace 2D
résolue par différences finies sur un maillage N × N (haut). Paramètre SOR α optimal
en fonction de 1/N (milieu). Nombre d’itérations SOR requis pour une précision ϵ =
10−3 en fonction de N (bas). Le cas physique correspond au condensateur rectangulaire
asymétrique de la FIG. 3.7.
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simplement pas ! 2 Dans ce cas, les méthodes directes peuvent être les plus appropriées.

3.2.6 Géométrie plus complexe

Considérons le problème d’une paire électrodes conductrices aux potentiels Va et Vb,

placées dans le vide à l’intérieur d’une bôıte rectangulaire conductrice au potentiel 0.

C’est la même situation qu’à la FIG. 3.7, mais cette fois on considère des électrodes de

formes non rectangulaires.

On résout, comme précédemment, avec la méthode des différences finies sur un maillage

cartésien (xi, yj) et l’algorithme GS-SOR. Par exemple, choisissons des électrodes ellip-

tiques placées avec une orientation quelconque par rapport aux axes (x, y). La FIG. 3.9

montre la solution numérique obtenue pour Va = +10V, Vb = −5V, des ellipses de demi-

axes a × b = 0.35 × 0.1m et 0.25 × 0.15m, centrées en (0.25, 0.5)m et (0.7, 0.3)m, avec

leurs grands-axes inclinés de 80 et 150 degrés par rapport à l’axe x, respectivement. La

bôıte extérieure est carrée de côté L = 1m. Le maillage est 160× 160, et la paramètre de

surrelaxation est α = 1.9. Pour atteindre un résidu inférieur à ϵ = 10−3, 147 itérations

GS-SOR sont nécessaires.

Si l’algorithme converge bien, dans le sens que la solution numérique ϕi,j converge avec

les itérations SOR, il y a un problème avec le champ électrique au voisinage des surfaces

des électrodes. Des irrégularités apparaissent, qui ne sont pas physiques, mais qui sont

dues au fait que ces conducteurs sont représentés sur un maillage cartésien rectangulaire,

et que la surface des conducteurs n’est pas alignée avec les lignes de coordonnées. Cela

implique que la représentation numérique de la surface, supposée lisse en réalité, est en

“marche d’escalier”, et on voit en fait un effet de pointe purement numérique aux coins

de ces “marches d’escalier”. La solution pour E⃗ n’est donc pas bonne au voisinage des

surfaces des électrodes.

La solution à ce problème dépasse le cadre de ce cours. Mentionnons quand même la

méthode des éléments finis, qui peut être utilisée avec des maillages dont les noeuds

peuvent être plaçés le long des surfaces. On peut également utiliser les éléments finis sur

des systèmes de coordonnées curvilignes. Des méthodes de raffinement du maillage dans

les régions de fort gradient de la solution ont également été développées.

2. Ces méthodes ne convergent que si la matrice A est symétrique positive définie.
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0 0.5 1
0

0.2

0.4

0.6

0.8

1

x [m]

y 
[m

]

Contours of φ GSSOR h=0.00625 α=1.9 nit=147

−4

−2

0

2

4

6

8

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x [m]

y 
[m

]

Contours of |E| GSSOR h=0.00625 α=1.9 nit=147

0

20

40

60

80

100

120

140

Figure 3.9 – Condensateur avec électrodes elliptiques. Conditions aux bords ϕ = 10V
sur le conducteur intérieur de gauche, ϕ = −5V sur le conducteur intérieur de droite,
ϕ = 0 sur le conducteur extérieur. Méthode de différences finies, maillage Nx = 161, Ny =
161 . Problème matriciel résolu avec Gauss-Seidel et SOR, paramètre de sur-relaxation
α = 1.9, précision requise : résidu r < ϵ = 10−3. En haut : lignes de niveau du potentiel
(de -5V à +10V). En bas : lignes de niveau de |E⃗| (de 0 à 150 V/m).

110 Physique Numérique LV SPC EPFL



3.3. FORME VARIATIONNELLE. ELÉMENTS FINIS

3.3 Forme variationnelle. Eléments finis

Soit un système d’équations aux dérivées partielles (EDP) avec conditions aux limites de

type Dirichlet 3 :

L(ϕ(x⃗)) = b(x⃗) , ∀x⃗ ∈ Ω ; ϕ(x⃗) = V (x⃗) , ∀x⃗ ∈ ∂Ω , (3.45)

avec L un opérateur différentiel linéaire.

3.3.1 Description de la méthode

La méthode des éléments finis pour obtenir une approximation de la solution à ces EDP

est construite sur les bases suivants, dont la forme variationnelle des équations est

l’un des piliers, l’autre étant l’approximation des fonctions en développant sur une base

de fonctions élémentaires de support fini. La démarche est consituée des points

suivants.

1. La définition d’un produit scalaire

(η, ϕ) =

∫
Ω

η(x⃗)ϕ(x⃗)d3x (3.46)

et de la norme ||ϕ|| =
√
(ϕ, ϕ).

2. La construction d’une forme variationnelle (dite “faible”), en choisissant une fonc-

tion test η(x⃗), multipliant l’Eq.(3.45) par η(x⃗), puis intégrant sur le domaine Ω.

L’EDP avec conditions aux limites, Eq.(3.45), est donc équivalente au problème

variationnel suivant : trouver ϕ ∈ Cn(Ω) telle que

(η,L(ϕ)) = (η, b) , ∀η(x⃗) ∈ Cn(Ω)|η(x⃗) = 0,∀x⃗ ∈ ∂Ω ; ϕ(x⃗) = V (x⃗),∀x⃗ ∈ ∂Ω .

(3.47)

3. Une intégration par parties. Pour illustration, nous prendrons le cas de l’opérateur

de Laplace, L = ∇2 :

(η,∇2ϕ) =

∫
Ω

η∇2ϕ d3x =

∫
Ω

(−∇η · ∇ϕ+∇ · (η∇ϕ)) d3x

On applique ensuite le théorème de Gauss (appelé aussi théorème de la divergence)

au dernier terme, pour obtenir :

(η,∇2ϕ) == −
∫
Ω

∇η · ∇ϕ d3x+
∫
∂Ω

η∇ϕ · d⃗σ . (3.48)

Le dernier terme est parfois nul, selon les conditions aux bords : on parle dans

ce cas de conditions aux bords naturelles. Pour les opérateurs L symétriques que

3. Ici de type Dirichlet, mais on peut avoir d’autres conditions : Neuman, mixtes ou périodiques.
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nous considèrerons dans ce cours, l’intégration par parties conduit à symétriser

explicitement la forme variationnelle :

−(L̂(η), L̂(ϕ)) = (η, b) , ∀η(x⃗) ∈ Cn(Ω) . (3.49)

Pour notre illustration, L = ∇2 et L̂ = ∇.

4. Une approximation numérique du problème variationnel. L’idée de base est de

considérer un sous-espace de l’espace des fonctions, noté Cp(Ωh), qui est celui

des fonctions continues différentiables d’ordre p par morceaux, représentables sur

une base de fonctions Λi(x⃗) ayant un support de taille finie, définie sur une

discrétisation (un maillage) de l’espace :

ϕ(x⃗) =
∑
j

ϕjΛj(x⃗) . (3.50)

On fait de même pour la fonction test η. Si la fonction test est choisie avec les

mêmes fonctions de base,

η(x⃗) =
∑
i

ηiΛi(x⃗) , (3.51)

on obtient ce qui s’appelle la méthode de Galerkin. Les fonctions de base Λi sont

généralement des polynômes par morceaux. Pour fixer les idées, on a représenté à

la FIG. 3.10 le cas 1-D des éléments finis linéaires (p = 1), sur un maillage {xj}.
Noter que les points du maillage ne doivent pas forcément être équidistants : c’est

une des souplesses importantes que permet la méthode des éléments finis (par

rapport aux différences finies).

5. La substitution de cette approximation numérique, Eqs.(3.50-3.51), dans le problème

variationnel (3.49) :

−
∑
i

∑
j

ηi

(∫
Ω

L̂(Λi)L̂(Λj) d
3x

)
ϕj =

∑
i

ηi

(∫
Ω

Λib d
3x

)
, ∀ηi . (3.52)

Définissons la matrice A avec Ai,j = expression entre les grandes parenthèses

du membre de gauche, le vecteur Φ des inconnues ϕj, et le vecteur b avec bi
= expression entre parenthèses du membre de droite. Le problème variationnel

discrétisé ci-dessus, Eq.(3.52), doit être vérifié pour tout ηi, ce qui veut dire que

l’égalité doit être satisfaite pour chaque terme de la somme sur i. On obtient ainsi

un système d’équations linéaires algébriques

AΦ = b . (3.53)

A est une matrice N × N , N étant le nombre de points du maillage. L’étape

de construction des éléments de matrice Ai,j nécessite le calcul d’ intégrales fai-

sant intervenir des produits des fonctions de base, ΛiΛj, et de leurs dérivées, par

exemple (∂Λi/∂x)(∂Λj/∂x). Comme ces fonctions de base ont un support fini, ces

intégrales sont nulles sauf pour i voisin de j. En conséquence, la matrice A a une

structure de matrice de bande, dont la largeur dépend de l’ordre des éléments et

de la dimensionalité du problème. Dans le cas d’éléments finis linéaires 1-D, FIG.

3.10, chaque élément Λi ne recouvre que les plus proches voisins, Λi−1 et Λi+1, en

plus de lui-même ; la matrice A est alors tridiagonale.
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Figure 3.10 – Eléments finis linéaires 1-D. Fonctions de base Λi(x) et représentation
(approximation) d’une fonction ϕ(x) par ces éléments finis.

6. L’imposition des conditions aux bords explicites. On le fait généralement au niveau

du système algébrique linéaire AΦ = b. Par exemple, dans le cas de conditions de

Dirichlet et d’éléments finis linéaires, on a

Ai,i = 1.0; Ai,j ̸=i = 0; Aj ̸=i,i = 0; bi = V (x⃗(xi)) (3.54)

pour tout i tel que x⃗(xi) soit un point sur la surface ∂Ω. Dans le cas de condi-

tions aux bords plus compliquées, et/ou d’éléments finis d’ordre plus élevé, leur

application implique généralement de faire des combinaisons linéaires des lignes et

colonnes de A et du membre de droite b.

7. La résolution du système algébrique linéaire (3.53). Voir Section 3.2.3.

On notera au passage que l’intégration par parties permet de faire décrôıtre l’ordre de

l’opérateur différentiel : par exemple, pour une équation du 2e ordre, la forme variation-

nelle intégrée par parties ne fera intervenir que les dérivées du 1er ordre : cela permet

l’utilisation de fonctions de base linéaires pour une équation différentielle qui au départ

fait intervenir les 2e dérivées.

Intégration numérique des éléments de matrice et du terme de droite

On se restreindra au cas 1-D. L’algorithme de construction de ces éléments consiste à

calculer, pour chaque intervalle [xk, xk+1], de taille hk = xk+1 − xk (les hk peuvent être

tous différents), la contribution aux éléments de matrice et du terme de droite. Ce sont
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CHAPITRE 3. INTÉGRATION SPATIALE : PROBLÈMES AUX LIMITES

des intégrales du type ∫ xk+1

xk

f(x)dx (3.55)

On peut utiliser la règle du point milieu ou celle des trapèzes (Annexe B) ou, encore

mieux, un mélange des deux, avec un paramètre p compris entre 0 et 1 :∫ xk+1

xk

f(x)dx ≈ hk

[
p
f(xk) + f(xk+1)

2
+ (1− p) f

(
xk + xk+1

2

)]
. (3.56)

3.3.2 Elements finis - Equation de Poisson 1-D

Soit Ω un intervalle [xa, xb]. On place des électrodes en x = xa et x = xb, aux potentiels

Va et Vb. Entre les deux électrodes se trouve une distribution de charge, de densité ρ(x)

donnée. On aimerait calculer le potentiel ϕ(x) et le champ électrique Ex(x) entre les deux

électrodes.

Il faut donc trouver une solution au problème :

d2ϕ

dx2
(x) = −ρ(x)

ε0
,∀x ∈]xa, xb[, ϕ(xa) = Va, ϕ(xb) = Vb . (3.57)

En suivant la méthode présentée à la section précédente, on construit la forme variation-

nelle en multipliant l’équation de Poisson (3.57) par une fonction test η(x) et en intégrant

entre xa et xb : ∫ xb

xa

η
d2ϕ

dx2
dx =

∫ xb

xa

−ηρ/ε0 dx . (3.58)

Intégrant par parties, ∫ xb

xa

dη

dx

dϕ

dx
dx−

[
η
dϕ

dx

]xb

xa

=

∫ xb

xa

ηρ/ε0 dx . (3.59)

Le terme intégré, aux bornes de l’intervalle Ω, peut être considéré comme nul ; en effet,

comme ϕ est connu aux bords, par les conditions aux limites, il n’est pas nécessaire de

faire la variation en ces points. Autrement dit, on peut choisir η nul en x = xa et en

x = xb. Le problème variationnel s’énonce alors comme suit : trouver une fonction ϕ(x)

telle que l’équation ∫ xb

xa

dη

dx

dϕ

dx
dx =

∫ xb

xa

ηρ/ε0 dx . (3.60)

soit satisfaite pour toute fonction η(x) à valeur nulle en xa et en xb, et telle que ϕ(xa) =

Va, ϕ(xb) = Vb .

Attention aux conditions sur la fonction-test η. Un exemple d’erreur de raisonnement est

le suivant. Prenons pour simplifier la cas du vide, ρ(x) = 0,∀x ∈ [xa, xb]. L’équation de

Poisson devient une équation de Laplace :

d2ϕ

dx2
= 0
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Donc dϕ/dx = C, avec C = const, et ϕ(x) = Cx+D, avec D = const. Avec les conditions

aux limites, on trouve facilement la solution ϕ(x) = Va + (Vb − Va)(x− xa)/(xb − xa). En

considérant la forme variationnelle, Eq.(3.60) avec ρ = 0, et en posant g = dη/dx, on a :∫ xb

xa

g
dϕ

dx
dx = 0, ∀g. (3.61)

On en conclut
dϕ

dx
= 0,∀x .

Mais évidemment cela contredit la solution du problème ! Où est donc l’erreur ?

L’erreur est que nous avons oublié de transcrire la condition sur η : (pour toute fonction

η(x) à valeur nulle en xa et en xb) en une condition correspondante sur la fonction g. En

effet, la condition sur η implique la condition suivante pour g :

∀g|
∫ xb

xa

g(x)dx = 0 . (3.62)

Pour de telles fonctions, la forme variationnelle, Eq.(3.61) admet comme solution pour ϕ

dϕ

dx
= const. (3.63)

La valeur de cette constante n’est pas nécessairement zéro !

Choisissons un maillage de N points xi, i = 1..N , pas forcément équidistants, avec

hi = xi+1 − xi > 0, i = 1..n, où n = N − 1 est le nombre d’intervalles. On utilise ensuite

l’approximation numérique des éléments finis, Eqs.(3.50- 3.51), avec des fonctions de base

linéaires, FIG. 3.10. On obtient, sur le modèle de l’Eq.(3.52) :∑
i

∑
j

ηi

(∫ xb

xa

dΛi

dx

dΛj

dx
dx

)
ϕj =

∑
i

ηi

(∫ xb

xa

ρ

ε0
Λi dx

)
, ∀ηi . (3.64)

On obtient donc le système algébrique linéaire AΦ = b, avec

Aij =

∫ xb

xa

dΛi

dx

dΛj

dx
dx (3.65)

bi =

∫ xb

xa

ρ

ε0
Λi dx . (3.66)

On a deux méthodes algorithmiques de construire la matrice et le membre de droite. La

première méthode consiste à effectuer une boucle sur les intervalles (k = 1..n) et à

ajouter à la matrice A et au membre de droite b la contribution de l’intervalle numéro

k aux intégrales (3.65,3.66). Plus spécifiquement,

Aij =

∫ xb

xa

dΛi

dx

dΛj

dx
dx =

n∑
k=1

∫ xk+1

xk

dΛi

dx

dΛj

dx
dx (3.67)

bi =

∫ xb

xa

ρ

ε0
Λi dx =

n∑
k=1

∫ xk+1

xk

ρ

ε0
Λi dx . (3.68)
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Dans les intégrales ci-dessus, seuls les termes (i, j) = (k, k), (k, k+1), (k+1, k), (k+1, k+1)

pour la matrice et les termes i = k et i = k + 1 pour le membre de droite sont non nuls.

L’algorithme de cette première méthode de construction deA et b consiste en une boucle

sur les intervalles k = 1..n

A = A+


(k) (k+1)

. .

(k) . 1/hk −1/hk
(k+1) −1/hk 1/hk .

. .

 (3.69)

bk = bk + hk

(
p
ρ(xk)

2ε0
+ (1− p)

ρ(xk+1/2)

2ε0

)
(3.70)

bk+1 = bk+1 + hk

(
p
ρ(xk+1)

2ε0
+ (1− p)

ρ(xk+1/2)

2ε0

)
. (3.71)

Les contributions au membre de droite, bk et bk+1 ci-dessus, ont été écrites en utilisant la

formule d’intégration (3.56).

Une deuxième méthode de construction de la matrice et du membre de droite consiste à

calculer dans une boucle sur les équations du système algébrique linéaire, donc

sur les lignes de la matrice, l’indice i dénotant le numéro de la ligne, (qui représente

aussi le numéro de l’élément fini de la fonction test). Il est facile de calculer les éléments

de matrice exactement, notant que

dΛi/dx = −1/hi, ∀x ∈ ]xi, xi+1[ ; 1/hi−1, ∀x ∈ ]xi−1, xi[ ; 0 ailleurs. (3.72)

On obtient

Ai,i =
1

hi−1

+
1

hi
, i = 2..n; A11 =

1

h1
, ANN =

1

hn
;

Ai,i+1 = − 1

hi
, i = 1..n;

Ai,i−1 = − 1

hi−1

, i = 2..N ;

Ai,j = 0 ,∀j /∈ {i− 1, i, i+ 1} . (3.73)

bi = hi−1

[
p
ρ(xi)

2ε0
+ (1− p)

ρ(xi−1/2)

2ε0

]
+ hi

[
p
ρ(xi)

2ε0
+ (1− p)

ρ(xi+1/2)

2ε0

]
, i = 2..n.

(3.74)

Les lignes i = 1 et i = N doivent être traités séparément : l’intégrale de la forme

variationnelle va de xa à xb, et pour le premier et le dernier point de maillage, il n’y a

que la moitié de la fonction de base correspondante qui contribue. On obtient

b1 = h1

[
p
ρ(x1)

2ε0
+ (1− p)

ρ(x1+1/2)

2ε0

]
(3.75)

bN = hn

[
p
ρ(xN)

2ε0
+ (1− p)

ρ(xN−1/2)

2ε0

]
. (3.76)
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L’avantage de la première méthode (raisonner par intervalles) par rapport à la deuxième

(raisonner par ligne du système linéaire) est que toutes les contributions à A et b de

l’intervalle k, Eqs.(3.69-3.71), ne font intervenir que hk, et non un mélange de hi et hi−1

de la deuxième méthode, Eqs.(3.73-3.74). De plus, la première méthode ne nécessite pas

de traitement spécial des points du bord du domaine, alors que c’est le cas de la deuxième,

Eqs.(3.75-3.76). [Mais, dans tous les cas, les conditions aux bords doivent être appliquées,

voir ci-dessous !]

La matrice A est tridiagonale, et il n’est pas nécessaire de la stocker sous la forme

d’une matrice carrée pleine. On ne stocke que la diagonale principale (d), la diagonale

inférieure(a) et la diagonale supérieure (c) :

A =



d1 c1
a1 d2 c2

. . .
. . .

ak−1 dk ck
. . .

an−1 dn cn
an dN


. (3.77)

La correspondance entre les éléments de matrice Aij et les composantes de d, a et c est

Ak,k → dk , Ak,k+1 → ck , Ak+1,k → ak , Ak+1,k+1 → dk+1 . (3.78)

Il faut imposer les conditions aux bords, Eq.(3.57), explicitement sur l’équation matricielle.

La première équation doit être remplacée par ϕ1 = Va et la dernière équation par ϕN = Vb.

On le fait en posant :

d1 = 1; c1 = 0; b1 = Va; et dN = 1; an = 0; bN = Vb . (3.79)

La résolution du système algébrique linéaireAΦ = b se fait par méthode directe (élimination

de Gauss, ici en Matlab®) :

for k=2:N

piv=a(k-1)/d(k-1);

d(k)=d(k)-piv*c(k-1);

b(k)=b(k)-piv*b(k-1);

end

phi=b./d;

for k=n:-1:1

phi(k)=(b(k)-c(k)*phi(k+1))/d(k);

end
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Figure 3.11 – Résolution de l’équation de Poisson avec la méthode des éléments finis
linéaires 1-D sur un maillage non-uniforme. Densité (haut), potentiel (milieu) et champ
électrique (bas). Champ électrique obtenu avec un maillage uniforme n = 15 (traitillés
rouge), avec un maillage non uniforme n = 15 (bleu avec ’o’) et n = 100 (noir ’+’).
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L’avantage de pouvoir définir un maillage non équidistant peut s’avérer crucial lorsque

la physique que l’on veut étudier présente des structures très localisées dans l’espace.

Prenons le cas d’une distribution de charge

ρ(x) = ε0a0 sin(kxx) exp
− (x−x0)

2

2σ2 (3.80)

représentée à la FIG. 3.11 pour a0 = 1000V/m2, kx = 18π/xbm
−1, x0 = 0.05m, σ =

0.004m. On résout Poisson entre xa = 0m et xb = 0.1m, où les deux électrodes sont mises

à la terre, Va = Vb = 0V. On utilise l’intégration Eq.(3.56) pour le membre de droite, avec

le paramètre p = 1/3. Le maillage est choisi uniforme par morceaux dans les intervalles

[0, 0.035], [0.035, 0.065] et [0.065, 1]. On répartit 80% des points dans l’intervalle central

et 10% dans chacun des autres intervalles. La solution, FIG. 3.11, montre clairement

comment la haute densité de points du maillage dans les régions où la solution exhibe

une structure localisée est appropriée : pour comparaison, on a représenté le champ

électrique obtenu avec un maillage uniforme partout.

3.4 Magnétostatique - Biot-Savart

Les équations pour le potentiel électrostatique ϕ et pour le potentiel vecteur A⃗, Eqs.

(3.25) et (3.27), sont toutes deux de la forme d’une équation de Poisson. On peut donc

utiliser les méthodes présentées aux sections précédentes, différences finies et éléments

finis, pour résoudre aussi les problèmes de magnétostatique.

On mentionnera quand même deux autres approches. La première est utilisée dans le

vide (cas j⃗ = 0), où ∇× B⃗ = 0 implique l’existence d’un potentiel scalaire 4 Ψ(x⃗) tel que

B⃗ = ∇Ψ. Avec ∇ · B⃗ = 0, on a

∇2Ψ = 0 (3.81)

et les méthodes pour résoudre l’équation de Laplace peuvent être utilisées.

La deuxième approche utilise la formule de Biot-Savart. Si on a une distribution de

courant j⃗(x⃗′) donnée, on peut trouver la solution explicite de l’Eq.(3.27). En se rappelant

que la solution de l’équation de Poisson (3.25) pour un élément de charge ρ(x⃗′) d3x′ est

ϕ(x⃗) = ρ(x⃗′) d3x′/4πε0r, avec r = |x⃗ − x⃗′|, la solution de (3.27) s’obtient en substituant

formellement ρ/ε0 par µ0j⃗ et en intégrant sur tout l’espace :

A⃗(x⃗) =
µ0

4π

∫ ∫ ∫
j⃗(x⃗′)d3x′

|x⃗− x⃗′|
. (3.82)

En effectuant B⃗ = ∇ × A⃗ (attention, l’opérateur ∇ opère sur x⃗ mais pas sur x⃗′), et en

4. Il ne s’agit évidemment PAS du potentiel électrostatique.
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Figure 3.12 – Champ magnétique créé par une bobine inclinée, dont la position est
symbolisée par les deux traits noirs obliques. Les flèches sont proportionnelles au champ
B⃗.

posant e⃗r = (x⃗− x⃗′)/r, on obtient la formule de Biot-Savart :

B⃗(x⃗) =
µ0

4π

∫ ∫ ∫
j⃗(x⃗′)× e⃗r

r2
d3x′ . (3.83)

Dans le cas d’une boucle de courant (fil mince), courbe Γ, courant I, j⃗d3x′ = Id⃗l
′
= Ie⃗tdl

′

et on a, de (3.82)(3.83) :

A⃗(x⃗) =
µ0I

4π

∮
Γ

d⃗l
′

r
, B⃗(x⃗) =

µ0I

4π

∮
Γ

e⃗t × e⃗r
r2

dl′ , (3.84)

où e⃗t est le vecteur unité tangent au fil en tout point.

L’utilisation de la formule de Biot-Savart implique donc d’effectuer des intégrales.

Quelques méthodes d’intégration numérique sont présentées à l’Annexe B.
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Lorqu’il y a plusieurs circuits (“boucles de courant”), on applique le principe de super-

position.

Un exemple est illustré à la FIG. 3.12. On a calculé le champ B⃗ créé par une bobine

constituée de 40 boucles de fil de forme circulaire de rayon R = 0.24m parcourues par un

courant I = 1A, et empilées les unes sur les autres avec un décalage. A la FIG. 3.12, on

a représenté le champ magnétique dans un plan (y, z) par des flèches proportionnelles au

champ B⃗. La position de la bobine est symbolisée par les deux traits obliques. Chaque

boucle de la bobine est discrétisée avec N = 128 points pour l’intégration de Biot-Savart.

Pour cette figure, la règle des trapèzes a été utilisée. Des tests numériques standards de

convergence de la solution avec le nombre de points de discrétisation montrent que la

méthode a une erreur en h2 (donc en 1/N2), comme prévu par la théorie (Annexe B).

On peut encore effectuer des vérifications sur la qualité de la physique du résultat. On

vérifiera la précision avec laquelle la loi d’Ampère,
∮
Γ
B⃗ · d⃗l = µ0I, et la loi de Gauss pour

le champ magnétique, o
∫∫

Σ
B⃗ · d⃗σ = 0, sont vérifiées pour tout parcours fermé Γ et pour

toute surface fermée Σ, respectivement.
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Chapitre 4

Intégration Spatio-Temporelle

4.1 Advection-diffusion

4.1.1 Advection

L’advection désigne le transport d’une quantité physique, décrite par un champ scalaire

f(x⃗, t), dans un écoulement décrit par un champ de vitesses v⃗(x⃗, t). Il peut s’agir, par

exemple, de la concentration d’un polluant, ou de l’humidité dans l’air, etc. Le flux de

cette quantité physique est j⃗ = fv⃗. De l’équation de continuité

∂f

∂t
+∇ · j⃗ = 0 (4.1)

et en supposant, de plus, un ćoulement incompressible, ∇ · v⃗ = 0, on obtient l’équation

décrivant l’évolution spatio-temporelle de f , appelée équation d’advection :

∂f(x⃗, t)

∂t
+ v⃗ · ∇f(x⃗, t) = 0 (4.2)

On se restreindra dans ce chapitre au cas à une dimension d’espace. La solution de cette

équation, pour v constant, est triviale :

f(x, t) = f0(x− vt) (4.3)

où f0 est la condition initiale, f0(x) = f(x, 0). La solution est donc une simple translation

dans l’espace, à la vitesse v, de la condition initiale. Etant donné une solution exacte si

simple, on peut se demander pourquoi développer des méthodes numériques pour résoudre

le prboblème de l’advection. En fait, la solution n’est pas triviale si la vitesse v n’est pas

uniforme ou non constante. De plus, le phénomène d’advection est souvent combiné à

celui de la diffusion, sujet traité dans la section suivante.
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CHAPITRE 4. INTÉGRATION SPATIO-TEMPORELLE

La résolution numérique d’une équation apparamment si simple n’est cependant pas si

triviale.

Définissons les quantités suivantes :

- le nombre de particules

N(t) =

∫
f(x, t)dx (4.4)

- la position moyenne

< x > (t) =
1

N

∫
xf(x, t)dx (4.5)

- la variance σ2 et l’écart quadratique moyen, ou écart-type, σ

< x2 > (t) =
1

N

∫
x2f(x, t)dx , σ2(t) =< x2 > (t)− (< x > (t))2 (4.6)

Les intégrales dans les expressions ci-dessus sont à effectuer sur tout le domaine spatial

de définition de f .

Advection en différences finies

La méthode est de discrétiser l’espace et le temps sur un maillage équidistant (xi, tj) et

d’utiliser les approximations en différences finies des opérateurs ∂/∂t et ∂/∂x.

∂f

∂t
(xi, tj) =

f(xi, tj+1)− f(xi, tj)

∆t
+O(∆t) (4.7)

∂f

∂x
(xi, tj) =

f(xi, tj)− f(xi−1, tj)

∆x
+O(∆x) (4.8)

Le lecteur attentif aura remarqué que l’on fait des différences finies “forward”, Eq.(A.22),

pour la première dérivée temporelle, alors que l’on fait des différences finies “backward”

pour la première dérivée spatiale. En fait, le schéma ci-dessus va être stable si v ≥ 0,

mais il est instable si v < 0 ! Pour v < 0, on utilise

∂f

∂x
(xi, tj) =

f(xi+i, tj)− f(xi, tj)

∆x
+O(∆x) (4.9)

On remarque que dans les 2 cas, cela revient à prendre la première dérivée spatiale “dans

la direction d’où vient l’écoulement v”, d’ou le nom upwind scheme (up-the-wind) pour

ce schéma.

Pour simplifier les notations, on notera dans la suite fi,j = f(xi, tj).

124 Physique Numérique LV SPC EPFL



4.1. ADVECTION-DIFFUSION

On définit le paramètre CFL (Courant-Friedrichs-Lewy) 1

β = v
∆t

∆x
. (4.10)

On aboutit ainsi au schéma suivant :

fi,j+1 = fi,j − β (fi,j − fi−1,j) si β ≥ 0 ,

fi,j+1 = fi,j − β (fi+1,j − fi,j) si β < 0 . (4.11)

Ce schéma est dit explicite : on obtient la solution au temps j+1 en fonction des valeurs

de f aux points de maillage spatial au temps précédent j. Il est dit “à 2 niveaux”, car il

fait intervenir deux temps consécutifs. En résumé, il s’agit du schéma différences finies

explicite upwind à 2 niveaux pour l’équation d’advection.

On montre un exemple aux FIGS.4.1-4.2, avec une distribution initiale de densité gaus-

sienne (ou “normale”)

f(x, 0) =
N

σ
√
2π

exp

(
−(x− x0)

2

2σ2

)
(4.12)

centrée en x0 = 0, écart-type σ = 0.2m. Les paramètres sont les suivants : v = 1m/s, 64

points de maillage pour x ∈ [−2, 2], ∆t = 0.01s, donnant un paramètre CFL β = 0.16.

On voit clairement que la solution initiale se propage à la bonne vitesse (en moyenne),

mais que le profil de densité s’étale, avec une variance σ2 proportionnelle au temps

t. Cela n’est pas physique, la solution devrait conserver sa forme. En fait, on assiste à un

phénomène de diffusion numérique, qui ressemble à de la diffusion physique, voir Section

suivante, mais qui est dû ici à l’amortissement du schéma numérique.

Il y a pire, si on prend des intervalles spatiaux ∆x plus petits (dans l’intention d’obte-

nir une solution approximée de meilleure qualité) et/ou des intervalles temporels ∆t

plus grands (dans l’intention de faire de plus longues simulations), une instabilité

numérique qui peut se développer. Un exemple est montré à la FIG. 4.3, pour les mêmes

paramètres que la FIG. 4.1 sauf que l’on a pris 128 intervalles en x et un ∆t = 0.0375s

donnant un paramètre CFL β = 1.2. Après un temps fini, une instabilité de courte lon-

gueur d’onde se développe, qui est évidemment non physique, de par le fait, notamment,

qu’elle fait apparâıtre des valeurs négatives de la densité ( !).

On peut montrer qu’en effet le schéma explicite utilisé ici est instable si le nombre

CFL β est supérieur à 1. On fera la démonstration de ce critère de stabilité à la section

4.1.3.

Puisque le schéma upwind est stable, mais amorti, pour un CFL β < 1, et que le schéma

“downwind” est instable pour tout CFL β, on pourrait choisir le meilleur des deux mondes

1. Courant, R. ; Friedrichs, K. ; and Lewy, H. ”On the Partial Difference Equations of Mathematical
Physics.” IBM J. 11, 215-234, 1967.
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Figure 4.1 – Advection d’une quantité scalaire f(x, t). Différences finies, schéma ex-
plicite à 2 niveaux, upwind, Eq.(4.11). Paramètres : u = 1m/s, CFL β = 0.16, Nx = 64.
En haut : instantanés de la densité. En bas : contours de f en fonction de x et t. L’amor-
tissement (ici purement numérique !) a pour effet d’étaler la distribution de densité.
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Figure 4.2 – Evolution temporelle de la position moyenne < x > et de la variance σ2,
pour la simulations de la FIG. 4.1.
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Figure 4.3 – Instabilité du schéma différences finies explicite upwind à 2 niveaux
pour l’advection, mêmes paramètres qu’aux FIGS.4.1-4.2, mais avec un paramètre CFL
β = 1.2.
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Figure 4.4 – Apparition d’oscillations non physiques dans le schéma différences fi-
nies explicite centré, Eq.(4.13), à 2 niveaux pour l’advection, mêmes paramètres qu’aux
FIGS.4.1-4.2, sauf le paramètre CFL β = 0.32.

en considérant la moyenne de l’upwind et du downwind, autrement dit les différences finies

centrées pour ∂f/∂x, soit la moyenne de l’Eq.(4.8) et de l’Eq.(4.9) :

∂f

∂x
(xi, tj) =

f(xi+i, tj)− f(xi−1, tj)

2∆x
+O(∆x2) , (4.13)

ceci quel que soit le signe de v. Malheureusement, si l’amortissement numérique disparâıt,

on a l’apparition d’oscillations (“overshoots”) dans la solution : voir FIG. 4.4. Ces oscilla-

tions sont évidemment non physiques : elles exhibent des endroits de densité négative ! De

plus, la mesure de σ2(t) fait apparâıtre une décroissance monotone, comme si le schéma

numérique introduisait de “l’anti-diffusion”.

La conclusion de cette section est que les schémas numériques pour résoudre l’advection

peuvent introduire de la diffusion (ou anti-diffusion) numérique, quant ils ne sont

pas carrément instables. Le paramètre de stabilité fondamental est le paramètre CFL ; le

critère de stabilité CFL est

β =
v∆t

∆x
≤ 1 . (4.14)
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4.1.2 Diffusion

Du microscopique au macroscopique

Le processus de diffusion, au niveau microscopique (moléculaire) est dû à l’agitation

thermique des particules. C’est un biologiste, Brown, qui a le premier documenté ses

observations au microscope du mouvement de grains de pollen. Ce mouvement apparâıt

désordonné, aléatoire, et ne s’arrête jamais. On lui donne le nom demouvement Brownien.

L’interprétation est que ce mouvmement est dû aux collisions avec les particules. Ces

collisions ont lieu de façon aléatoire. On décrit donc le phénomène par une approche

probabiliste. Le modèle de mouvment Brownien décrit une marche aléatoire, succession

de déplacements dûs aux collisions successives. On fait les hypothèses suivantes.

— La direction des déplacements suit une loi de probabilité uniforme (isotropie).

— La succession des déplacements est complètement décorrélée : il n’y a pas de

dépendance entre une collision et la suivante.

— La norme des déplacements est une variable aléatoire de moyenne non nulle.

— Chaque déplacement obéit à la même loi de probabilité.

On verra à la section suivante comment la simulation numérique peut s’inspirer de cette

description probabiliste. Ici, on passe à une description macroscopique, en effectuant

des moyennes statistiques sur un grand nombre de particules soumises à cette marche

aléatoire. On décrit donc, (voir physique des fluides), la densité des particules par un

champ scalaire n(x⃗, t). Le phénomène de diffusion peut s’observer pour d’autres quantités

physiques que la densité, et on notera ce champ scalaire de façon générique par f(x⃗, t).

Le flux de cette quantité physique (par exemple nombre de particules par unité de temps

et par unité de surface) est

j⃗ =
1

V

N∑
i=1

v⃗i = f < v⃗ > , (4.15)

où < v⃗ > est la vitesse moyenne des particules dans un élément de volume V , et N

est le nombre de particules dans le volume V . Empiriquement, on mesure que ce flux

est proportionnel au gradient de densité, dans la direction opposée à celui-ci, avec une

constante de proportionalité D appelée coefficient de diffusion.

j⃗ = −D∇f . (4.16)

C’est la loi de Fick. On invoque ensuite le principe de conservation du nombre de parti-

cules, exprimé par l’équation de continuité, Eq.(4.1), pour obtenir l’équation de diffu-

sion
∂f

∂t
−∇ · (D∇f) = 0 . (4.17)

On peut combiner l’advection avec la diffusion. [Image : un polluant dans l’atmosphère ;

l’advection est le transport de ce polluant par le vent ; la diffusion est dûe aux collisions
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au niveau microscopique et a lieu même en l’absence de vent. Dans la réalité, les deux

phénomènes ont lieu simultanément.] Avec j⃗ = fv⃗ − D∇f et l’équation de continuité

(4.1), on obtient l’équation d’advection-diffusion, qui dans le cas d’un ćoulement

incompressible (∇ · v⃗ = 0) s’écrit :

∂f

∂t
+ v⃗ · ∇f −∇ · (D∇f) = 0 . (4.18)

Dans cette section, on ne considèrera que les cas à une dimension d’espace f(x, t), et où

la vitesse d’advection v et le coefficient de diffusion D sont uniformes et constants. On

obtient :

∂f

∂t
+ v

∂f

∂x
−D

∂2f

∂x2
= 0 . (4.19)

On peut trouver la solution analytique à cette équation, par la méthode des fonctions

de Green, la transformée de Laplace temporelle et/ou la transformée de Fourier spatiale.

On obtient, voir Annexe C :

f(x, t) =
N

2
√
πD t

exp

(
−(x− x0 − vt)2

4Dt

)
(4.20)

pour une condition initiale f(x, 0) = Nδ(x − x0) (toutes les particules sont initialement

en x = x0). [On peut, en exercice, montrer en substituant dans (4.19) qu’elle satisfait bien

l’équation d’advection diffusion.] La densité est donc une gaussienne centrée en x0 + vt

(mouvment de translation uniforme, effet de l’advection) et dont la largeur σ augmente

comme la racine carrée du temps (effet de la diffusion) ; plus précisément :

< x > (t) = x0 + vt , σ(t) =
√
2Dt . (4.21)

Remarque : la diffusion est ici décrite par un modèle déterministe et continu. La solution

est unique pour une condition initiale donnée. Elle est représentée par un champ scalaire

continu.

Advection-Diffusion en différences finies

Le schéma numérique consiste à approximer les opérateurs de l’Eq. (4.19) par leurs expres-

sions en différences finies sur un maillage de l’espace-temps. On procède pour l’advection

comme exposé à la section 4.1.1, en choisissant les différences finies “upwind”, Eq. (4.11),

ou centrées, Eq.(4.13). Le terme de diffusion implique la deuxième dérivée par rapport

à x :
∂2f

∂x2
|i,j =

fi−1,j − 2fi,j + fi+1,j

∆x2
+O(∆x2) . (4.22)

On obtient, dans le cas de l’advection centrée,

fi,j+1 = fi,j − β (fi+1,j − fi−1,j) /2 + α (fi−1,j − 2fi,j + fi+1,j) , (4.23)
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Figure 4.5 – Diffusion d’une quantité scalaire f(x, t). Différences finies, schéma ex-
plicite à 2 niveaux, Eq.(4.23). Paramètres : u = 0, D = 0.1m2/s, Nx = 64, ∆t = 0.01s,
α = 0.256, distribution initiale Gaussienne avec σ(0) = 0.1. En haut : contours de f en
fonction de x et t. En bas : écart quadratique σ2 en fonction du temps.
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Figure 4.6 – Instabilité du schéma différences finies explicite à 2 niveaux, Eq.(4.23).
Paramètres : u = 0, D = 0.205m2/s, Nx = 64, ∆t = 0.01s, α = 0.5248, distribution
initiale gaussienne avec σ(0) = 0.1. Une oscillation de courte longueur d’onde (2 points
de maillage spatial par longueur d’onde) et de haute fréquence (2 points de maillage
temporel par période) apparâıt avec une amplitude qui crôıt exponentiellement dans le
temps.
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Figure 4.7 – Diffusion et advection d’une quantité scalaire f(x, t). Différences finies,
schéma explicite à 2 niveaux. Paramètres : u = 2m/s, D = 0.1m2/s, Nx = 64, ∆t = 0.01s,
α = 0.256, β = 0.32, distribution initiale Gaussienne avec σ(0) = 0.1. Contours de f en
fonction de x et t, schéma “upwind” (en haut) et schéma centré (en bas).
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Figure 4.8 – Diffusion et advection d’une quantité scalaire f(x, t). Variance σ2 en
fonction du temps, pour les simulations de la FIG. 4.7, “1” pour “upwind”, “2” pour
centré, “a” pour la solution analytique,.

et, dans le cas de l’upwind,

fi,j+1 = fi,j − β (fi,j − fi−1,j) + α (fi−1,j − 2fi,j + fi+1,j) , si β ≥ 0 ,

fi,j+1 = fi,j − β (fi+1,j − fi,j) + α (fi−1,j − 2fi,j + fi+1,j) , si β < 0 , (4.24)

où on a défini le paramètre α :

α =
D∆t

∆x2
. (4.25)

Un exemple est montré à la FIG. 4.5, pour un cas sans advection (β = 0), et pour

α = 0.256. La densité initiale est une gaussienne centrée en x = 0, de largeur σ = 0.1m.

Les paramètres sont : Nx = 64 points de maillage spatial pour x ∈ [−2,+2], ∆t = 0.01s,

D = 0.1m2/s, v = 0. L’étalement du profil de densité est clairement visible. Une mesure

de la moyenne du x2 donne σ2 = 0.01 + 0.2 t, en accord avec la théorie : l’étalement est

proportionnel à la racine carrée du temps, avec une variance σ2 égale à σ2
0 + 2Dt.

D’autres tests sont également concluants : la densité est partout strictement positive, et

le nombre de particules, N =
∫
f(x)dx, est conservé à la précision machine près.

Le schéma n’est pas toujours stable. Si on augmente le coefficient de diffusion à D =

0.205m2/s, gardant tous les autres paramètres, il se développe une oscillation de courte

longueur d’onde (2 points de maillage spatial par longueur d’onde) dont l’amplitude

crôıt exponentiellement dans le temps : un exemple est illustré à la FIG. 4.6. Pour cette

simulation, le paramètre α = 0.5248. On montrera à la section 4.1.3 que le schéma

numérique est instable pour α > 0.5 .
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Lorsque l’avection et la diffusion sont simultanément présentes, α ̸= 0 et β ̸= 0, il faut

être prudent avec les résultats numériques. En effet, le schéma “upwind” de l’advection

introduit de la diffusion numérique, comme montré à la section précédente, et la diffusion

mesurée sur les simulations est la somme de la diffusion physique et de cette diffusion

numérique. Le schéma centré pour le terme d’advection conduit, quant à lui, à de “l’anti-

diffusion”. On montre à la FIG. 4.7 un exemple avec v = 2m/s, D = 0.1m2/s, maillage

nx = 64, x ∈ [−2, 2], ∆t = 0.01, donnant les paramètres α = 0.256 et β = 0.32. On

compare les résultats avec l’advection “upwind” (notée 1) et l’advection centrée (notée

2). La variance obtenue s’écarte de la valeur analytique (notée a). On obtient un coefficient

de diffusion résultant Dsim = 0.1469m2/s pour le schéma upwind et Dsim = 0.08m2/s pour

le schéma centré, au lieu de la valeur exacte D = 0.1m2/s.

4.1.3 Stabilité du schéma numérique : analyse de Von Neumann

L’analyse de la stabilité numérique se fait en examinant comment l’amplitude d’une

perturbation sinusöıdale évolue dans le temps par le schéma numérique. On pose donc la

solution au temps t comme

f(x, t) = ei(kx−ωt) . (4.26)

La solution au temps t+∆t sera donc

f(x, t+∆t) = ei(kx−ω(t+∆t)) = f(x, t)e−iω∆t . (4.27)

L’amplitude de la perturbation au temps t+∆t sera donc celle au temps t multipliée par

le gain

G = e−iω∆t . (4.28)

La condition de stabilité est

|G| ≤ 1 . (4.29)

En effet, si |G| > 1, alors l’amplitude est multipliée par un facteur > 1 à chaque pas

temporel, ce qui conduit à une croissance exponentielle de la perturbation. Il faut donc

trouver et résoudre une équation pour G. On l’obtient en substituant la forme sinusöıdale,

Eq.(4.26), dans le schéma numérique , Eq.(4.24). On obtient

G = 1− β
(
1− e−ik∆x

)
+ α

(
eik∆x − 2 + e−ik∆x

)
(4.30)

G = 1− β
(
1− e−ik∆x

)
− 4α sin2

(
k∆x

2

)
. (4.31)

Dans le cas de l’advection pure, α = 0, on a

|G|2 ≤ 1 ⇔ (1− β + β cos(k∆x))2 + β2 sin2(k∆x) ≤ 1 , ∀k

⇔ 1 + β2 + β2 cos2(k∆x)− 2β + 2β cos(k∆x)− 2β2 cos(k∆x) + β2 sin2(k∆x) ≤ 1 , ∀k

2β2 − 2β + cos(k∆x)(2β − 2β2) ≤ 0 , ∀k
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β(β − 1) (1− cos(k∆x)) ≤ 0 , ∀k

⇔ β(β − 1)2 sin2

(
k∆x

2

)
≤ 0 , ∀k ⇔ 0 ≤ β ≤ 1 . (4.32)

Cette condition de stabilité s’appelle le critère CFL. Dans le cas de la diffusion pure,

β = 0, on a

|G|2 ≤ 1 ⇔ 1− 8α sin2

(
k∆x

2

)
+ 16α2 sin4

(
k∆x

2

)
≤ 1 , ∀k

⇔ 8 sin2

(
k∆x

2

)
α(1− 2α) ≥ 0 , ∀k

⇔ 0 ≤ α ≤ 1

2
. (4.33)

Les résultats numériques présentés aux sections précédentes vérifient bien ces propriétés :

voir notamment les FIGS.4.3 et 4.6.

4.1.4 Diffusion et marche aléatoire

On a vu que le processus de diffusion est dû, au niveau microscopique, aux multiples col-

lisions entre particules du système. Dans cette section, on présente un schéma numérique

de simulation de la diffusion qui s’inspire directement de ce caractère aléatoire. Soit une

particule du système. Soit un intervalle de temps ∆t. Pendant cet intervalle, la particule

va subir un certain nombre de collisions, qui auront pour effet de déplacer la particule. On

décrit ce déplacement par une variable aléatoire, de distribution de probabilité uniforme

en direction, et avec une variance finie pour sa norme. Au cours du temps, on suppose

que les collisions successives sont indépendantes, du point de vue probabiliste.

On considère ensuite un ensemble de particules identiques, et on fait l’hypothèse que les

collisions de chaque particule sont décrites par la même loi de probabilité, et qu’il n’y a

aucune dépendance, au sens des probabilités, entre les collisions subies par ces particules.

Les systèmes réels sont constitués d’un nombre immense de particules, et il est irréaliste

de vouloir les décrire toutes. On considère donc un échantillonnage de taille N . Chaque

“particule numérique”, en quelque sorte “représente” un grand nombre de particules

réelles.

Pour obtenir une mesure de la densité des particules, on subdivise l’espace en Nbin

“casiers”, et on compte le nombre de particules numériques dans chaque casier, nbin,i,

i = 1..Nbin. On obtient ainsi un histogramme, dont les valeurs sont proportionnelles à la

densité.
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L’alogorithme, qui fait partie de ce qu’on appelle la méthode de Monte Carlo à cause

de son caractère aléatoire (tirage au sort, roulette, etc), est le suivant.

1. Initialisation : définition des “casiers”, du nombre de particules numériques N , du

pas de temps ∆t et tirage au sort des positions initiales de chaque particule selon

une distribution de probabilité proportionnelle à la densité initiale.

2. Boucle sur le temps (tj)

3. Boucle sur les particules, i = 1..N

4. Tirage d’un nombre aléatoire R selon une loi de probabilité de moyenne nulle

et de variance unité

5. Déplacer la particule xi → xi+∆xi, avec un déplacement ∆xi proportionnel

au nombre aléatoire obtenu R

6. Fin de la boucle sur les particules

7. Compter le nombre de particules dans chaque casier (histogramme)

8. Fin de la boucle sur le temps

Il faut encore déterminer la relation entre la diffusion D et le déplacement ∆x des par-

ticules. Plus exactement, on établit une relation entre le coefficient de diffusion D et la

variance du déplacement. Une démonstration est faite à l’Annexe D. On trouve :

σ2 =< ∆x2 >= 2D∆t . (4.34)

On peut comprende ce résultat en invoquant le théorème central limite : le déplacement

est le résultat d’une somme de déplacements indépendants. Donc, sa distribution tend

vers une loi de probabilité gaussienne (normale) de variance proportionnelle au nombre de

termes de la somme. Supposons qu’il y ait ncoll collisions durant l’intervalle de temps ∆t.

Le déplacement résultant obéira alors à une loi gaussienne de moyenne nulle et de variance

proportionnelle au nombre de collisions. Ce nombre de collisions est proportionnel au

coefficient de diffusion D et à la durée de l’intervalle ∆t. Donc la variance du déplacement

est proportionnelle à D et à ∆t.

La position de la particule i au temps j + 1 (étape no.5 de l’algorithme) est donc

xi,j+1 = xi,j +R
√
2D∆t (4.35)

avec R la réalisation d’une variable aléatoire de moyenne nulle et de variance unité. Si

on choisit pour R une distribution normale, on a alors un schéma valable pour des ∆t

arbitrairement grands.

Il est facile de combiner la diffusion avec une advection de vitesse v :

xi,j+1 = xi,j + v∆t+R
√
2D∆t . (4.36)

Un exemple est illustré à la FIG. 4.9, avec une distribution initiale gaussienne x0 = 0,

σ = 0.2m, D = 0.1m2/s, v = 0.1m/s, N = 10000 particules numériques, ∆t = 0.05.

L’étalement de la densité est clairement visible, d’abord très rapide, puis ralentissant. Il
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CHAPITRE 4. INTÉGRATION SPATIO-TEMPORELLE

−5 0 5
0

0.2

0.4

0.6

0.8

1

x [m]

n/
n 0

Adv−Diff MonteCarlo v=0.1 D=0.1 N=10000

t=0.5

t=1.0
t=1.5

t=0

t=5.0

0 1 2 3 4 5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

t [s]

<
x>

 [m
]

Adv−Diff MonteCarlo v=0.1 D=0.1 N=10000

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [s]

σ2  [m
2 ]

Adv−Diff MonteCarlo v=0.1 D=0.1 N=10000

Figure 4.9 – Diffusion et advection d’une densité. Schéma Monte Carlo. Paramètres :
v = 0.1m/s, D = 0.1m2/s, Nbin = 64, ∆t = 0.05s. Instantanés de la densité en fonction
de x (en haut). Position moyenne < x > (t) (au milieu) et variance σ2(t) (en bas).
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Figure 4.10 – Mesure de l’entropie, pour la simulation de la FIG. 4.10.

s’accompagne d’une translation de la position moyenne. L’analyse des résultats montre

effectivement une variance σ2(t) augmentant linéairement avec le temps, et un mouvement

uniforme de la moyenne < x > (t).

Une quantité physique importante est l’entropie S. En physique statistique, une mesure

de S est donnée par

S = −
Nbin∑
i=1

nbin,i log nbin,i (4.37)

La FIG. 4.10 montre que, conformément à la théorie, l’entropie est une fonction crois-

sante du temps : le système, initialement très loin de l’équilibre thermodynamique, car

présentant une densité avec des gradients très forts, s’approche de l’équilibre thermody-

namique (qui est caractérisé par une densité uniforme) en augmentant son entropie. On a

en effet un système fermé, et les résultats sont donc en accord avec le deuxième principe

de la thermodynamique.

Le grand avantage de ce type de méthodes est qu’il n’y a pas de limite de stabilité

pour le paramètre CFL. On peut donc, en principe, prendre des pas temporels ∆t

très grands. Il s’agit en effet d’une méthode Lagrangienne, c’est-à-dire que l’on suit

l’écoulement avec les “particules numériques”, contrairement aux schémas des sections

précédentes, qui sont des méthodes Euleriennes, où le problème est discrétisé sur un

maillage fixe.

Le grand désavantage est intrinsèque à la méthode Monte Carlo : chaque simulation doit

être considérée comme la réalisation d’un ensemble de variables aléatoires. En termes

plus précis, le nombre de particules numériques dans chaque “casier”, qui est une mesure
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CHAPITRE 4. INTÉGRATION SPATIO-TEMPORELLE

de la densité recherchée, a un écart-type proportionnel à
√
N . Chaque simulation fournit

un résultat différent, l’ensemble des résultats produisant une moyenne, mais aussi une

dispersion statistique non nulle. L’écart-type sur l’estimation de la densité physique est

donc proportionnel à 1/
√
N . Voir aussi les remarques sur l’intégration Monte Carlo en

Annexe B.3.
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4.2 Ondes

Rappel. Une onde est une perturbation qui se propage dans l’espace et le temps. Dans ce

cours, nous étudierons les phénomènes ondulatoires dits linéaires, c’est-à-dire où l’onde

se propage dans un milieu en le perturbant suffisamment peu, pour que cela ne modi-

fie pas les propriétés de propagation de l’onde. Signalons cependant que de nombreux

phénomènes peuvent apparâıtre lorsque l’amplitude de la perturbation devient impor-

tante (ondes dites non-linéaires) : ondes de choc, auto-focalisation, désintégration pa-

ramétrique, etc.

4.2.1 Ondes en milieu homogène

Dans le cas où le milieu dans lequel l’onde se propage est homogène et isotrope, la

perturbation, que nous noterons f(x⃗, t), satisfait l’équation d’Alembert :

∂2f

∂t2
= u2∇2f , (4.38)

avec u = const. Dans le cas unidimensionnel dans l’espace, f(x, t), on a

∂2f

∂t2
= u2

∂2f

∂x2
. (4.39)

Au cours de physique, on aborde divers exemples. L’équation (4.39) peut modéliser les

vibrations d’une corde, auquel cas f représente le déplacement transversal d’un élément

de la corde. Elle peut modéliser les oscillations longitudinales d’un ressort, auquel cas f

représente la déformation longitudinale d’un élément du ressort. Elle peut modéliser une

onde sonore dans un tuyau, auquel cas f représente la perturbation de pression (ou de

densité ou de vitesse longitudinale).

La solution générale de l’Eq.(4.39) est la superposition d’une onde dite “progressive”

(perturbation propageant vers la droite) et d’une onde dite “rétrograde” (propageant

vers la gauche) :

f(x, t) = F (x− |u|t) +G(x+ |u|t), (4.40)

où F et G sont des fonctions arbitraires (suffisamment régulières pour que l’Eq.(4.39) ait

un sens).

Pour trouver une solution unique à l’équation d’Alembert, il faut préciser des conditions

aux bords et des conditions initiales. Pour les conditions aux bords du domaine

spatial Ω = [xl, xr], on distinguera 5 cas :

1. Condition de bord fixe : f(xe, t) = C, ∀t, avec C une constante et xe au bord

du domaine, xe = xl et/ou xe = xr (p.ex. extrémité fixe d’une corde de guitare).

C’est une condition dite de Dirichlet.
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2. Condition de bord libre : ∂f/∂x(xe, t) = 0 ,∀t (p.ex. extrémité ouverte d’un tuyau

d’orgue). C’est une condition dite de Neumann.

3. Conditions aux bords périodiques : f(xl, t) = f(xr, t). On suppose que le système

se répète indéfiniment et périodiquement dans l’espace. On ne discrétisera qu’une

seule période spatiale.

4. Condition au bord harmonique : f(xe, t) = A sin(ωt), avec A une amplitude et ω

une fréquence données. Cela simule l’excitation du système par une “antenne” de

fréquence donnée. Condition dite de Dirichlet dépendante du temps.

5. Condition au bord de sortie de l’onde. Les conditions aux bords 1, 2 et4 ci-dessus

conduisent au phénomène de la réflexion. On aimerait trouver une condition per-

mettant la “sortie” de l’onde par les bords, sans provoquer de réflexion ni de re-

tour de l’onde par l’autre bord comme c’est le cas pour des conditions périodiques.

L’onde, au bord droite, (x = xr), sortira du domaine si elle est purement progres-

sive au voisinage de x = xr. Elle sortira du domaine au bord gauche si elle est

purement rétrograde au voisinage de x = xl.

Il faut encore déterminer les conditions initiales. Comme l’équation d’Alembert est du

2e ordre en temps, il faut préciser 2 conditions initiales. La plus simple à imposer est

f(x, t0) = finit(x), avec finit(x) une fonction donnée. Dans l’exemple de la corde vibrante,

elle représente la forme de la corde au moment où le musicien “pince” la corde juste avant

qu’il ne la lâche.

Mais il faut une deuxième condition initiale. Dans un premier temps, nous considèrerons

un système initialement au repos, autrement dit f(x, t) = finit(x), ∀x,∀t ≤ t0. Nous

verrons plus loin comment initialiser le système pour générer une onde propageante soit

vers la droite, soit vers la gauche.

Dans cette section, nous allons résoudre numériquement cette équation en utilisant une

discrétisation de l’espace, {xj}Nx
j=1, et du temps {tn}Nt

n=1. On supposera les maillages en x

et en t équidistants, avec ∆x = xj+1−xj et ∆t = tn+1−tn. On approximera les opérateurs

différentiels par des différences finies d’espace et de temps.

A l’ordre le plus bas, les différences finies pour les opérateurs deuxièmes dérivées, Eq.(A.7),

introduites dans l’Eq. d’Alembert (4.39), donnent :

f(xi, tn+1)− 2f(xi, tn) + f(xi, tn−1)

(∆t)2
≈ u2

(
f(xi+1, tn)− 2f(xi, tn) + f(xi−1, tn)

(∆x)2

)
(4.41)

On définit le paramètre CFL (Courant-Friedrichs-Lewy) 2

β = u
∆t

∆x
(4.42)

2. Courant, R. ; Friedrichs, K. ; and Lewy, H. ”On the Partial Difference Equations of Mathematical
Physics.” IBM J. 11, 215-234, 1967.
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et on peut réécrire l’expression ci-dessus comme

f(xi, tn+1) ≈ 2
(
1− β2

)
f(xi, tn)− f(xi, tn−1) + β2 [f(xi+1, tn) + f(xi−1, tn)] (4.43)

Cette expression nous donne une approximation pour f , en chaque point du réseau spatial

(x = xi), au temps ultérieur (t = tn+1), en fonction de la solution aux instants présent

(t = tn) et antérieur (t = tn−1), au même point spatial (x = xi) et ses plus proches voisins

(x = xi±1).

Ceci est donc la base de l’algorithme. Il est à différences finies “à 3 niveaux”, il y a en

effet besoin de stocker 3 niveaux temporels (précédent, actuel et prochain).

Il faut encore exprimer la version discrétisée des conditions aux bords du domaine spatial

(voir page précédente).

1. Bord gauche : f(x1, tn+1) = f(x1, tn). Bord droite : f(xNx, tn+1) = f(xNx, tn).

2. Bord gauche : f(x1, tn+1) = f(x2, tn+1). Bord droite : f(xNx, tn+1) = f(xNx−1, tn+1).

3. Bord gauche : substituer i = 1 et remplacer i − 1 par Nx − 1 dans l’Eq.(4.43).

Bord droite : substituer i = Nx et remplacer i+ 1 par 2 dans l’Eq.(4.43).

4. En exercice.

5. Bord droite : dérivant f au voisinage de xr par rapport à t et par rapport à x, on

obtient

∂f

∂t
(xr, t) =

∂

∂t
F (xr − |u|t) = F ′(xr − |u|t)(−|u|) = −|u|∂f

∂x
(xr, t) (4.44)

La version discrétisée de cette condition au bord s’obtient en utilisant les différences

finies “backward” d’ordre le plus bas pour la première dérivée par rapport à x,

f ′
i ≈ (fi − fi−1)/h, exprimée au point de maillage i = Nx, et les différences finies

“forward” pour la première dérivée par rapport à t, Eq.(A.22) :

f(xNx, tn+1)− f(xNx, tn)

∆t
= −|u|f(xNx, tn)− f(xNx−1, tn)

∆x
(4.45)

et ainsi

f(xNx, tn+1) = f(xNx, tn)− |β| [f(xNx, tn)− f(xNx−1, tn)] (4.46)

Bord gauche : en exercice.

Pour que l’algorithme explicite à 3 niveaux, Eq.(4.43), puisse démarrer, il faut initialiser

f non seulement au temps t0,

f(xi, t0) = finit(xi), ∀i, (4.47)

mais aussi au temps t0 −∆t. On a plusieurs possibilités, selon le problème que l’on vent

résoudre.

1. Si on suppose le système immobile pout t < t0, alors on prend

f(xi, t−1) = f(xi, t0) = finit(xi), ∀i. (4.48)
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Figure 4.11 – Propagation d’ondes sur une corde vibrante fixée à ses deux extrémités.
Schéma explicite à 3 niveaux, Eq.(4.43). Paramètres : u = 1, CFL β = 0.5, Nx = 65. La
perturbation initiale se décompose en onde progressive et onde rétrograde. Chacune subit
une réflexion aux extrémités qui change le signe de la perturbation.

2. Si on veut initialiser une onde propageant vers la droite, on utilise le fait que la

solution doit s’écrire comme F (x− |u|t), et donc

f(xi, t−1) = F (xi − |u|(−∆t)) = finit(xi + |u|∆t), ∀i. (4.49)

3. Si on veut initialiser une onde propageant vers la gauche, on utilise le fait que la

solution doit s’écrire comme G(x+ |u|t), et donc

f(xi, t−1) = G(xi + |u|(−∆t)) = finit(xi − |u|∆t), ∀i. (4.50)

Un exemple est montré à la FIG. 4.11, pour le cas de conditions aux bords fixes (no.1),

une perturbation initiale de forme gaussienne, et une condition initiale de type “système

immobile” pour t ≤ 0. La déformation initiale se sépare en deux “paquets” se propageant

l’un à droite et l’autre à gauche. On remarque le changement de signe des perturbations

lors de chaque réfléxion. On a utilisé u = 1, le paramètre CFL β = 0.5 et 64 intervalles

(donc 65 points) en x.

On peut vérifier que, si on utilise la condition au bord libre (no.2), les perturbations sont

réfléchies, mais avec le même signe que la perturbation incidente.

Avec les mêmes paramètres numériques, on peut vérifier le principe de superposi-

tion linéaire lors d’un croisement d’ondes, FIG. 4.12. Les perturbations propageantes
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Croisement d’ondes

Figure 4.12 – Croisement d’ondes. Schéma explicite à 3 niveaux, Eq.(4.43). Pa-
ramètres : u = 1, CFL β = 0.5, Nx = 65. Conditions aux bords périodoques. Les ondes
progressive et rétrograde se traversent en s’ignorant mutuellement, sans se déformer.
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et rétrogrades se traversent mutuellement sans se déformer. C’est parce que l’équation

fondamentale (d’Alembert) est linéaire que ce principe est vérifié.

Avec la condition au bord no.3 à gauche (excitation sinusöıdale) et la condition au bord

droite no.1 (bord fixe), on peut observer le phénomène de résonance. Pour des va-

leurs bien déterminées de la fréquence d’excitation, on voit l’onde progressive et l’onde

rétrograde (créée par la réflexion au bord) se superposer constructivement à chaque pas-

sage de l’onde, et on observe, pour des temps très longs, une onde stationnaire dont

l’amplitude crôıt au cours du temps. Alors que si on choisit une fréquence entre ces

fréquences déterminées, la superposition des ondes progressives et rétrogrades n’arrive

pas à construire une onde stationnaire, et la perturbation reste de petite amplitude. Ces

fréquences bien déterminées sont les fréquences propres du système, et les ondes sta-

tionnaires correspondantes sont les modes propres du système. On montre un exemple

à la FIG. 4.13. On fait le calcul analytique de ces fréquences et modes propres en substi-

tuant l’ Ansatz

f(x, t) = f̂(x)e−iωt (4.51)

dans l’Eq. d’Alembert et en y appliquant les conditions aux bords. On trouve comme

modes propres des fonctions sinusöıdales f̂n(x) = sin(nπx/L), n = 1, 2, 3, ... et des

fréquences propres ωn = nuπ/L, où L = xr − xl est la longueur du système. Voir cours

de Physique.

On peut se rendre compte que les fréquences et modes propres dépendent des conditions

aux bords. On simulera (suggestion d’exercice) les fréquences et modes propres obte-

nus avec une condition au bord droite libre. On comparera avec les résultats analytiques.

4.2.2 Stabilité du schéma numérique : analyse de Von Neumann

Le paramètre crucial pour la stabilité numérique est le paramètre CFL β = u∆t/∆x,

Eq.(4.42). On montre un exemple à la FIG. 4.14 d’une simulation avec β = 1.01, initialisée

avec une perturbation gaussienne. La simulation se déroule normalement pour des temps

courts, mais soudain une perturbation de courte longueur d’onde (2 points de maillage

par longueur d’onde) apparâıt, croissant exponentiellement dans le temps et finissant par

“noyer” complètement la simulation.

L’analyse de la stabilité numérique se fait en examinant comment l’amplitude d’une per-

turbation sinusöıdale dans l’espace-temps évolue dans le temps par le schéma numérique,

Eq.(4.43). On pose donc la solution au temps t comme

f(x, t) = ei(kx−ωt) . (4.52)

La solution au temps t+∆t sera donc

f(x, t+∆t) = ei(kx−ω(t+∆t)) = f(x, t)e−iω∆t . (4.53)
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Figure 4.13 – Résonance par excitation d’une fréquence propre su système. Schéma
explicite à 3 niveaux, Eq.(4.43). Paramètres : u = 1, CFL β = 1.0, Nx = 65. Conditions
aux bords fixe à droite, sin(ωt) à gauche. Dans le cas où ω est une fréquence propre
du système (en haut), il s’établit un mode propre, onde stationnaire, qui est d’amplitude
croissante. Si ω n’est pas une fréquence propre su système (en bas), il ne s’établit pas
d’onde stationnaire, et les perturbations restent de faible amplitude (en bas).
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Figure 4.14 – Instabilité du schéma explicite à 3 niveaux, Eq.(4.43). Paramètres : u =
1, CFL β = 1.01, Nx = 65. Conditions aux bords périodoques. L’instabilité se manifeste
par la croissance exponentielle non physique d’une perturbation de courte longueur d’onde
(2 points de maillage par longueur d’onde).

L’amplitude au temps t+∆t sera donc multipliée par le gain

G = e−iω∆t . (4.54)

La condition de stabilité est

|G| ≤ 1 . (4.55)

En effet, si |G| > 1, alors l’amplitude est multipliée par un facteur > 1 à chaque pas

temporel, ce qui conduit à une croissance exponentielle. Il faut donc trouver et résoudre

une équation pour G. On l’obtient en substituant la forme sinusöıdale, Eq.(4.52), dans le

schéma numérique , Eq.(4.43).

ei(kxj−ω(tn+∆t)) = 2
(
1− β2

)
ei(kxj−ωtn) − ei(kxj−ω(tn−∆t))

+ β2
[
ei(k(xj+∆x)−ωtn) + ei(k(xj−∆x)−ωtn)

]
. (4.56)

Simplifiant par ei(kxj−ωtn) et multipliant par G, on obtient

G2 − 2

[
1− 2β2 sin2

(
k∆x

2

)]
G+ 1 = 0. (4.57)

Posant

α =
k∆x

2
, (4.58)

on a les solutions

G = 1− 2β2 sin2 α±
√

(1− 2β2 sin2 α)2 − 1 . (4.59)
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Si |β| ≤ 1, alors le discriminant est négatif ou nul, et on a

G = 1− 2β2 sin2 α± i
√

1− (1− 2β2 sin2 α)2 (4.60)

et donc

|G|2 = (1− 2β2 sin2 α)2 + 1− (1− 2β2 sin2 α)2 = 1 . (4.61)

Pour CFL |β| ≤ 1 le schéma numérique explicite à 3 niveaux est marginalement

stable pour toute longueur d’onde.

Si |β| > 1, alors on a |G| > 1, au moins pour α = π/2, ce qui correspond à 2 points de

maillage par longueur d’onde. On comprend ainsi pourquoi ce sont ces perturbations-là

qui deviennent instables en premier lieu, comme le montre l’exemple de la FIG. 4.14.

Suggestion d’exercice. Vérifier analytiquement et numériquement que le schéma ex-

plicite à 3 niveaux est toujours instable dans le cas β2 < 0. Ce cas correspond à une onde

évanescente.

4.2.3 Ondes en milieu inhomogène. Vitesse de phase variable

On peut, avec une modification bénigne de l’algorithme, considérer des cas où le milieu

est inhomogène. Cela se traduit par une vitesse de phase qui est fonction de x, u(x).

L’équation d’Alembert, Eq.(4.39), doit être modifiée pour tenir compte de la variation

de u. L’expression explicite pour u(x) à laquelle on aboutit dépend du système physique

considéré. On obtient généralement :

∂2f

∂t2
=

∂

∂x

(
u2(x)

∂f

∂x

)
. (4.62)

“Tsunami”. Les ondes de gravitation dans les fluides incompressibles donnent, dans la

limite d’une profondeur h0 << λ, où λ est la longueur d’onde, une vitesse de phase

u(x) =
√
gh0(x) . (4.63)

Cette limite est appelée “ondes en eaux peu profondes”. Ici, h0(x) est la profondeur de

l’océan au repos, c’est-à-dire en l’absence de vagues. L’annexe E montre comment on

aboutit à l’ Eq.(4.62), avec u(x) donné par l’Eq.(4.63). Il se trouve qu’elle s’applique, au

moins partiellement, au cas d’une vague de type de celle qui apparâıt lors d’un tsunami.

On choisit une profondeur qui varie linéairement de h0,far = 7000m à 1000km des côtes

jusquà une profondeur de h0,reef = 200m à 100km des côtes, puis linéairement jusqu’à la

profondeur h0,beach = 20m au bord. (On ne peut pas prendre une profondeur nulle : les

équations deviennent singulières et, de plus, des phénomènes non-linéaires apparâıssent,

dont nous ne tiendrons pas compte dans le cadre de ce cours). On note que pour 7000m

de profondeur, la vitesse de propagation de la vague est de plus de 900 km/h !
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Figure 4.15 – Simulation d’une onde dans l’océan se rapprochant des côtes. En haut :
instantanés de la perturbation. Au milieu : vitesse de phase. En bas : lignes de niveau de
la perturbation dans l’espace-temps (x, t).
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On intègre numériquement l’équation (4.62) avec le schéma de différences finies présenté

à la section précédente, Eq.(4.43), modifié pour y ajouter le terme (∂u2/∂x)(∂f/∂x)

(Suggestion d’exercice). On considère une excitation au bord gauche de type sinusöıdal

(no.3) mais avec une seule période, et une condition au bord droite du type “sortie

de l’onde” (no.5). A la FIG. 4.15, on montre deux instantanés de la perturbation. On

remarque que la longueur d’onde raccourcit et que l’amplitude augmente lorsque la vague

se rapproche de la côte. La vitesse de propagation, par contre, diminue à mesure que la

vague se rapproche de la côte. Cela est très clair sur l’image des lignes de niveau de la

perturbation en fonction de x et de t.

4.2.4 Approximation analytique : la méthode WKB

La méthode WKB (Wentzel-Kramers-Brillouin) a été développée en 1926 pour décrire

le comportement d’une particule dans un potentiel par la mécanique quantique. Jeffreys

avait déjà en 1923 développé une méthode générale pour approximer les solutions des

équations différentielles linéaires du deuxième ordre, ainsi la méthode est parfois appelée

“WKBJ” ou “JWKB”. On en esquisse ici les grandes lignes, pour notre problème ondu-

latoire classique.

1) On considère des solutions sinusöıdales du temps, f(x, t) = f̂(x)e−iωt. En substituant

dans l’Eq.(4.62), on a

−ω2f̂ =
d

dx

(
u2(x)

df̂

dx

)
. (4.64)

2) On fait l’Ansatz

f̂(x) = A(x)eiS(x) . (4.65)

La substitution de l’Ansatz dans l’Eq.(4.65) donne, en notant d/dx avec le symbole ′,

−ω2A = −(S ′)2u2A+ i
(
2S ′A′u2 + S ′′Au2 + S ′A(u2)′

)
+ A′′u2 + A′(u2)′ . (4.66)

3) On suppose que l’amplitude A(x) est une fonction “lentement” variable, alors que la

phase S(x) est “rapidement” variable. (Les termes “lentement” et “rapidement” quali-

fient ici une variation selon x, et non temporelle). On fait l’hypothèse que la “lente”

variation de l’amplitude A(x) est liée au fait que le terme u2(x) varie, lui aussi, “len-

tement”. On résout l’Eq.(4.66) par approximations successives, en supposant l’existence

d’un paramètre d’ordre, suffisamment “petit”, que nous noterons ϵ. Nous classons ensuite

les différents termes apparaissant dans l’équation selon leur ordre en ϵ. Ainsi, S(x) varie

“rapidement”, ce qui signifie que sa variation selon x est grande. On aura donc

S ′ ∼ ϵ0 (4.67)

De même, u2 et A ne sont pas “petits”, donc

u2 ∼ ϵ0, A ∼ ϵ0, (4.68)
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Figure 4.16 – Simulation d’une onde dans l’océan se rapprochant des côtes. Amplitude
de la perturbation en fonction de x, obtenue avec le schéma explicite à 3 niveaux (courbe
noire “NUM”) et comparée avec la solution analytique approchée par la méthode WKB
(courbe rouge “WKB”). Les deux approches mettent en évidence l’augmentation de l’am-
plitude avec la diminution de la vitesse de propagation.

mais leur variation, i.e. leur dérivée selon x, est “petite”, et nous allons la supposer du

même ordre, d’ordre 1, donc

(u2)′ ∼ ϵ1, A′ ∼ ϵ1. (4.69)

La variation d’un terme, i.e. la dérivé selon x d’un terme, s’accompagne de l’augmentation

de l’ordre d’une unité. Ainsi,

S ′′ ∼ ϵ1, , (u2)′′ ∼ ϵ2, A′′ ∼ ϵ2. (4.70)

La multiplication de deux termes additionne leur ordre, ainsi par exemple,

(u2)′A′ ∼ ϵ2, u2A′S ′ ∼ ϵ1, ...etc. (4.71)

Revenant à l’ Eq.(4.66), on a donc que le membre de gauche et le premier terme du

membre de droite sont d’ordre le plus bas (∼ ϵ0), le deuxième terme est du premier ordre

(∼ ϵ1), alors que les deux derniers termes sont du deuxième ordre (∼ ϵ2), que nous allons

négliger.

La méthode consiste ensuite à résoudre l’Eq.(4.66) ordre par ordre. On a donc, à l’ordre 0 :

S ′ =
ω

u
. (4.72)

On définit le “nombre d’onde local”

k(x) =
dS

dx
, (4.73)
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et ainsi on a la “relation de dispersion locale”

k(x) =
ω

u(x)
, (4.74)

avec λ(x) = 2π/k(x) définissant une “longueur d’onde locale”. Dans l’approximation

WKB, on suppose que la longueur d’onde locale varie “lentement”, autrement dit varie

peu à l’échelle d’une longueur d’onde : λ′/λ ∼ k′/k = S ′′/k ∼ ϵ1.

A l’ordre 1, annullant le deuxième terme du membre de droite de l’Eq.(4.66), et en y

substituant la solution à l’ordre 0, Eq.(4.72), on obtient

2uA′ + u′A = 0 . (4.75)

En supposant que u et A ne s’annullent jamais, on a A′/A = −(1/2)(u′/u), donc (logA)′ =

−(1/2)(log u)′, et on obtient

A(x) =
A0√
u(x)

. (4.76)

L’amplitude augmente donc lorsque la vitesse de phase dimunue. Pour le cas des vagues

en eaux peu profondes, on a u(x) =
√
gh0(x) et A(x) = A0/(h0(x))

1/4 : lorsque la

vague se rapproche des côtes, h0 diminue et donc la vitesse de propagation u diminue,

mais hélas l’amplitude de la vague augmente. On montre à la FIG. 4.16 la comparaison

entre la méthode numérique (courbe “NUM”) et la solution Eq.(4.76) obtenue par la

méthode WKB (courbe “WKB”). L’accord est excellent. Il est intéressant de réaliser ce

que représente cette figure : il s’agit de la comparaison entre une solution numérique

approximative et une solution analytique approximative. Les approximations

faites numériquement et analytiquement étant de natures complètement différentes, ce

type de comparaison est très utile pour vérifier à la fois le schéma numérique et l’approxi-

mation analytique.

Il est absolument crucial que l’équation soit du type de l’Eq.(4.62) pour que le compor-

tement ci-dessus soit correctement décrit. Si l’équation était

∂2f

∂t2
= u2(x)

∂2f

∂x2
, (4.77)

l’analyse WKB (en exercice) montre qu’alors on obtiendrait non pas une amplitude

A(x) ∝ 1/
√
u(x) ∝ 1/(h0(x))

1/4, mais A(x) ∝
√
u(x) ∝ (h0(x))

1/4 : la vague dimi-

nuerait d’amplitude en se rapprochant des côtes au lieu d’augmenter ! Si l’équation était

∂2f

∂t2
=

∂2

∂x2
(
u2(x)f

)
, (4.78)

l’analyse WKB (en exercice) montre qu’alors on obtiendrait une amplitude A(x) ∝
1/(u(x))3/2 ∝ 1/(h0(x))

3/4, ce qui, dans l’exemple du tsunami, impliquerait qu’une va-

guelette de 10cm de haut au large (profondeur 7000m) aurait une amplitude de 8m ( !)

près des côtes (profondeur 20m).
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4.3 Schrödinger

La mécanique quantique ne décrit pas les particules comme des “points matériels”, comme

en mécanique classique. Les particules ont en fait un comportement

— probabiliste : on ne peut prédire qu’une probabilité de détecter une particule à un

endroit donné ;

— corpusculaire : au moment où on la détecte, une particule est indivisible ;

— ondulatoire : la probabilité de présence d’une particule est généralement le résultat

d’une interférence.

Voir le cours de Physique IV, puis le cours de Physique Quantique I, pour plus de détails.

On décrit une particule par une fonction d’onde ψ(x⃗, t), à valeurs complexes. Une particule

de masse m soumise au potentiel V (x) obéit à l’équation de Schrödinger :

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ .+ V (x⃗)ψ (4.79)

Définissant l’hamiltonien du système

H = − ℏ2

2m
∇2 + V , (4.80)

l’équation de Schrödinger s’écrit

iℏ
∂ψ

∂t
= Hψ . (4.81)

On interprète |ψ(x⃗, t)|2 comme la densité de probabilité de trouver la particule au voisi-

nage de x⃗ au temps t. Définissant le produit scalaire

(η, ψ) =

∫
η∗ψd3x , (4.82)

où l’intégrale est sur tout l’espace, on doit avoir

(ψ, ψ) = 1 , ∀t. (4.83)

La probabilité que la particule existe “quelque part” est toujours 1 (pas de “disparition”

de la particule).

Nous nous limiterons dans la suite au cas unidimensionnel dans l’espace : ψ(x, t).

4.3.1 Schéma semi-implicite de Crank-Nicolson

Etant donné une fonction d’onde, supposée connue à t = 0, ψ(x, 0), on peut formellement

intégrer l’équation de Schrödinger :

ψ(x, t) = exp

(
− i

ℏ
tH

)
ψ(x, 0) , (4.84)
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où on a défini l’Hamiltonien

H = − ℏ2

2m

∂2

∂x2
+ V (x) , (4.85)

ainsi que l’opérateur exponentiel d’un opérateur A :

(expA) (ψ) = ψ + A(ψ) +
1

2
A (A(ψ)) + ... =

∞∑
n=0

An

n!
(ψ) . (4.86)

L’opérateur exponentiel a certaines propriétés qui rappellent celles de la fonction expo-

nentielle, par exemple exp ((λ1 + λ2)A) = (exp(λ1A)) (exp(λ2A)) pour tous λ1, λ2 ∈ C.
Attention toutefois, en général les opérateurs ne commutent pas, [A,B] ≡ AB−BA ̸= 0,

et en général exp(A + B) ̸= exp(A) exp(B). Une autre propriété est que exp(iA) est

unitaire si et seulement si A est hermitien. Ainsi, l’opérateur d’évolution temporelle ap-

paraissant dans l’Eq.(4.84) ci-dessus, T = exp(−itH/ℏ), est unitaire, car H est hermitien

(on dit aussi “auto-adjoint”). Il conserve la probabilité totale :

(ψ(x, t), ψ(x, t)) = (Tψ(x, 0), Tψ(x, 0)) = (ψ(x, 0), T ∗Tψ(x, 0))
= (ψ(x, 0), exp(+itH/ℏ) exp(−itH/ℏ), ψ(x, 0))
= (ψ(x, 0), ψ(x, 0)) .

(4.87)

La fonction d’onde est de norme 1, et cette norme reste constante au cours du temps.

L’approximation numérique de cet opérateur doit aussi avoir cette propriété. Ceci suggère

le schéma suivant. On définit un maillage du temps, avec des intervalles équidistants ∆t.

On a :
ψ(x, t+∆t) = exp (−(i/ℏ)(t+∆t)H)ψ(x, 0)

= exp (−(i/ℏ)∆tH) exp (−(i/ℏ)tH)ψ(x, 0)
= exp (−(i/ℏ)∆tH)ψ(x, t) .

(4.88)

Appliquant l’opérateur exp ((i/ℏ)(∆t/2)H) à gauche et à droite, on obtient

exp

(
i

ℏ
∆t

2
H

)
ψ(x, t+∆t) = exp

(
− i

ℏ
∆t

2
H

)
ψ(x, t) . (4.89)

Jusqu’ici, tout est exact. C’est à ce stade que nous faisons une approximation : nous

ne retenons que les termes jusqu’au premier ordre dans le développement définissant

l’opérateur exponentiel. On obtient ainsi :(
1 +

i

ℏ
∆t

2
H

)
ψ(x, t+∆t) =

(
1− i

ℏ
∆t

2
H

)
ψ(x, t) +O(∆t2) (4.90)

Le schéma (4.90) a été développé par Crank et Nicolson en 1947, originellement pour

résoudre l’équation de la chaleur dépendante du temps. Il est dit semi-implicite : la

solution en t+∆t dépend en partie explicitement de la solution en t (membre de droite

de (4.90)), et en partie implicitement (membre de gauche). La partie implicite est un

opérateur qu’il faut inverser pour trouver la solution en t+∆t :

ψ(x, t+∆t) =

(
1 +

i

ℏ
∆t

2
H

)−1(
1− i

ℏ
∆t

2
H

)
ψ(x, t) +O(∆t2) (4.91)
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L’opérateur d’évolution temporelle discrétisé ci-dessus conserve la probabilité totale. Po-

sons α = (∆t/2ℏ)H. Soit l’opérateur d’évolution temporelle discrétisé

T∆t = (1 + iα)−1(1− iα) . (4.92)

Examinons la réversibilité de l’algorithme. Changer t → −t implique ∆t → −∆t et

donc α → −α. De l’Eq.(4.90), l’opérateur d’évolution temporelle “en marche arrière”

est

T−∆t = (1− iα)−1(1 + iα) . (4.93)

Première propriété :

T−∆t = T ∗
∆t , (4.94)

où on a noté par ∗ l’adjoint de l’opérateur. [Rappel : A∗ est opérateur adjoint de A ⇔
(η, A∗φ) = (Aη, φ), ∀η,∀φ.] La preuve de cette propriété est la suivante : l’opérateur α est

hermitien puisque H l’est : (Hη, φ) = (η,Hφ), donc (1+ iα)∗ = (1− iα). Soit A = 1+ iα.

On a T ∗
∆t = (A−1A∗)∗ = A(A∗)−1. Or, A(A∗)−1 = (A∗)−1A : en effet, multipliant cette

dernière relation à gauche et à droite par A∗, on a A∗A = AA∗, qui est bien toujours

vérifié, puisque égal à 1 + α2. Donc T ∗
∆t = (A∗)−1A = T−∆t.

La deuxième propriété est la réversibilité :

T−∆t = T−1
∆t . (4.95)

En d’autres termes, faire un pas temporel en avant, puis un pas temporel en arrière,

conduit exactement à la condition initiale. La preuve de cette propriété s’exprime come

suit :

T−∆tT∆t = (1− iα)−1(1 + iα)(1 + iα)−1(1− iα) = (1− iα)−11(1− iα) = 1 . (4.96)

Les deux propriétés ci-dessus conduisent au fait que l’opérateur T∆t est unitaire :

T−1
∆t = T ∗

∆t . (4.97)

Ainsi, l’opérateur d’évolution temporelle discrétisé conserve la probabilité :

(ψ(x, t+∆t), ψ(x, t+∆t)) = (T∆tψ(x, t), T∆tψ(x, t)) = (ψ(x, t), T ∗
∆tT∆tψ(x, t))

= (ψ(x, t), ψ(x, t)) . (4.98)

Pour la discrétisation spatiale de (4.90), nous avons le choix de plusieurs méthodes :

par exemple les éléments finis, voir Section 3.3, ou les différences finies. Cette dernière

méthode, avec l’Eq.(A.7) pour l’opérateur ∂2/∂x2, donne le système algébrique linéaire

suivant, écrit sous forme matricielle : (suggestion d’exercice)
·

−a
1 + 2a+ b

−a
·


T 

·
ψj−1

ψj

ψj+1

·

 (t+∆t) =


·
a

1− 2a− b
a
·


T 

·
ψj−1

ψj

ψj+1

·

 (t) (4.99)
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avec

a =
iℏ
4m

∆t

∆x2
, b =

i

ℏ
∆t

2
V (xi) . (4.100)

C’est un système matriciel tridiagonal du type AΨt+∆t = BΨt , où Ψt est le vecteur des

ψ(xı, t), valeurs de ψ aux points du maillage spatial xı, au temps t.

Selon les conditions aux bords, il faudra les imposer explicitement sur le système matriciel.

On utilise ensuite une des méthodes standard pour la résolution du système matriciel.

Par exemple l’élimination de Gauss, comme à la section 3.3.

4.3.2 Particule libre

Une particule dite “libre” n’est soumise à aucune force. Elle se déplace dans un potentiel

V (x) constant, que l’on peut prendre nul. Les relations entre les quantités corpuscu-

laires (quantité de mouvement et énergie) et ondulatoires (nombre d’onde et fréquence)

décrivant la particule ont été données par de Broglie :

p⃗ = ℏk⃗
E = ℏω (4.101)

Ces relations sont écrites pour une particule ayant une quantité de mouvement p⃗ et

une énergie E bien définies. La fonction d’onde correspondante est du type onde plane

(sinusöıdale), qui en 1-D s’écrit

ψ(x, t) ∼ exp(i(kx− ωt)) , (4.102)

où k et ω sont liés par la relation de dispersion suivante, obtenue en substituant l’Ansatz

onde plane ci-dessus, Eq. (4.102), dans l’équation de Schrödinger, Eq.(4.79), avec V = 0 :

ω = ω(k) =
ℏk2

2m
. (4.103)

Par les relations de de Broglie (4.101), cette relation de dispersion entre quantités ondu-

latoires ω et k, n’est autre que la relation entre les quantités corpusculaires E et p pour

la particule libre :

E =
p2

2m
. (4.104)

L’équation de Schrödinger étant linéaire, toute superposition de solutions est aussi solu-

tion. Ainsi, on construit la solution de Schrödinger comme une somme d’ondes planes :

ψ(x, t) =
1√
2π

∫ +∞

−∞
ψ̂(k) exp(i(kx− ω(k)t))dk . (4.105)

Du point de vue quantique, la particule libre se comporte donc comme une superposition

d’ondes. La vitesse de groupe,

vg =
∂ω

∂k
=

ℏk
m

, (4.106)
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correspond à la vitesse de la particule dans la représentation classique de la particule, via

la relation de quantification de de Broglie, Eq.(4.101). La vitesse de phase,

vp =
ω

k
=

ℏk
2m

, (4.107)

n’a pas d’équivalent dans la représentation classique. On notera que la vitesse de phase

dépend de la longueur d’onde, comme pour un milieu dispersif. Les ondes qui se propagent

dans de tels milieux sont déformables : la forme spatiale de l’onde change au cours du

temps. C’est une des propriétés que nous allons examiner plus en détail par la suite.

L’expression de la fonction d’onde à t = 0

ψ(x, 0) =
1√
2π

∫ +∞

−∞
ψ̂(k) exp(ikx)dk (4.108)

indique que ψ̂(k) est la transformée de Fourier de l’état initial. On a :

ψ̂(k) =
1√
2π

∫ +∞

−∞
ψ(x, 0) exp(−ikx)dx (4.109)

On peut former un “paquet d’onde” initial en superposant des ondes planes avec des poids

ψ̂(k). L’extension spatiale ∆x de ce paquet d’onde est liée à l’extension dans l’espace de

Fourier ∆k par le théorème de Fourier. En définissant précisément ∆x comme l’écart-type

de la distribution de probabilité pour la position,

∆x =

√
⟨x2⟩ − (⟨x⟩)2 (4.110)

avec

⟨xm⟩ =
∫ +∞

−∞
xm|ψ(x, t)|2dx, (4.111)

et ∆k comme l’écart-type de la distribution de probabilité pour le nombre d’onde k,

∆k =

√
⟨k2⟩ − (⟨k⟩)2 (4.112)

avec

⟨km⟩ =
∫ +∞

−∞
km|ψ̂(k)|2dk, (4.113)

le théorème de Fourier s’écrit :

(∆x)(∆k) ≥ 1/2 (4.114)

ce qui, via la relation de Broglie, p = ℏk, correspond au principe d’incertitude de

Heisenberg :

(∆x)(∆p) ≥ ℏ/2 . (4.115)

Dans la suite, on choisira un système d’unités tel que ℏ = 1, et une particule de masse

m = 1/2.
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Figure 4.17 – Particule libre avec une incertitude initiale ∆x = 6.4 et un nombre
d’onde moyen n = 16. Haut : Re(ψ) et Im(ψ) en traits continus, |ψ| en traitillés. Milieu :
contours de |ψ(x, t)|. Bas : contours de Re(ψ(x, t)). Le centre du paquet d’onde (max de
|ψ|) se déplace à la vitesse ℏk0/m. L’incertitude sur la position augmente (étalement du
paquet d’onde). La vitesse de phase est différente de la vitesse de groupe.
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Les propriétés de la particule libre sont illustrées par la simulation de la FIG. 4.17. On

donne le paquet d’onde initial de forme gaussienne

ψ(x, 0) = C exp(ik0x) exp[−(x− x0)
2/(2σ2)] , k0 = n2π/L , (4.116)

où n = 16 est le nombre d’onde moyen, L = 256 est la longueur du domaine de simulation,

x0 = 0 est la position initiale du maximum de |ψ|, σ = 6.4 la largeur de la gaussienne et

C est une constante de normalisation telle que∫ +∞

−∞
|ψ(x, 0)|2dx = 1 , (4.117)

ce qui donne

|C|2
∫ +∞

−∞
e−y2σ dy = 1 ⇒ |C| = 1√

σ
√
π
. (4.118)

On a appliqué le schéma semi-implicite, Eq.(4.99), avec ∆x = 1, ∆t = 0.5. Le maxi-

mum de |ψ(x, t)|, autrement dit la position la plus probable de la particule, se déplace

à la vitesse vnumg = 0.775, en bon accord avec la solution analytique vg = ℏk/m =

(2πn/L)/(1/2) = 0.785. L’effet dispersif se manifeste par un étalement du paquet

d’onde au cours du temps : l’incertitude sur la position augmente au cours du temps.

On remarque aussi que les composantes de courte longueur d’onde du paquet d’onde se

propagent plus rapidement que les composantes de longue longueur d’onde, ce qui est

également conforme à l’analyse. L’image de la partie réelle de ψ(x, t) (bas de la FIG.

4.17) montre bien que la vitesse de phase est inférieure à la vitesse de groupe, en accord

avec la théorie.

Finalement, on vérifie que la probabilité est conservée : la mesure de
∫
|ψ(x, tj)|2dx aux

temps tj donne un résultat constant à la précision machine près (10−14).

Etalement du paquet d’onde : de la différence entre diffusion et dispersion

On peut montrer (voir cours de Physique 4 et de Mécanique Quantique I) 3 que la solution

exacte de l’équation de Schrödinger pour une particule libre dans l’état initial donné par

le paquet d’onde Gaussien (4.116) est telle que

|ψ(x, t)|2 =
√

1

π

1

σ

1√
1 + ℏ2t2

m2σ2

exp

(
−
(
x− ℏk0

m
t
)2

σ2
(
1 + ℏ2t2

m2σ4

)) . (4.119)

Cette quantité, rappelons-le, est la densité de probabilité de trouver la particule en x

au temps t. La fonction d’onde a donc à tous les temps une forme gaussienne, mais son

écart-type varie au cours du temps, ce qui donne une incertitude sur la position, < ∆x >

donnée par

< ∆x > (t) =< ∆x > (0)

√
1 +

ℏ2t2
m2σ4

. (4.120)
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Figure 4.18 – Particule libre avec une fonction d’onde initiale gaussienne de largeur
σ = 6.4 et un nombre d’onde moyen n = 0. En haut : contours de |ψ(x, t)|. En bas :
incertitude sur la position < ∆x > (t) ; en traitillés, la solution analytique, Eq.(4.120).
L’incertitude sur la position augmente (étalement du paquet d’onde).
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L’incertitude sur la position augmente donc au cours du temps, d’autant plus rapidement

que le paquet d’onde initial a une incertitude petite. (N.B. : < ∆x > (0) = σ/
√
2). Cette

augmentation, pour des temps longs, est linéaire avec le temps. On illustre ceci avec une

simulation numérique de mêmes paramètres que pour la FIG. 4.17, sauf que l’on considère

une particule initialement “immobile”, avec k0 = 0. On montre à la FIG. 4.18 le module

de la fonction d’onde dans l’espace et le temps, ainsi que l’incertitude < ∆x > (t).

L’étalement est bien visible. On a reporté aussi la solution analytique en traitillés. Le

petit écart entre la solution analytique et la solution numérique est dû à l’effet de la

discrétisation spatiale (∆x) et temporelle (∆t).

L’étalement de la fonction d’onde de la particule libre pourrait, à première vue, ressembler

à de la diffusion. On pourrait imaginer qu’une particule est constituée d’un grand nombre

de points matériels, distribués selon une certaine densité, et qui, à cause de multiples

collisions aléatoires entre eux, donnerait lieu à un processus diffusif, résultant en un

étalement. Or, cette image est totalement fausse. Dans un processus de diffusion classique,

nous avons montré à la section 4.1.2 que la largeur de la fonction augmentait comme la

racine carrée du temps, alors qu’en mécanique quantique l’étalement est proportionnel au

temps (pour des temps suffisaments longs). On peut comparer la FIG. 4.5 de la diffusion

au résultat quantique de la FIG. 4.18.

L’étalement de la fonction d’onde d’une particule libre en mécanique quantique n’est pas

dû à de la diffusion, mais à la dispersion. L’origine en est la relation de dispersion (4.103),

qui indique que la vitesse de phase dépend du nombre d’onde k. Or, un paquet d’onde

de largeur finie consiste en une somme d’ondes planes ayant des k différents. Dans notre

cas du paquet d’onde gaussien initial, on a un ensemble de valeurs de k centrées autour

de k0. Les composantes ayant un k élevé vont se propager plus vite que les composantes

ayant un k plus petit. Traduisons : les longueurs d’onde les plus courtes vont se propager

plus vite que les longues longueur d’onde, ce qui est visible sur l’image du haut de la FIG.

4.17. C’est ce phénomène qui, au cours du temps, contribue à “étaler” le paquet d’onde.

4.3.3 Barrière de potentiel : résonances et effet tunnel

On considère une particule incidente sur un potentiel de forme carrée, de hauteur V0
et d’épaisseur δ. L’état initial est un paquet d’onde de forme gaussienne, Eq.(4.116), de

nombre d’onde moyen n = 32 et de largeur σ = 0.075. Le domaine de simulation a une

longueur L = 256. Les paramètres numériques sont nx = 512, ∆x = 0.5, ∆t = 0.5. Le

schéma semi-implicite, Eq.(4.99), est utilisé. Les unités sont choisies avec ℏ = 1, et la

masse de la particule est m = 1/2.

La relation (4.103) entre ω et k, d’une part, et la relation de de Broglie (4.101) entre E

3. Ref. C. Cohen-Tannoudji, Mécanique Quantique I, complément GI , p.64-67
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et ω, d’autre part, donnent une énergie moyenne E0 = ℏ2k2/2m = 0.6169. Remarque :

comme on a un paquet d’onde dont la largeur dans l’espace de Fourier ∆k est non nulle,

la particule n’a pas une énergie bien définie : il y a incertitude non nulle ∆E.

Nous allons étudier le comportement de la particule pour différentes hauteurs V0 et

épaisseurs δ de la barrière de potentiel.

Cas V0 < E0

On rappelle que la solution analytique de Schrödinger, pour le cas d’ondes planes “mono-

chromatiques”, c’est-à-dire ayant une énergie bien déterminée (donc un k de la particule

incidente unique), prédit une probabilité généralement non nulle que la particule soit

réfléchie par la barrière. Ceci est contraire à la prédiction de la physique classique, pour

laquelle la particule passerait avec certitude par dessus la barrière si V0 < E.

D’autre part, la mécanique quantique prédit aussi que la probabilité de réflexion de la

particule n’augmente pas de façon monnotone avec l’épaisseur δ de la barrière. Notam-

ment, pour des épaisseurs de barrière δ multiples de π/kt, la probabilité de transmission

est 1, donc celle de réflexion est nulle. kt est le nombre d’onde de la solution ψ dans la

barrière,

kt =
√

2m(E0 − V0)/ℏ . (4.121)

Remarque : comme E0 > V0, la solution est propageante à l’intérieur de la barrière.

Nous allons illustrer ces propriétés avec des simulations numériques. Soit V0 = 0.8E0.

Pour ces paramètres, π/kt = 8.94. Pour une épaisseur δ = 4.5, la figure 4.19 montre que

la particule a une probabilité non nulle d’être réfléchie.

Pour une épaisseur plus élevée, δ = 18, la probabilité de réflexion est bien plus petite.

Ceci est en accord avec la théorie, on remarque en effet que δ est proche de 2π/kt,

qui est une condition de résonance prédite par la théorie dans le cas d’une particule

“monochromatique” d’énergie bien définie. Dans notre cas, la particule n’a pas une énergie

E0, son état ayant une incertitude non nulle.

Cas V0 > E0

Avec les mêmes paramètres pour la particule incidente, mais cette fois V0 = 1.2E0, les

résultats de la FIG. 4.20, en haut, pour une épaisseur de barrière δ = 2.5, montrent que

la particule a une probabilité non nulle de traverser la barrière. Ce comportement, ap-

pelé effet tunnel, est complètement différent de la prédiction de la physique classique,
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Figure 4.19 – En haut : particule incidente sur une barrière de potentiel de hauteur
V0 = 0.8E0 et de largeur δ = 4.5 (lignes traitillées). La particule a une probabilité non
nulle d’être réfléchie. En bas, pour δ = 18, correspondant à peu près à une condition
de résonance prédite par la théorie, la probabilité de réflexion est bien plus petite. La
quantité représentée est la partie réelle de ψ(x, t).
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Figure 4.20 – En haut : particule incidente sur une barrière de potentiel de hauteur
V0 = 1.2E0, de largeur δ = 2.5 (lignes traitillées). La particule a une probabilité non nulle
de traverser la barrière (effet tunnel). En bas, pour une largeur plus importante, δ = 18,
cette probabilité devient exponentiellement petite, et la réflexion est pratiquement totale.
La fonction d’onde est évanescente dans la barrière. La quantité représentée est la partie
réelle de ψ(x, t).
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où la particule serait réfléchie à coup sûr. En bas, pour une largeur plus importante,

δ = 18, cette probabilité devient exponentiellement petite, et la réflexion est pratique-

ment totale. La fonction d’onde est évanescente dans la barrière : elle a une amplitude

exponentiellement décroissante en fonction de x

4.3.4 Oscillateur harmonique

Soit une particule de masse m dans un potentiel quadratique

V (x) =
1

2
mω2

0x
2 , (4.122)

avec ω0 une constante donnée. (N.B. : dans le cas classique d’une masse attachée à un

ressort de constanteK, on a ω0 =
√
K/m.) Nous allons calculer le comportement de cette

particule tel que la mécanique quantique le prédit, et nous allons essayer de trouver quelles

analogies il est possible de faire avec le mouvement prédit par la mécanique classique.

Classiquement, on sait que le mouvement est sinusöıdal, de fréquence angulaire ω = ω0 =√
K/m. Si l’énergie mécanique de la particule est E, alors son mouvement est confiné

entre xmin et xmax donnés par les solutions de V (x) = E. On a donc la trajectoire classique

xclass(t) =

√
2E

m

1

ω0

sin(ω0t+ φ) . (4.123)

Quantiquement, on verra dans la section suivante qu’une particule ayant une énergie E

bien déterminée ne peut généralement pas exister sauf pour des valeurs bien spécifiques

de l’énergie E. Dans cette section, nous considérerons une particule dans un état initial

décrit par un “paquet d’onde”, comme aux sections précédentes, Eq.(4.116) avec une

extension spatiale σ, une position moyenne x0 et un nombre d’onde moyen k0 donnés.

Ainsi, la particule n’a pas une position, une quantité de mouvement, une vitesse, et

une énergie. Mais on peut montrer (théorème d’Ehrenfest) que la valeur moyenne de la

position, définie par

< x > (t) = (ψ, xψ) =

∫
ψ∗(x, t)xψ(x, t)dx , (4.124)

et la valeur moyenne de la quantité de mouvement, définie par

< p > (t) = (ψ, pψ) =

∫
ψ∗(x, t)(−iℏ)(∂/∂x)ψ(x, t)dx , (4.125)

satisfont les équations du mouvement classique

d < p >

dt
= < −dV

dx
> (4.126)

d < x >

dt
= <

p

m
> . (4.127)
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Nous n’allons pas démontrer ce théorème (ce sera fait dans le cours de Quantique),

mais nous allons vérifier cette propriété sur des solutions numériques de l’équation de

Schrödinger, c’est à dire vérifier que

< x > (t) = xclass(t) . (4.128)

On choisit un système d’unités avec ℏ = 1 et la masse de la particule m = 1/2. On

considère un domaine de simulation x ∈ [−L/2 + L/2], avec L = 256, et on choisit un

potentiel quadratique

V (x) = V0

(
x

L/2

)2

(4.129)

avec un V0 donné. V0 n’est autre que la valeur du potentiel aux bords du domaine de

simulation. On a

ω2
0 =

8V0
mL2

. (4.130)

On place une particule dans un état initial de la forme (4.116), avec n = 32, (k0 = 0.7854),

x0 = 0, σ = 6.4, (< ∆x > (0) = 4.5255). On choisit le coefficient V0 du potentiel de telle

sorte qu’il soit égal à 4 fois l’énergie E0 = ℏ2k20/2m. Ce choix signifie, dans la limite

classique, que l’on place une particule au minimum du potentiel, avec une vitesse initiale

telle que son énergie cinétique initiale est 1/4 du potentiel aux bords du domaine de

simulation. On discrétise avec nx = 512 intervalles (∆x = 0.5) et ∆t = 0.5. On utilise le

schéma semi-implicite, Eq.(4.99).

La FIG. 4.21 montre l’évolution spatio-temporelle du module et de la partie réelle de

la fonction d’onde. Les évolutions temporelles de la position moyenne, < x > (t), et de

l’incertitude sur la position, < ∆x > (t), sont affichées à la FIG. 4.22. On a représenté, en

traitillés, la solution pour le mouvement classique xclass(t). Le mouvement de la posiiton

moyenne < x > (t) est bien une oscillation sinusöıdale. La différence avec la solution

classique est une fréquence un peu plus basse. Cette différence est due aux erreurs de

discrétisation (∆x et ∆t finis). On peut montrer que la solution numérique pour < x > (t)

tend bien vers la solution classique xclass(t) dans la limite ∆x → 0 et ∆t → 0. Ainsi, les

résultats numériques sont en bon accord avec la théorie.

L’évolution de l’incertitude < ∆x > (t) montre qu’elle ne crôıt pas indéfiniment au cours

du temps, contrairement au cas de la particule libre. L’incertitude oscille autour d’une

valeur moyenne. La théorie, qui sera faite au cours de mécanique quantique 4, montre qu’il

existe des états de la particule dans un potentiel harmonique tels que leur incertitude est

constante au cours du temps. On appelle ces états quasi-classiques, ou états “cohérents”.

Ils sont constitués de paquets d’ondes de forme gaussienne, avec une incertitude sur la

position donnée par

< ∆x >quasi−class=

√
ℏ

2mω0

(4.131)

4. voir p.ex. Cohen-Tannoudji, Mécanique Quantique I, complément GV , p.560-575.
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Figure 4.21 – Particule dans un potentiel harmonique. En haut, |ψ(x, t)|. En bas,
Re(ψ(x, t)).
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Figure 4.22 – Particule dans un potentiel harmonique (même simulation que la FIG.
4.21). A gauche : position moyenne < x > (t), avec en traitillés la solution de la physique
classique. A droite, incertitude sur la position < ∆x > (t).
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Figure 4.23 – Particule dans un potentiel harmonique dans un état dit quasi-classique,
simulée avec diverses résolutions spatiales et temporelles. L’incertitude sur la position
< ∆x > (t), qui devrait selon la théorie être constante, présente des oscillations. L’am-
plitude de ces oscillations diminue avec des ∆x et/ou des ∆t plus petits.

Physique Numérique LV SPC EPFL 169
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Les simulations numériques utilisant le schéma semi-implicite (4.99) montrent que si

on choisit une largeur de la gaussienne initiale conformément à l’expression ci-dessus,

l’incertitude sur la position < ∆x > (t) reste approximativement constante. Il subsiste

néanmoins une oscillation de < ∆x > (t), qui n’est pas physique, mais d’origine purement

numérique. On montre un exemple à la FIG. 4.23, avec les paramètres : n = 16, L = 256,

V0 = 4E0. Quatre simulations sont effectuées, avec ∆x = 0.5, 0.25 et ∆t = 0.5, 0.25.

L’amplitude des oscillations de < ∆x > (t) décrôıt lorsque l’on diminue ∆t et/ou ∆x.

En conclusion, les résultats numériques basés sur le schéma semi-implicite, Eq.(4.99),

permettent de mettre en évidence le comportement parfois inattendu, parfois contraire

à la physique classique, des particules. Nous avons aussi illustré, pour l’oscillateur har-

monique, à quel point les prédictions de la mécanique quantique sont, dans un certain

sens seulement, analogues à celles de la mécanique classique : les valeurs moyennes se

comportent comme des particules classiques. Ces résultats numériques sont en bon ac-

cord avec les calculs analytiques, qui seront faits au cours de Physique et de Mécanique

Quantique, pour lesquels ils peuvent servir d’illsutrations.

4.3.5 Etats stationnaires ou états propres de la particule

Soit une particule dans un potentiel V (x⃗). On aimerait trouver une solution ψ(x, t) de

l’équation de Schrödinger, Eq.(4.79), qui donne une énergie bien déterminée de la parti-

cule.

Par la relation de de Broglie, E = ℏω, Eq.(4.101), dire que l’énergie E est donnée implique

que la fréquence ω est donnée. On cherchera donc des solutions de l’Eq. de Schrödinger

de la forme :

ψ(x⃗, t) = Ψ(x⃗) exp (−iωt) (4.132)

Ces solutions sont appelées états stationnaires : en effet, la densité de probabilité,

|ψ|2, est une fonction de l’endroit (x⃗) mais pas du temps. La probabilité est stationnaire,

dans le même sens que l’intensité (moyennée sur une période) d’une onde stationnaire ne

dépend pas du temps.

Introduisant cet Ansatz dans l’Eq. de Schrödinger (4.79), on a

− ℏ2

2m
∇2Ψ+ V (x⃗)Ψ = EΨ . (4.133)

C’est l’équation de Schrödinger stationnaire, ou “équation de Schrödinger

indépendante du temps”. Dans la limite classique, elle exprime simplement le principe

de conservation de l’énergie mécanique (p2/2m+ V = Emec).
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Avec la définition de l’opérateur Hamiltonien

H = − ℏ2

2m
∇2 + V (x⃗) , (4.134)

l’équation de Schrödinger stationnaire s’écrit

H(Ψ) = EΨ . (4.135)

Cette équation indique que les énergies possibles d’une particule dans un poten-

tiel V (x⃗) sont les valeurs propres de l’Hamiltonien. Les états d’énergie donnée

correspondants à ces valeurs propres sont les fonctions propres de cet Hamiltonien. On

les appelle donc états propres.

Trouver les états propres et les énergies possibles d’une particule revient donc à “diago-

naliser” l’Hamiltonien du système.

Méthodes numériques

Il existe plusieurs méthodes pour trouver des états et énergies propres. On peut par

exemple utiliser les outils déjà développés dans les sections précédentes, à savoir la

méthode des différences finies ou celle des éléments finis, appliquée à la discrétisation

spatiale de l’opérateur Hamiltonien. La nuance est que les fonctions recherchées sont à

valeurs complexes, et non plus réelles.

Cette opération de discrétisation numérique conduit à approximer l’opérateur Hamilto-

nien, qui est différentiel, par un opérateur algébrique. les inconnues étant par exemple

les valeurs de Ψ aux points du réseau xj, j = 1..N . La problème se réduit donc à un

problème matriciel : ∑
j

AijΨj = EΨi (4.136)

où Ψj est le vecteur des inconnues Ψ(xj).

Trouver des approximations numériques des états et des énergies propres d’une particule

revient donc à diagonaliser la matrice A, autrement dit à trouver ses vecteurs

propres et valeurs propres.

Par exemple, le schéma de différences finies (A.7) appliqué à Schrödinger stationnaire

1-D conduit à la matrice

A = tridiag (C − 2C + V (xi) C) , (4.137)

avec

C = − ℏ2

2m(∆x)2
. (4.138)

Physique Numérique LV SPC EPFL 171
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Figure 4.24 – Spectre des énergies propres (à gauche) et les 4 premiers états propres
(à droite) pour une particule confinée dans un puits de potentiel de profondeur infinie.

Particule dans une bôıte

La modélisation la plus simple d’une particule confinée dans une bôıte est de dire que

la particule n’a aucune chance de se trouver en dehors de la bôıte. A l’intérieur de la

bot̂e, elle ne subit aucune force, c’est-à-dire que le potentiel est constant. Le problème à

résoudre est donc simplement Schrödinger stationnaire avec V (x) = 0 et des conditions

aux bords de type Dirichlet :

− ℏ2

2m

dΨ

dx2
= EΨ , Ψ(0) = 0 , Ψ(L) = 0 , (4.139)

où L est la taille de la bôıte. Il est facile de trouver les solutions analytiques : on trouve

les fonctions propres et valeurs propres

Ψn(x) = sin
(
n
πx

L

)
(4.140)

En =
ℏ2

2m

n2π2

L2
(4.141)

La FIG. 4.24 montre les résultats numériques avec les différences finies et nx = 32 inter-

valles, pour une particule de masse m = 1/2, confinée dans une bôıte de taille L = 2.

Comme précédemment, les unités avec ℏ = 1 ont été utilisées. La différence entre la solu-

tion analytique (croix) et la solution numérique (cercles) est due à la discrétisation. On

peut montrer (exercice) que cette erreur diminue avec le nombre de points de maillage.

Une modélisation un peu plus réaliste considère une particule confinée par un “puits” de

potentiel de profondeur finie. On montre à la FIG. 4.25 le spectre et les états propres

des états d’énergies les plus basses. On a pris un potentiel fe forme carrée, V (x) = −100

entre xa = −0.5 et xb = +0.5, zéro ailleurs. Le domaine de calcul a été pris entre x = −2

et x = +2. Il est en effet nécessaire de prendre un domaine plus large que la bôıte :
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Figure 4.25 – Spectre des énergies propres (à gauche) et les 4 premiers états propres
(à droite) pour une particule confinée dans un puits de potentiel de profondeur finie,
V0 = −100, entre x = −0.5 et x = +0.5 (lignes traitillées).

les résultats montrent que la particule a une probabilité non nulle de se trouver quelque

peu en dehors de la bôıte, même si son énergie est plus petite que zéro ! L’autre résultat

important, que l’on aurait pu déjà constater sur le cas précédent, est que l’état d’énergie

le plus bas, appelé état fondamental, est d’énergie plus élevée que la valeur minimum du

potentiel.

Particule dans un potentiel périodique : physique du solide

L’état solide est caractérisé, au niveau microscopique, par un arrangement régulier,

périodique, d’atomes. La cohésion du solide est assurée par certains électrons du système,

alors que d’autres électrons participent éventuellement à la condution électrique et de

chaleur.

La structure des énergies possibles des électrons dans un solide est étonnante : elle présente

des bandes séparées par des “bandes interdites” (en anglais : gap), où aucun électron ne

se trouve. Nous allons essayer de comprendre pourquoi grâce à l’approche numérique.

On modélise un électron dans un solide par une particule dans un potentiel périodique.

Ce potentiel représente l’effet des noyaux atomiques et des autres électrons. On néglige

l’interaction entre électrons. On prend un potentiel

V (x) = V0 sin

(
npot

2πx

L

)
(4.142)

où L est la taille du solide. Dans la réalité L est beaucoup plus grand que la taille

inter-atomique. Il serait irréaliste (et irréalisable) de simuler tout un solide de taille
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Figure 4.26 – Spectre des énergies propres pour une particule dans un potentiel
périodique sinusöıdal d’amplitudeV0 = 500. Le domaine de simulation est périodique.
Sa taille est de 40 périodes du potentiel (donc une taille de 40 couches interatomiques).
La ligne rouge en traitillés indique le spectre en l’absence de potentiel périodique (parti-
cule libre).

macroscopique. Prenons les paramètres suivants : L = 4, npot = 40 (ce qui veut dire que

l’on simule une tranche de 40 atomes). On prendra, de plus, un système périodique de

période L. Cela nécessite une petite modification de l’algorithme (exercice).

Avec V0 = 500 et un maillage de nx = 512 intervalles, on obtient les résultats de la FIG.

4.26. Par comparaison, on montre en traitillés le spectre d’une particule libre, autrement

dit le cas V0 = 0. Il est clair que l’effet de la perturbation périodique du potentiel est

de créer une bande d’énergie interdite. La taille de cette bande interdite est d’environ

490, soit du même ordre que l’amplitude V0 de la perturbation sinusöıdale du potentiel.

De plus, c’est pour le mode numéro n = 40 que le saut en énergie a lieu. L’analyse

de la fonction d’onde correspondante montre qu’elle a une longueur d’onde double

de la distance interatomique. On constate que cela correspond à la condition de

Bragg : soit une onde incidente de longueur d’onde λ sur un réseau périodique de période

spatiale d ; les ondes réfléchies par les couches successives seront en phase (interférence

constructive) si 2d sin θ = Nλ, où N est un nombre entier strictement positif qui est

l’ordre de l’interférence. Ici, θ = 0, car nous sommes en 1-D. Pour l’ordre d’interférence

le plus bas (N = 1), on a bien λ = 2d. L’onde stationnaire résultante a un module dont

les maxima cöıncident soit avec les maxima, soit avec les minima du potentiel, résultant

en une énergie soit plus élevée, soit plus basse (±V0/2) que l’énergie de la particule libre

correspondante.
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Paquet d’onde dans un potentiel périodique

Il est intéressant de revenir au problème dépendant du temps. Pour le même potentiel

périodique qu’au paragraphe précédent, on résout cette fois l’équation de Schrödinger,

Eq.(4.79), avec la méthodes de différences finies et le schéma semi-implicite, Eq.(4.99).

On utilise 512 points de discrétisation spatiale et un pas temporel ∆t = (ℏ/E0)/8, où E0

est l’énergie moyenne du paquet d’onde E0 ≈ ℏ2k20/2m, où k0 est la valeur centrale du

nombre d’onde. Ceci correspond à 8× 2π pas temporels par période d’oscillation.

Comme condition initiale, nous prenons un paquet d’onde Gaussien, Eq.(4.116), avec une

position moyenne x0 = −0.6, et σ = 0.4. Le nombre d’onde moyen est choisi pour trois

cas différents, n = 14, n = 20 et n = 26. Le premier cas correspond à une particule

dont l’énergie moyenne est dans la bande de valence. Le deuxième cas à une particule

dont lénergie serait dans la bande interdite. Le troisième cas correspond à une particule

d’énergie moyenne dans la bande de conduction.

Les résultats de ces trois simulations sont représentés aux FIGS. 4.27-4.28. Les particules

dans la bande de valence (n = 14) et dans la bande de conduction (n = 26) se propagent

bien à travers le système. Il y a une certaine modulation due au potentiel périodique,

mais la position moyenne est en mouvement (presque) uniforme, (presque) comme si la

particule était libre. Pour la particule dans la bande interdite (n = 20), les choses se

passent tout différemment. La fonction d’onde ne propage plus ! La position moyenne

de la particule est pratiquement immobile. On peut montrer que ce comportement est

conforme à la théorie : au voisinage du gap, la vitesse de groupe tend vers zéro.

Pour en savoir plus : Bibliographie, Refs. [17]-[19].
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Figure 4.27 – Particule dans un potentiel périodique, dans la bande de conduction
(n = 26, haut), dans la bande interdite (n = 20, milieu) et dans la bande de valence
(n = 14, bas). Contours de Re(ψ(x, t)).
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Figure 4.28 – Positions moyennes de trois particules dans un potentiel périodique,
respectivement dans la bande de conduction (n = 26), dans la bande interdite (n = 20) et
dans la bande de valence (n = 14), correspondant aux trois simulations de la FIG. 4.27.
La ligne en traitillés représente le mouvement qu’aurait une particule libre avec n = 20.
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Chapitre 5

Méthodes statistiques

Dans ce chapitre, nous étendons notre analyse à des systèmes contenant un grand nombre

de particules en interaction. Dans la partie du cours consacrée au phénomène de diffusion,

nous avons mis en évidence le caractère aléatoire, au niveau microscopique, du processus.

La grande simplification que nous avons faite alors est de supposer l’indépendance totale

des collisions individuelles. En d’autres termes, nous avons négligé les interactions.

Nous verrons que ces interactions jouent un rôle essentiel dans le comportement de ces

systèmes, notemment dans les phénomènes de transition de phase, tels la solidification,

la liquéfaction, la condensation et l’évaporation. Dan les matériaux solides il existe aussi

de nombreuses transitions de phases, par exemple l’apparition du ferromagnétisme.

Dans tous ces phénomènes, le concept de température joue un rôle central. C’est pour-

quoi les concepts de thermodynamique et de physique statistique sont invoqués pour les

décrire.

L’approche numérique adoptée dans ce chapitre s’inspire du caractère aléatoire de l’état

microscopique : on parle de méthodes de Monte Carlo, que nous avons déja rencontrées

pour des problèmes simples, comme la désintégration ou la diffusion.

5.1 Modèle d’Ising

Le ferromagnétisme apparâıt dans certains matériaux à cause de l’interaction entre les

moments magnétiques des atomes. Dans ces matériaux, l’énergie d’interaction est mini-

misée si ceux-ci sont alignés dans la même direction.
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Les atomes ont la propriété fondamentale d’avoir un moment cinétique intrinsèque, ap-

pelé le spin, auquel est associé un moment magnétique. L’existence du spin est un effet

purement quantique et ne sera pas discuté ici. Nous ne retiendrons que sa propriété d’être

quantifié, c’est-à-dire que sa valeur projetée selon un axe donné ne peut donner que des

valeurs discrètes. Nous prendrons ces valeurs, pour simplifier, comme

s = ±1 (5.1)

Dans une simplification supplémentaire, nous ne considèrerons l’énergie d’interaction

qu’entre les plus proches voisins. De plus, on supposera les atomes disposés régulièrement

sur un réseau. L’énergie du système s’écrit donc

E = −J
∑
<ij>

sisj (5.2)

où < ij > désigne une paire d’atomes voisins, et J est appelée constante de couplage.

Cette description s’appelle le modèle d’Ising, dans son expression la plus simple.

Si J > 0, cela signifie que l’énergie est minimisée quand tous les spins sont alignés. C’est

la situation pour une substance ferromagnétique à très basse température. Thermodyna-

miquement parlant, c’est un état d’entropie S minimale.

A plus haute température, l’agitation thermique va contribuer a rompre l’alignement

parfait des spins, et l’amantation (somme des moments magnétiques) va diminuer. Il

existe une température critique Tc au delà de laquelle l’aimantation est nulle (en moyenne

statistique sur un grand nombre N → ∞ d’atomes). A T >> Tc, l’état du système alors

maximise son entropie S alors que son énergie interne U est à peu près nulle (en tous

cas, elle n’est pas minimale) 1. Une conséquence du deuxième principe est que, à toute

température, le système à l’équilibre minimise son énergie libre F = U − TS.

Si on rajoute un champ magnétisant H au système, l’énergie devient :

E = −J
∑
<ij>

sisj − µH
∑
i

si , (5.3)

où µ est le moment magnétique associé à chaque spin. Le champ H tend à aligner les

spins parallélement à H⃗, puisque cela contribue à diminuer l’énergie.

5.1.1 Statistique de Boltzmann

L’état d’un système de N spins est donc caractérisé par une séquence de + et de −. Un

système à 4 spins, par exemple, peut être dans l’état (++−−), ou dans l’état (+−−+),

1. Dans la limite thermodynamique, l’énergie interne U est reliée à la moyenne statistique de l’énergie,
< E >, sur tous les états microscopiques possibles.
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ou dans l’état (− − +−), etc. A chaque état, que nous numéroterons avec la lettre α,

correpond une énergie Eα.

Un résultat fondamental de la physique statistique est que la pour une température

T du système, la probabilité Pα de trouver le système dans l’état numéro α

est donnée par :

Pα = C e−Eα/kBT , (5.4)

où kB = 1.38066 × 10−23J/K est la constante de Boltzmann et C est une constante de

normalisation telle que ∑
α

Pα = 1 , (5.5)

la somme portant sur tous les états microscopiques possibles du système.

Dans notre cas, on peut ainsi calculer l’aimantation du système (macroscopique) en fonc-

tion des aimantationsMα de chaque état microscopique et de leurs probabilités respectives

Pα par leur moyenne statistique

M =
∑
α

MαPα . (5.6)

Si on ne prend pas de précaution pour effectuer cette moyenne, on trouvera toujours

la valeur nulle pour un système de taille finie, même pour un état ferromagnétique où

tous les spins sont alignés : en effet, la probabilité de trouver tous les spins à +1 est

égale à celle de trouver tous les spins à −1. On doit effectuer la limite en rajoutant un

champ H extérieur au système de taille finie L, cacluler une moyenne M(L,H), prendre

la limite d’un système de taille infinie, et ensuite faire tendre H vers zéro, soit par valeurs

positives, soit par valeurs négatives :

M+ = lim
H→0+

(
lim
L→∞

M(L,H)
)

(5.7)

M− = lim
H→0−

(
lim
L→∞

M(L,H)
)

(5.8)

Pour un système de N spins, le nombre d’états microscopiques possibles est 2N , et il

devient vite prohibitif de calculer tous ces états possibles. L’approche passe par une

simplification majeure, expliquée dans la section suivante.

5.1.2 Théorie du champ moyen

Considérons un système constitué d’un seul spin si, dont les valeurs possibles sont ±1,

plongé dant un champ magnétisant extérieur H. La statistique de Boltzmann, Eq.(5.4), et

l’expression de l’énergie du système, Eq.(5.3), impliquent que les probabilités de trouver

le système dans chacun des deux états possibles (±) sont données par

P+ = Ce+µH/kBT (5.9)

P− = Ce−µH/kBT (5.10)
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avec la constante de normalisation

C =
(
e+µH/kBT + e−µH/kBT

)−1
. (5.11)

La moyenne statistique du spin est donc

< si >=
∑
si=±1

siP± = P+ − P− = tanh

(
µH

kBT
.

)
(5.12)

Considérons maintenant ce spin si étant l’un parmi un système de N spins. L’approxi-

mation de la théorie du champ moyen consiste à faire l’hypothèse que l’interaction de ce

spin avec ses voisins est équivalente à la présence d’un champ magnétisant effectif Heff .

Heff représente donc le champ moyen crée par les autres spins à l’endroit du spin si. On

a donc

< si >= tanh

(
µHeff

kBT

)
. (5.13)

Nous pouvons écrire l’expression de l’énergie du système, Eq. (5.3), comme

E = −

(
J
∑
<ij>

sj

)
si − µHsi . (5.14)

Dans cette dernière expression H est un champ magnétisant extérieur au système de

N spins, alors que le terme entre parenthèses représente l’effet des autres spins sj, j ̸=i

du système. L’approximation du champ moyen consiste à remplacer ce terme entre pa-

renthèses par µHeff , (
J
∑
<ij>

sj

)
≈ µHeff , (5.15)

et à supposer que les spins individuels sj peuvent être remplacés par leur valeur moyenne

< sj >. Comme tous les spins sont des particules identiques, leur valeur moyenne est

identique, et on peut donc omettre l’indice j : < sj >=< s >, ∀j. On a donc :

Heff ≈ J

µ

∑
<ij>

< s > . (5.16)

Dans la somme, < ij > signifie une somme sur tous les plus proches voisins. Si n est le

nombre de plus proches voisins

Heff ≈ nJ

µ
< s > . (5.17)

On a donc, de l’Eq.(5.13),

< s >= tanh

(
nJ < s >

kBT

)
. (5.18)

Cette dernière expression est une équation non triviale, non algébrique pour < s >.

On peut la résoudre numériquement (exercice) par exemple avec la méthode de Newton -

182 Physique Numérique LV SPC EPFL
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Figure 5.1 – Valeur moyenne du spin en fonction de la température prédite par la
théorie du champ moyen appliquée au modèle d’Ising 2-D à n = 4 plus proches voisins.

Raphson. Le résultat est illustré à la FIG.5.1, en fonction de la température. On s’aperçoit

de l’existence d’une température critique Tc, au voisinage de laquelle la valeur moyenne

du spin, et donc l’aimantation, varie brutalement. Pour T > Tc, il n’y a que la solution

< s >= 0, et l’aimantation est nulle : le système est paramagnétique. Pour T < Tc, il

y a 3 solutions (< s >= 0, et deux solutions non nulles de même valeur absolue, l’une

positive et l’autre négative). La solution < s >= 0 est instable car elle correspond à un

maximum local de l’énergie libre du système. Les deux solutions symétriques, < s > > 0

et < s >< 0, représentent l’aimantation permanente du système, qui est donc dans l’état

ferromagnétique.

Ce qui se passe au voisinage de T = Tc est un exemple de transition de phase. L’aiman-

tation, proportionnelle à < s >, joue le rôle de paramètre d’ordre. A basse température,

l’aimantation moyenne est non nulle, ce qui signifie une tendance à aligner les spins dans

la même direction, et on a un système dans un état ordonné. A haute température, l’ai-

mantation moyenne est nulle, ce qui signifie que les spins perdent leur alignement mutuel,

et le système est dans un état désordonné.

Pour le modèle d’Ising 2-D à n plus proches voisins, on peut montrer que la température

de transition est Tc = nJ/kB. Au voisinage de T = Tc, et pour T < Tc, la valeur du spin

moyen est

< s >=

√
3

T

(
T

Tc

)3

(Tc − T )1/2 . (5.19)

L’exposant 1/2 est appelé exposant critique de la transition. En fait, l’approximation du
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champ moyen est incorrecte de ce point de vue : la solution exacte du modèle d’Ising

donne un exposant critique 1/8.

5.1.3 Monte Carlo, algorithme de Metropolis

La méthode de Monte Carlo utilise une approche dite stochastique, c’est-à-dire résultant

de processus aléatoires. Dans notre modèle d’Ising deN spins en interaction, à la température

T , l’algorithme dit de Metropolis consiste en :

1. Initialiser un état microscopique quelconque, donc une séquence (++−+−−+...).

2. Pour chaque spin si, calculer l’énergie nécessaire à faire basculer le spin, ∆E. Dans

notre modèle, cette énergie ne dépend que des plus proches voisins, voir Eq.(5.3).

3. Si ∆E < 0, basculer le spin

4. Si ∆E > 0, générer un nombre aléatoire r selon une distribution de probablité

uniforme entre 0 et 1.

5. Si r ≤ exp(−∆E/kBT ), basculer le spin. Autrement, le laisser inchangé.

6. Une fois tous les spins du systèmes traités de cete manière, calculer la nouvelle

valeur de l’énergie et la nouvelle valeur du spin moyen.

7. Répéter les étapes 2− 6 un nombre suffisant de fois.

On peut comprendre qualitativement comment l’algorithme est capable de représenter

la physique. Si on basculait les spins chaque fois que ∆E < 0 et jamais si ∆E > 0,

le système évoluerait vers un état d’énergie minimale, où tous les spins sont alignés.

C’est ce qui se passe dans la limite T → 0. La température finie introduit la possibi-

lité pour le système d’évoluer vers un état d’énergie plus élevée. A basse T , le facteur

exp(−∆E/kBT ) est proche de 0, et la probabilité qu’un spin bascule est petite : le système

aura tendance à rester dans une phase ferromagnétique. A mesure que T augmente, le

facteur exp(−∆E/kBT ) augmente, et avec lui la probabilité de basculement : le système

a alors de plus en plus tendance à rompre l’alignement des spins, et donc tend vers un

état paramagnétique.

La statistique de Boltzmann (5.4) implique que le rapport de la probabilité P1 d’avoir un

spin basculé par rapport à la probabilité P2 d’avoir un spin non basculé est

P1

P2

= e
− ∆E

kBT (5.20)

L’alorithme de Metropolis conduit ainsi à une situation dans laquelle les probabilités

relatives de trouver des états microscopiques différents sont données correctement selon

la statistique de Boltzmann.
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Figure 5.2 – Spin moyen s̄ =
∑
si/N au cours des étapes de l’algorithme de Metropolis,

pour différentes valeurs de la température. Modèle d’Ising 2-D à n = 4 plus proches voisins
sur un réseau périodique de 10× 10 spins.

On montre à la FIG. 5.2 les résultats de 3 simulations pour un réseau périodique de

10× 10 spins, pour 3 valeurs différentes de la température. Après chaque étape (numéro

k) de l’algorithme de Metropolis (balayage complet de tous les spins du système), on

calcule le spin moyen,

s̄(k) =
1

N

N∑
i=1

si(k) (5.21)

Pour T = 2, on observe que les spins sont toujours presque tous alignés. Pour T = 2.2,

le spin moyen fluctue énormément, avec de brusques basculements d’une valeur positive

à une valeur négative. Pour T = 5, le spin moyen fluctue autour d’une valeur nulle.

Le spin moyen s̄ est une variable aléatoire dont on obtient un échantillon statistique

{s̄(k)}, k = 1..Nsweep avec la simulation numérique, Nsweep désignant le nombre d’étapes

de l’algorithme de Metropolis. On obtient une estimation statistique de sa valeur moyenne

et de sa variance par :

< s̄ > =
1

Nsweep

Nsweep∑
k=1

s̄(k) (5.22)

σ2 =
1

Nsweep

Nsweep∑
k=1

s̄2(k) − (< s̄ >)2 (5.23)

Il faut faire attention que la séquence d’étapes de l’algorithme est généralement corrélée :

l’état de l’étape k+1 dépend de celui de l’étape k. C’est notamment visible au voisinage
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Figure 5.3 – En haut : valeur absolue de la moyenne du spin moyen en fonction de la
température, pour une série de simulations Metropolis. Modèle d’Ising 2-D à n = 4 plus
proches voisins sur un réseau périodique de 10 × 10 spins. Pour chaque simulation, on
a pris la moyenne du spin moyen sur 901 états microscopiques produits aux différantes
étapes (balayages) de l’algorithme. En bas : idem, sauf que l’on a pris la moyenne de la
valeur absolue du spin moyen.
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du point critique, par exemple T = 2.2 sur la FIG. 5.2, où le système met un nombre élevé

d’étapes pour faire basculer le spin moyen. Pour s’assurer que les moyennes et variances

ont un sens statistiquement correct, on doit faire plusieurs simulations indépendantes

du point de vue des probabilités, c’est-à-dire un nombre Nbin de simulations complètes

ayant chacune Nsweep étapes, à partir de conditions initiales différentes et non corrélées.

On calcule ensuite la moyenne et la variance sur cet ensemble de Nbin simulations, l’écart-

type nous donnant une estimation de la barre d’erreur du résultat. De plus, pour chaque

simulation, on laisse un certain nombre détapes pour que le système “oublie” sa condition

initiale. On ne prend les mesures des grandeurs physiques qu’après cette phase de la

simulation. Dans ce qui suit, on a pris 100 étapes dans cette phase.

En effectuant une moyenne de la valeur absolue 2 du spin moyen s̄ sur les étapes, < |s̄| >,
on obtient une quantité proportionnelle à l’aimantation du système. En effectuant plu-

sieurs simulations à plusieurs températures, on obtient les résultats de la FIG. 5.3. Autour

de T ≈ 2.3, on remarque la chute abrupte de l’aimantation, indiquant une transition de

phase.

Le modèle d’Ising peut être résolu analytiquement, donnant une température de transition

Tc = 2.27, et un comportement au voisinage de cette température < |s̄| >∼ (Tc−T )β avec
un exposant critique β = 1/8. La simulation de Metropolis donne donc des résultats en

bien meilleur accord avec la solution exacte que la solution obtenue avec l’approximation

du champ moyen, qui donne, elle, Tc = 4 et β = 1/2, comparer les FIGS. 5.1 et 5.3, et

voir l’Eq.(5.19).

Une mesure de la fluctuation de s̄ est fournie par la variance σ2 de cette quantité. Le

théorème de fluctuation - dissipation de la mécanique statistique donne le résultat que

la susceptibilité magnétique est donnée par χm = σ2µ2/kBT . Les résultats d’une série

de simulations avec les mêmes paramètres qu’à la FIG. 5.3 sont montrés à la FIG. 5.4.

On remarque la brutale augmentation de cette quantité au voisinage de la température

critique. Notre système de spins du modèle d’Ising présente une susceptibilité magnétique

très importante au voisinage de la température de transition de phase. En fait, pour un

système de taille infinie (nombre infini de spins), il s’avère même que χ tend vers l’infini

lorsque T → Tc.

On peut faire une analyse intéressante de l’énergie du système E en fonction de la

température T . Les résultats numériques montrent que la “pente” dE/dT est maximale

en T = Tc. En fait, cette pente est infinie dans la limite d’un système de taille infinie. Ce

qui veut dire que la chaleur spécifique du système tend vers l’infini lorsqu’on s’approche

de la température critique Tc. Le théorème de fluctuation - dissipation donne une chaleur

spécifique C = σ2(E)/kBT
2, où σ2(E) désigne la variance de l’énergie moyenne par spin.

2. On prend la valeur absolue du spin moyen car, comme noté plus haut, on s’intéresse à l’aimantation
en valeur absolue, et non au fait de savoir si cette moyenne est positive ou négative, états qui sont
symt́riquement probables.
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Figure 5.4 – Susceptibilité magnétique χm obtenue à partir de la variance σ2 du spin
pour les simulations de la FIG. 5.3 (χm = σ2µ2/kBT ).

Un tel comportement au voisinage de la température critique est caractéristique des tran-

sitions de phase appelées du 2e ordre, parfois aussi qualifiées de continues : l’aimantation,

qui est la 1e dérivée de l’énergie libre par rapport à H, crôıt de façon continue à partir

d’une valeur nulle à T = Tc lorsque la température décrôıt. La susceptibilité magnétique

et la chaleur spécifique, par contre, 2e dérivées de l’énergie libre, changent de façon dis-

continue et présentent une singularité au point critique. Les transitions de phase dites du

premier ordre présentent des discontinuités de la première dérivée de l’énergie libre. Elles

impliquent l’existence d’une chaleur latente. Par exemple, la solidification / liquéfaction

et l’ évaporation / condensation sont des transitions de phase du premier ordre.

Il est intéressant d’étudier l’effet d’un champ extérieur H sur le modèle d’Ising avec l’al-

gorithme de Metropolis. Pour une température T = 0.25, bien inférieure à la température

critique Tc = 2.27, on montre à la FIG. 5.5 le spin moyen en fonction du champ appliqué

H. Il y a transition abrupte, mais le fait remarquable est que la valeur du champ H à

laquelle cette transition se produit dépend de l’histoire du système : si on augmente le

champ H à partir d’une valeur négative, il faut plus que juste inverser la direction du

champ magnétique pour faire basculer les spins dans l’autre sens : on remarque que le spin

moyen reste négatif même pour des valeurs de H positives entre 0 et 2.5. Réciproquement,

si on fait décrôıtre le champ H à partit d’une valeur positive, on trouve des cas où le spin

moyen reste positif alors que le champ H est négatif, entre 0 et −2.5. C’est le phénomène

d’hystérèse. Le champ nécessaire à faire basculer les spins dans l’autre sens est le champ

de démagnétisation.

En augmentant la température, on verra (suggestion d’exercice) que la valeur du champ
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Figure 5.5 – Moyenne du spin en fonction du champ magnétisant appliqué H (nor-
malisé à J/µ) pour une température normalisée kBT/J = 0.25. Modèle d’Ising 2-D à
n = 4 plus proches voisins sur un réseau périodique de 10 × 10 spins, 1000 étapes de
l’algorithme de Metropolis pour chaque simulation. Les simulations avec cercles bleus ont
été effectuées pour des valeurs de H croissantes, celles avec les croix rouges pour des
valeurs de H décroissantes. On remarque le phénomène d’hystérèse.

de démagnétisation diminue, et que donc le cycle d’hystérèse diminue de taille à mesure

que l’on s’approche de la température de transition Tc. Pour T ≥ Tc la discontinuité de

l’aimantation disparâıt complètement.

Un comportement similaire se produit pour la transition de phase entre liqude et gaz :

il existe une température critique Tc au-delà de laquelle les phases liquide et gazeuse ne

sont plus séparées par une transition de phase : on passe continûment de l’une à l’autre.

Remarque : pour une taille finie du système du modèle d’Ising 2-D, on peut montrer

que le cycle d’hystérèse en fait disparâıt. Si on effectuait des simulations Metropolis très

longues, on verrait un basculement des spins au bout d’un certain nombre d’étapes, qui

tend exponentiellement vers l’infini pour T → 0. La probabilité de basculement des spins

devient en effet exponentiellement petite, et il faudrait faire des simulations infiniment

longues pour l’observer. Le fait que l’on observe des valeurs de spin moyen ayant la

direction opposée à celle du champ magnétisant signifie qu’en fait la simulation n’a pas

permis encore d’atteindre l’état d’équilibre. Le système est dans un état dit métastable

sur la période de la simulation.

Pour en savoir plus : Bibliographie, Refs. [20]-[24]
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Annexe A

From Taylor to Abramowitz to
Pascal

A.1 Even order derivatives

We are going to obtain finite difference expressions for derivatives of order 2 and 4. We

start from Taylor series expansions around grid points xj, with fj = f(xj) :

fj−2 = fj − 2hf ′
j + 2h2f ′′

j − 8

6
h3f

(3)
j +

16

24
h4f

(4)
j − 32

120
h5f

(5)
j +O(h6) (A.1)

fj−1 = fj − hf ′
j +

1

2
h2f ′′

j − 1

6
h3f

(3)
j +

1

24
h4f

(4)
j − 1

120
h5f

(5)
j +O(h6) (A.2)

fj+1 = fj + hf ′
j +

1

2
h2f ′′

j +
1

6
h3f

(3)
j +

1

24
h4f

(4)
j +

1

120
h5f

(5)
j +O(h6) (A.3)

fj+2 = fj + 2hf ′
j + 2h2f ′′

j +
8

6
h3f

(3)
j +

16

24
h4f

(4)
j +

32

120
h5f

(5)
j +O(h6) (A.4)

Odd order derivatives will be eliminated by taking sums of pairs of these expressions.

Eq.(A.2) + Eq.(A.3) and Eq.(A.1) + Eq.(A.4) give respectively :

fj−1 + fj+1 = 2fj + h2f ′′
j +

1

12
h4f

(4)
j +O(h6) (A.5)

fj−2 + fj+2 = 2fj + 4h2f ′′
j +

4

3
h4f

(4)
j +O(h6) (A.6)

To obtain first order accurate second order derivative f ′′
j , we use Eq.(A.5) neglecting

O(h4) :

h2f ′′
j = fj−1 − 2fj + fj+1 +O(h4) ⇒ f ′′

j =
1

h2
(fj−1 − 2fj + fj+1) +O(h2) (A.7)

To obtain first order accurate fourth order derivative f
(4)
j , we eliminate f ′′

j from 4*Eq.(A.5)

- Eq.(A.6) :

f
(4)
j =

1

h4
(fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2) +O(h2) (A.8)
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To obtain second order accurate second order derivative f ′′
j , we eliminate f

(4)
j , from

16*Eq.(A.5) - Eq.(A.6) :

−fj−2 + 16fj−1 + 16fj+1 − fj+2 = 30fj + 12h2f ′′
j +O(h6)

f ′′
j =

1

12h2
(−fj−2 + 16fj−1 − 30fj + 16fj+1 − fj+2) +O(h4) (A.9)

Remark 1 : For a given order of accuracy in h, increasing the order of the derivative

requires an increasingly large number of grid points : compare Eq.(A.7) and Eq.(A.8).

Remark 2 : For a given order of derivative n, increasing the order of accuracy requires

an increasingly large number of grid points : compare Eq.(A.7) and Eq.(A.9).

A.2 Odd order derivatives

Remark that the finite difference expressions for odd order derivatives are centered, i.e.

they are expressed at half-integer grid point numbers, i.e. half way between grid points.

The method is therefore the same as for even order derivatives, except that we make

Taylor series expansions around half-integer grid point xj+1/2, with fj+1/2 = f(xj+1/2).

fj−1 = fj+1/2 −
3

2
hf ′

j+1/2 +
9

8
h2f ′′

j+1/2 −
27

48
h3f

(3)
j+1/2 +

81

384
h4f

(4)
j+1/2 +O(h5)(A.10)

fj = fj+1/2 −
1

2
hf ′

j+1/2 +
1

8
h2f ′′

j+1/2 −
1

48
h3f

(3)
j+1/2 +

1

384
h4f

(4)
j+1/2 +O(h5)(A.11)

fj+1 = fj+1/2 +
1

2
hf ′

j+1/2 +
1

8
h2f ′′

j+1/2 +
1

48
h3f

(3)
j+1/2 +

1

384
h4f

(4)
j+1/2 +O(h5)(A.12)

fj+2 = fj+1/2 +
3

2
hf ′

j+1/2 +
9

8
h2f ′′

j+1/2 +
27

48
h3f

(3)
j+1/2 +

81

384
h4f

(4)
j+1/2 +O(h5)(A.13)

We eliminate fj+1/2 (which is in principle not known to us : f is sampled on integer

grid points only) and even order derivatives by taking differences of these expressions,

Eq.(A.12)-Eq.(A.11) and Eq.(A.13)-Eq.(A.10) :

fj+1 − fj = hf ′
j+1/2 +

1

24
h3f

(3)
j+1/2 +O(h5) (A.14)

fj+2 − fj−1 = 3hf ′
j+1/2 +

27

24
h3f

(3)
j+1/2 +O(h5) (A.15)

To obtain first order accurate first order derivative f ′
j, we use Eq.(A.14) neglecting O(h3) :

f ′
j+1/2 =

1

h
(fj+1 − fj) +O(h2) (A.16)

To obtain first order accurate third order derivative f
(3)
j , we eliminate f ′

j from Eq.(A.15)

- 3*Eq.(A.14) :

f
(3)
j+1/2 =

1

h3
(−fj−1 + 3fj − 3fj+1 + fj+2) +O(h2) (A.17)
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A.3 Pascal triangle

An alternative way to derive first order accurate finite difference formulae for derivatives

is the following. Consider first two neighbouring grid points j and j+1. We have

f ′
j+1/2 =

1

h
(fj+1 − fj) +O(h2) (A.18)

We then consider two adjacent grid points j-1 and j. We have

f ′
j−1/2 =

1

h
(fj − fj−1) +O(h2) (A.19)

We apply once more the first order derivative finite difference expression, but this time

to the function f ′, considering the half integer grid points j-1/2 and j+1/2 :

f ′′
j = (f ′)′j =

1

h

(
f ′
j+1/2 − f ′

j−1/2

)
+O(h2) (A.20)

Substituting Eqs.(A.18,A.19) into Eq.(A.20) we get

f ′′
j =

1

h2
(fj−1 − 2fj + fj+1) +O(h2) (A.21)

To obtain the third order derivative, we write down Eq.(A.21) for f ′′ at grid point j+1,

and use the finite difference expression Eq.(A.18) for the first derivative of f ′′.

And so on...

We can obtain the coefficients of the finite difference expressions for derivatives by

constructing Pascal triangle

(0) 1

(1) 1 1

(2) 1 2 1

(3) 1 3 3 1

(4) 1 4 6 4 1

... ...........................

and then putting alternate + and - signs

(0) +1

(1) −1 + 1

(2) +1 − 2 + 1

(3) −1 + 3 − 3 + 1

(4) +1 − 4 + 6 − 4 + 1

... ...........................
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A.4 Forward finite differences

The idea is to start from Taylor expansions around point no j using expressions at forward

grid points, i.e. j+1, j+2, ..., see Eqs(A.3, A.4). From Eq.(A.3), neglecting O(h2), we

obtain the lowest order accurate, first order derivative :

f ′
j ≈

1

h
(fj+1 − fj) (A.22)

Retaining terms up to h2 an neglecting O(h3), we obtain from 4* Eq.(A.3)-Eq.(A.4)

4fj+1 − fj+2 = 3fj + 2hf ′
j +O(h3)

⇒ f ′
j =

1

2h
(−3fj + 4fj+1 − fj+2) +O(h2) (A.23)

Higher order in accuracy and higher order derivative expressions can be obtained by

considering further forward points.
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Annexe B

Intégration numérique

Soit le segment [a, b] et une discrétisation de N intervalles, avec les points de maillage xi,

i = 1..N + 1 équidistants de h. Soit une fonction f ∈ Cn([a, b]), avec n un entier positif

“suffisamment grand”. Pour obtenir une approximation à∫ b

a

f(x)dx (B.1)

on a les formules suivantes.

B.1 Point milieu, trapèzes, Simpson

— (a) Règle du point milieu : soit xi+1/2 = (xi + xi+1)/2 ;∫ b

a

f(x)dx = h
N∑
i=1

f(xi+1/2) +O(h2) . (B.2)

— (b) Règle des trapèzes :∫ b

a

f(x)dx = h
N∑
i=1

(f(xi) + f(xi+1)) /2 +O(h2) . (B.3)

— (c) Règle de Simpson :∫ b

a

f(x)dx = h
N∑
i=1

1

6

(
f(xi) + 4f(xi+1/2) + f(xi+1)

)
+O(h4) . (B.4)

Ces formules, ainsi que l’ordre de l’erreur, O(hn), s’obtiennent à partir de développements

limités de la fonction f . Cela présuppose que f est de régularité suffisante. Considérons
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l’intervalle numéro i, [xi, xi+1]. Soit xi+1/2 le point milieu de cet intervalle. Le développement

de Taylor de f au voisinage de ce point donne

f(xi+1/2 + ϵ) = f(xi+1/2) + ϵf ′
i+1/2 +

1

2
ϵ2f ′′

i+1/2 +
1

6
ϵ3f ′′′

i+1/2 +O(ϵ4) . (B.5)

Intégrant sur l’intervalle, on a∫ xi+1

xi

f(x)dx =

∫ +h/2

−h/2

f(xi+1/2 + ϵ)dϵ = hfi+1/2 +
h3

24
f ′′
i+1/2 +O(h5) , (B.6)

la contribution des termes de puissance paire en h étant nulle.

La règle du point milieu (a) s’obtient en ne considérant que le premier terme de (B.6).

Sur chaque intervalle, l’erreur est ainsi d’ordre h3. En sommant sur les N intervalles,

puisque N ∝ 1/h, l’erreur sur l’intégrale entre a et b est d’ordre h2.

La règle des trapèzes (b) s’obtient en ne considérant que le premier terme de (B.6) et

en substituant fi+1/2 par les développements limités de f autour de xi+1/2 en xi et xi+1,

c’est-à-dire l’Eq.(B.5) avec ϵ = −h/2 et +h/2, respectivement :

fi = fi+1/2 −
h

2
f ′
i+1/2 +O(h2) , (B.7)

fi+1 = fi+1/2 +
h

2
f ′
i+1/2 +O(h2) . (B.8)

En faisant la moyenne des deux expressions ci-dessus, on a

fi+1/2 =
1

2
(fi + fi+1) +O(h2) , (B.9)

et la formule des trapèzes donne une erreur d’ordre h3 pour chaque intervalle, donc d’ordre

h2 pour l’intégrale entre a et b.

La règle de Simpson (c) s’obtient de (B.6) et de l’expression aux différences finies (A.7)

pour f ′′
i+1/2 [N.B. substituant h→ h/2, j → i+ 1/2, j − 1 → i, j + 1 → i+ 1] :

f ′′
i+1/2 =

1

(h/2)2
(
fi − 2fi+1/2 + fi+1

)
+O(h2) . (B.10)

On obtient ainsi∫ xi+1

xi

f(x)dx = hfi+1/2 +
h3

24

[
4

h2
(
fi − 2fi+1/2 + fi+1

)
+O(h2)

]
, (B.11)

∫ xi+1

xi

f(x)dx =
h

6

(
fi−1 + 4fi+1/2 + fi−1

)
+O(h5) . (B.12)

L’erreur de la règle de Simpson est ainsi d’ordre h5 pour chaque intervalle, et donc d’ordre

h4 pour l’intégrale entre a et b.
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B.2 Méthode de quadrature de Gauss

A la section précédente, on obtenait une estimation de l’intégrale en sommant, avec des

poids différents, la fonction f évaluée aux points milieux xi+1/2 et/ou aux points de bords

xi des intervalles de discrétisation.

L’idée de la méthode de Gauss est de choisir non seulement les poids, mais aussi les

abcisses, des points où la fonction f est évaluée. Soit n un entier positif. On écrit la

contribution de l’intervalle numéro i, [xi, xi+1], à l’intégrale :∫ xi+1

xi

f(x)dx =
h

2

n∑
j=1

wjf(xj) +Rn , (B.13)

avec

xj = xi+1/2 +
h

2
ξj . (B.14)

Les abcisses ξj et les poids wj sont donnés dans la table ci-dessous. Le résidu (erreur) Rn

est d’ordre p. La méthode de Gauss consiste à choisir judicieusement les poids wj et les

abcisses ξj de telle sorte que la formule d’intégration soit exacte pour un polynôme de

degré 2n− 1.

n ξj wj p
1 0 2 2

2 ±
√

1/3 1 4
3 0 8/9 6

±
√

3/5 5/9

4 ±
√

3/7−
√
120/35 1/2 + 5/(3

√
120) 8

±
√

3/7 +
√
120/35 1/2− 5/(3

√
120)

5 0 128/225 10

±
√

245− 14
√
70/21 (322 + 13

√
70)/900

±
√

245 + 14
√
70/21 (322− 13

√
70)/900

B.3 Intégration de Monte Carlo

L’idée est de choisir les abcisses xi non pas selon un maillage régulier, mais “au hasard”,

c’est-à-dire selon une fonction de distribution de probabilité uniforme dans l’intervalle

[a, b]. Obtenir une séquence de N points aléatoires sur un ordinateur n’est pas si trivial :

l’ordinateur ne peut pas “jouer aux dés”, pour paraphraser un célebre physicien. Il faut

un algorithme, qui par définition est une séquence d’instructions déterministes. On ne

peut que simuler le caratère aléatoire : on parle de générateur pseudo-aléatoire.
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On obtient ensuite une approximation à l’intégrale :∫ b

a

f(x)dx ≈ b− a

N

N∑
i=1

f(xi) . (B.15)

La question des erreurs de cette méthode est cruciale. Elle se base sur le théorème central

limite. Si les f(xi) sont des variables aléatoires avec une variance non nulle, si elles

sont distribuées selon la même densité de probabilité, et si elles sont indépendantes,

alors leur somme tend, pour N → ∞, vers une variable aléatoire ayant une fonction

de distribution de probabilité normale, dont la variance est proportionnelle à
√
N . La

variance de l’intégrale de Monte Carlo a donc une variance σ proportionnelle à 1/
√
N .

La méthode de Monte Carlo pour estimer une intégrale est comparativement avantageuse

pour des intégrales à plusieurs dimensions d. Les méthodes des sections précédentes,

basées sur des maillages réguliers, nécessitent de l’ordre de Ntot = 1/hd évaluations de la

fonction f (à tous les points de maillage). Pour la méthode des trapèzes, par exemple,

l’erreur est en h2. Comme h = N
−1/d
tot , l’erreur va comme N

−2/d
tot . Pour la méthode de

Simpson, l’erreur est en h4 et donc en N
−4/d
tot . L’erreur dans la méthode de Monte Carlo

est en N
−1/2
tot quel que soit le nombre de dimensions d. Ainsi, la méthode Monte Carlo

devient avantageuse par rapport à la règle des trapèzes pour d > 4, et par rapport à la

règle de Simpson pour d > 8.
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Annexe C

Solution analytique de l’équation
d’advection-diffusion

Nous allons obtenir la solution analytique de l’équation d’advection-diffusion en 1D,

Eq.(4.19) :

∂f

∂t
+ v

∂f

∂x
−D

∂2f

∂x2
= 0 . (C.1)

avec la condition initiale

f(x, 0) = Nδ(x− x0) , (C.2)

avec x0 donnée, ce qui correspond à placer, en t = 0, toutes les N particules à la même

position x0. Soit f̂(k, t) la transformée de Fourier spatiale de f(x, t),

f̂(k, t) =
1√
2π

∫ +∞

−∞
f(x, t)e−ikx dx . (C.3)

On a donc la transformée de Fourier inverse :

f(x, t) =
1√
2π

∫ +∞

−∞
f̂(k, t)e+ikx dk . (C.4)

Prendre la dérivée partielle par rapport à x revient, dans l’espace de Fourier,

à appliquer une multiplication par ik. L’Eq.(C.1) s’écrit donc, dans l’espace de

Fourier :
∂f̂

∂t
+ ikvf̂ + k2Df̂ = 0 . (C.5)

La solution pour f̂ s’obtient facilement :

f̂(k, t) = f̂(k, 0) exp [−(ikv + k2D)t] (C.6)

Pour obtenir n(x, t), il faut revenir dans l’espace réel, autrement dit appliquer une trans-

formée de Fourier inverse. Ici, la fonction f̂ est sous la forme d’un produit de fonctions :

f̂ = f̂(k, 0)Ĝ(k, t), avec

Ĝ(k, t) = exp [−(ikv + k2D)t] . (C.7)
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Or, la transformée de Fourier inverse d’un produit de fonctions est une convolution dans

l’espace réel :

f(x, t) =
1√
2π

∫ +∞

−∞
f(x′, 0)G(x− x′, t) dx′ , (C.8)

où G(x, t) est la transformée de Fourier inverse de Ĝ(k, t) :

G(x, t) =
1√
2π

∫ +∞

−∞
exp−(ikv + k2D)t e+ikx dk ; (C.9)

G(x, t) =
1√
2π

∫ +∞

−∞
eik(x−vt)e−k2Dt dk . (C.10)

On utilise la formule ∫ +∞

−∞
e−p2k2eqkdk =

√
π

p
eq

2/4p2 (C.11)

avec p =
√
Dt et q = i(x− vt), pour obtenir :

G(x, t) =
1√
2Dt

e−(x−vt)2/4Dt . (C.12)

Insérant cette expression, et la condition initiale Eq.(C.2) dans l’expression de convolution

Eq.(C.8), on obtient :

f(x, t) =
1√
2π

∫ +∞

−∞
Nδ(x′ − x0)

1√
2Dt

exp [−(x− x′ − vt)2/4Dt] dx′ (C.13)

En utilisant la propriété de la fonction δ,∫ +∞

−∞
δ(x′ − x0)f(x

′)dx′ = f(x0) , (C.14)

on obtient

f(x, t) =
N√
4πDt

exp [−(x− x0 − vt)2/4Dt] . (C.15)

On obtient bien l’Eq.(4.20).
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Annexe D

Coefficient de diffusion et marche
aléatoire

Nous allons établir la relation entre la variance d’une marche aléatoire et le coefficient de

diffusion.

Soit une marche aléatoire résultant d’une succession de M “pas” ξi, variables aléatoires

statistiquement indépendantes, de moyenne nulle < ξi >= 0 et de variance non nulle

< ξ2i ≯= 0.

La position finale x =
∑M

i=1 ξi est une variable aléatoire de moyenne nulle, < x >=∑M
i=1 < ξi >= 0, mais de variance non nulle :

< x2 >=

〈(
M∑
i=1

ξi

)(
M∑
j=1

ξj

)〉
=

M∑
i=1

< ξ2i > +
∑
i ̸=j

< ξiξj >=M < ξ2i > . (D.1)

On peut définir le temps caractéristique τ par le temps entre deux “pas”, c’est-à-dire

entre deux collisions successives, et le libre parcours moyen λmfp par

λmfp =
√
< ξ2i > . (D.2)

Le nombre de “pas” (de collisions) M pendant un intervalle de durée ∆t est donc ∆t/τ ,

et on a

< x2 >=
∆t

τ
λ2mfp . (D.3)

Considérons maintenant la description continue, soit l’équation de diffusion, Eq.(4.17),

que l’on prend ici en 1-D avec un coefficient de diffusionD constant et uniforme , Eq.(4.19)

avec une vitesse d’advection nulle (v = 0). Prenant le 2e moment de cette équation

(multipliant par x2 et intégrant sur x), le premier terme donne∫ +∞

−∞
x2
∂n

∂t
dx =

∂

∂t

∫ +∞

−∞
x2ndx = N

∂

∂t
x̄2 , (D.4)
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où N =
∫
n(x, t)dx est le nombre total de particules et

x̄2(t) =
1

N

∫ +∞

−∞
x2n(x, t)dx . (D.5)

Le 3e terme donne, en intégrant par parties,∫ +∞

−∞
−x2D∂

2n

∂x2
dx = −

[
x2D

∂n

∂x

]+∞

−∞
+

∫ +∞

−∞

∂

∂x
(x2D)

∂n

∂x
dx

=

[
∂

∂x
(x2D)n

]+∞

−∞
−
∫ +∞

−∞

∂2

∂x2
(x2D)n dx

= −2D

∫ +∞

−∞
n dx = −2DN . (D.6)

On a donc, de (D.4) et (D.6),

N
∂x̄2

∂t
− 2DN = 0 ⇒ x̄2 = x̄2(0) + 2Dt . (D.7)

On identifie x̄2 de la description continue (macroscopique) avec la variance < x2 > de la

description de la marche aléatoire (microscopique). Pour une marche aléatoire, la variance

de la position initiale est nulle, et on a, pour l’intervalle de temps ∆t,

< x2 >= 2D∆t . (D.8)

Ainsi, on peut exprimer le coefficient de diffusion de la description continue (macrosco-

pique) en termes de grandeurs liées à la marche aléatoire (microscopique), à partir de

(D.3) et (D.8) :

D =
λ2mfp

2τ
. (D.9)
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Annexe E

Equations d’ondes en eaux peu
profondes

Nous allons établir les équations régissant les ondes à la surface de l’eau, sous certaines

hypothèses simplificatrices, appelés “ondes en eaux peu profondes” (shallow water wave

equations). A une dimension d’espace, nous montrerons que l’on obtient une équation de

la forme de l’Eq.(4.62), avec une vitesse de propagation donnée par l’Eq.(4.63).

Considérons un fluide incompressible de densité (constante) ρ0. Au repos, la profondeur

est donnée par une fonction h0(x) donnée et la vitesse du fluide est nulle v0 = 0. En

présence de perturbation (Fig. E.1), la profondeur et la vitesse sont

h(x, t) = h0(x) + δh(x, t) (E.1)

v⃗(x, t) = 0 + δv⃗(x, t) (E.2)

Les équations de base sont obtenues de l’équation du mouvement, ou 2e loi de Newton,

pour une particule fluide de la surface de l’eau, et de l’équation de continuité exprimant

la conservation de la masse au cours du mouvement :

ρ0
dv⃗

dt
= −∇P + ρ0g⃗ , (E.3)

∂h

∂t
+∇ · (hv⃗) = 0 . (E.4)

Projetant l’Eq.(E.3) sur l’axe vertical y,

ρ0
dvy
dt

= −∂P
∂y

− ρ0g (E.5)

On fait l’hypothèse que ∣∣∣∣dvydt

∣∣∣∣≪ g (E.6)
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fond océan

surface océan au repos

surface océan perturbée

x

y N
r

α

hδ

0h

Figure E.1 – Vague sur l’océan.

qui revient à supposer que le mouvement vertical est suffisamment lent et varie lentement,

de sorte que l’accélération verticale est négligeable par rapport à la pesanteur. Ainsi,

∂P

∂y
= −ρ0g . (E.7)

Projetant l’Eq.(E.3) sur l’axe horizontal x,

ρ0
dvx
dt

= −∂P
∂x

(E.8)

Ecrivant N⃗ = −∇P , et sachant que le gradient de pression est normal aux isobares et

que la surface de l’eau est une isobare, et définissant l’angle α par

tanα =
∂δh

∂x
(E.9)

(voir Fig. E.1), α est l’angle que fait N⃗ avec la verticale, tel que Nx = −∂P/∂x =

−|N | sinα , Ny = −∂P/∂y = |N | cosα. Avec l’Eq.(E.7), |N | cosα = ρ0g, et ainsi, il

vient :

ρ0
dvx
dt

= −|N | sinα = −ρ0g tanα = −ρ0g
∂δh

∂x
. (E.10)

Ainsi,
∂vx
∂t

+ vx
∂vx
∂x

= −g∂δh
∂x

. (E.11)

En supposant un problème unidimensionnel en x (donc ∂/∂y = ∂/∂z = 0), l’Eq.(E.4)

s’écrit
∂h

∂t
+

∂

∂x
(hvx) = 0 . (E.12)
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Séparant l’équilibre de la perturbation, Eqs.(E.1-E.2), on obtient, après linéarisation :

∂δvx
∂t

+ g
∂δh

∂x
= 0 , (E.13)

∂δh

∂t
+

∂

∂x
(h0δvx) = 0 . (E.14)

Prenant ∂/∂t de l’Eq.(E.14) et substituant ∂δvx/∂t de l’Eq.(E.13), on obtient :

∂2δh

∂t2
− ∂

∂x

(
gh0

∂δh

∂x

)
= 0 . (E.15)

Il s’agit bien d’une équation de la même forme que l’Eq.(4.62). On identifie ainsi

u(x) =
√
gh0(x) (E.16)

Equation de balance d’énergie

On peut obtenir une équation de type conservatif pour une quantité que l’on identifiera

avec l’énergie de l’onde. Multipliant l’Eq.(E.13) par h0δvx,

h0δvx
∂δvx
∂t

+ gh0δvx
∂δh

∂x
= 0 (E.17)

⇒ ∂

∂t

(
h0
δv2x
2

)
+

∂

∂x
(gh0δvxδh)− g

∂

∂x
(h0δvx) δh = 0 (E.18)

De l’Eq.(E.14), on a ∂(h0δvx)/∂x = −∂δh/∂t, et il vient

∂

∂t

(
1

2
h0(δvx)

2 +
1

2
g(δh)2

)
+

∂

∂x
(gh0δvxδh) = 0 . (E.19)

C’est une équation de continuité pour la densité d’énergie de l’onde

E =
1

2
h0(δvx)

2 +
1

2
g(δh)2 (E.20)

et on identifie le flux d’énergie de l’onde

S = gh0δvxδh . (E.21)

N.B. : Le problème 2D que nous avons résolu ici est tel que la coordonnée z est ignorable.

En d’autres termes, on a obtenu une description valable pour une “tranche” d’épaisseur

Lz arbitraire. Pour obtenir des quantités en unités physiques habituelles, on notera que

Eρ0/Lz est une énergie par unité de volume, et Sρ0/Lz est une énergie par unité de surface

et par unité de temps. Multiplier ces quantités par une constante ρ0/Lz ne change pas

leur propriétés de conservation.
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mulation of physical systems I - II, cours à option de Master EPFL
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