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Chapitre 1

Introduction

1.1 Présentation du cours

Ce cours est destiné aux étudiants de la Section de Physique de 'EPFL de deuxieme
année. Il suppose avoir acquis les notions des cours de mathématiques (analyse et algebre
linéaire), d’analyse numérique, de physique et d’informatique de 'année propédeutique.

Ce cours n’est ni un cours de programmation scientifique avancée, ni un cours de mathé-
matiques discretes. C’est un cours de physique.

Il n’a pas pour objectif de former des théoriciens spécialistes pointus des algorithmes
numériques. Cependant, il est clair aujourd’hui que tout physicien sera confronté un jour
ou l'autre a un probleme de nature numérique, que ce soit seulement en tant qu’uti-
lisateur d’'un “package”, ou que ce soit un expérimentateur confronté a des problémes
d’échantillonage et d’analyse du signal. D’autre part, il serait dommage, vu la puissance
de calcul et I'aisance d’utilisation des ordinateurs, de se passer d'un outil qui, comme
I'outil analytique, et en complément de celui-ci, permet de résoudre des problemes de
physique et ainsi aider a la compréhension de nombreux phénomenes.

Les problemes que 'on peut résoudre “exactement” (c.a.d. par des méthodes analytiques)
sont tres restreints, dans le sens qu’ils sont souvent basés sur une idéalisation, une sim-
plification de la réalité : par exemple, on néglige la résistance de I’air, ou on néglige la
présence d'un troisieme corps céleste pour calculer les trajectoire d'une planete, etc. La
réalité est bien plus complexe, et la confrontation théorie - expérience doit faire face au
dilemne suivant : les différences entre prédictions et mesures sont-elles dues a des effets
négligés (pour pouvoir résoudre ezactement des équations représentant une approzimation
de la réalité), ou a des imprécisions de mesure, ou encore indiquent-elles une défaillance
fondamentale de la théorie utilisée ?



CHAPITRE 1. INTRODUCTION

L’approche numérique permet de tenir compte de plusieurs effets traditionnellement
négligés. Mais elle a elleeméme ses limites : la solution numérique est fragmentaire et
approximative. Cest pourquoi il est absolument crucial de pouvoir évaluer la qua-
lité de la solution numérique. C’est un des objectifs essentiels de ce cours que de
développer ce type d’attitude face a la solution numérique.

Objectifs

— Aborder, formuler et résoudre des problemes de physique pouvant étre décrits par
des équations différentielles ordinaires ou aux dérivées partielles, en utilisant des
méthodes numériques.

— Comprendre les avantages et les limites de ces méthodes.

— Etendre les applications aux problemes difficilement traitables par les méthodes
analytiques.

— Apprendre a utiliser les concepts physiques pour vérifier et valider les résultats
numeériques.

— Controler la précision en estimant les erreurs, en examinant la stabilité et la conver-
gence.

— Compléter et illustrer différents sujets de physique traités dans d’autres cours.

Organisation

Le cours est organisé avec une partie d’enseignement “frontal”, ou les problemes physiques
et leur modélisation, ainsi que les méthodes numériques sont présentées. Il est suivi d'une
partie de “travaux pratiques”, ou il s’agit de résoudre des exercices. Ces exercices feront
I'objet de rapports a rendre, qui seront ensuite évalués et notés.

Contenu

Apres une introduction a la discrétisation et aux concepts de la convergence et de la
stabilité numériques, le cours aborde les problemes d’évolution temporelle a valeur initiale,
en partant du cas le plus simple.

On s’intéresse ensuite aux problemes, essentiellement tirés de la mécanique Newtonienne,
pour lesquelles divers intégrateurs numériques sont développés et analysés, et qui per-
mettent d’aller au-dela, dans les applications, des exemples traditionnellement choisis.
On verra, par exemple, ’apparition de mouvement chaotique dans des systemes simples,
ce qui aura des conséquences sur les notions de prédictabilité et de déterminisme.

On aborde ensuite les problemes d’intégration d’équations différentielles dans 'espace, a
une, puis deux dimensions. Les applications physiques seront tirées de la thermodyna-
mique et de I'électromagnétisme.

2 Physique Numérique LV SPC EPFL



1.1. PRESENTATION DU COURS

Physique

\ Numeérique

1. Introduction

1. Discrétisation, erreurs, convergence,
stabilité

2. Evolution temporelle. Problemes a
valeur initiale décrits par des équations
différentielles  ordinaires.  Oscillations.
Chaos. Gravitation a 1,2 et 3 corps.
Particules dans champ EM. Problemes
1D a valeurs aux bords traités comme a
valeur initiale.

2. Schémas explicites : Fuler explicite, Eu-
ler symplectique, Verlet, Leapfrog, Runge-
Kutta. Schéma d’Euler implicite. Schéma
semi-implicite : Boris-Buneman. Stabilité
et convergence. Pas de temps adaptatif.
Traitement de la singularité des équations.

3. Intégration spatiale. Problemes a
valeurs aux bords. Electrostatique,
magnétostatique, chaleur stationnaire.

3. Différences finies. Méthodes
accélératrices : Gauss-Seidel, surrrelaxa-
tion. Elements finis. Grille non-uniforme.

4.  Intégration  spatio-temporelle
problemes décrits par des équations aux
dérivées partielles. Advection-Diffusion.
Ondes : propagation, réflexion, superpo-
sition, milieux inhomogenes. Mécanique
quantique : Schrodinger dépendante du
temps, principe d’incertitude, puits et
barrieres de potentiel, effet tunnel, oscil-
lateur harmonique, potentiel périodique.
Schrodinger stationnaire, états propres.

4. Différences finies. Schémas explicites a
2 et 3 niveaux. Application de diverses
conditions initiales et conditions aux
bords. Analyse de stabilité. Monte Carlo
Langevin (marche aléatoire). Schéma
semi-implicite de Crank-Nicholson. Pro-
priétés de conservation.

5. Physique statistique. Transitions de
phase.

5. Monte Carlo. Algorithme de Metropo-
lis.

TABLE 1.1 — Correspondance entre les problemes de physique abordés (colonne de gauche)
et les méthodes numériques introduites (colonne de droite). Les numéros correspondent

aux chapitres du cours.

Physique Numérique LV SPC EPFL



CHAPITRE 1. INTRODUCTION

Les problemes d’évolution spatio-temporelles seront évoqués, avec applications possibles
aux problemes de ’advection-diffusion, de la propagation d’ondes et de la mécanique
quantique.

Un exemple simple d’application de la méthode de Monte Carlo, permettant de simuler
le comportement statistique des systemes a plusieurs degrés de liberté, sera présenté.

Enfin, le lecteur pourra a profit consulter les quelques ouvrages de référence, articles
scientifiques et liens sur la toile mentionnés dans la Bibliographie, p. [206]

Structure

La présentation de ce cours suit une double logique. D’une part, la motivation est basée
sur la physique, ou des problemes de complexité croissante sont abordés. Ces problemes
servent de motivation a l'introduction de méthodes numériques. La table[l.1|indique cette
correspondance.

1.2 Discrétisation

On appelle discrétisation le processus de remplacer un systeme d’équations sur un
espace continu, généralement des équations différentielles, en le représentant de fagon
approximative en termes d’un ensemble discret (dénombrable et fini) de quantités.

La figure illustre ce propos, avec, sur la partie gauche, la représentation continue, et
a droite, la représentation discrete.

Les quantités discretes peuvent par exemple étre les valeurs des fonctions en des points
d’un réseau (appelé aussi maillage). Pour obtenir une estimation de la dérivée de ces
fonctions, on peut, par exemple, utiliser alors des différences finies, qui seront une ap-
prozimation, plus ou moins bonne, selon l'ordre utilisé. L’annexe [A] décrit plus en détail
comment obtenir les formules de différences finies.

Une autre possibilité est de représenter les fonctions en termes d’une somme de fonctions
de base ayant un support fini, également défini sur un réseau (maillage). Les méthodes
d’éléments finis sont un exemple d’une telle approche. Les méthodes dites spectrales, avec
des fonctions de base globales, typiquement harmoniques ou polynomiales, sont un autre
exemple.

On obtient ainsi, a partir du systeme originel d’équations différentielles, un systeme
d’équations algébriques, qui peut étre résolu par des opérations arithmétiques. Moyen-

4 Physique Numérique LV SPC EPFL



1.3. ERREURS DE TRONCATURE ET D’ARRONDI

t continu {t.}, n=0,1,2,3,...
y(t) continue {v.}, n=0,1,2,3,... y,=y(t,)
y yt
yl]
Yy
t ° t
h 4t 4 th1 by
Equation différentielle, p.ex. Approximation, p.ex. différences finies
dy Vpr =Y
- = ’t = . ~ n’tn
=S s S Ot)
? Solution approchée y,(t,), en

‘ Solution exacte y(t) ‘<:> un nombre fini de points

”
‘ Calcul différentiel et intégral ‘<::>‘ Opérations arithmétiques ‘

FiGure 1.1 — Correspondance entre la représentation continue, a gauche, et la
représentation discréete, a droite.

nant traduction par un langage de programmation, ces opérations peuvent s’exécuter par
le processeur arithmétique d’un ordinateur.

Il est crucial de comprendre a quel point la solution discrétisée de notre probleme repésente
fidelement, ou non, la solution du probleme continu initial. Il s’agit ici de pouvoir quan-
tifier cette "fidélité”. Un des objectifs principaux de ce cours est donc la compréhension
des erreurs, des proprétés de convergence et de stabilité numériques. Ces concepts
sont introduits brivement dans les prochaines sections.

1.3 Erreurs de troncature et d’arrondi

Tout processus de discrétisation s’accompagne généralement d’erreurs. On parle d’er-
reurs de troncature et d’arrondi. Les erreurs de troncature sont directement liées a la
facon dont on a approximé le probleme continu. L’effet de ces erreurs dépend du type
d’équations et peut étre bénin. Un "bon” schéma numérique est tel que plus on utilise
un réseau (maillage) fin, plus l'erreur de discrétisation diminue, pour tendre vers zéro.
Cette propriété s’appelle la convergence numérique.

On verra que les conséquences des erreurs de discrétisation peuvent parfois étre drama-
tiques et conduire a des wnstabilités totalement non-physiques : I’erreur croit exponentiel-
lement dans le temps.

Physique Numérique LV SPC EPFL 5



CHAPITRE 1. INTRODUCTION

Les erreurs d’arrondi sont dues a la représentation des nombres réels par un nombre fini
de bits : c’est le cas de toute arithmétique exécutée par un processeur.

Nous nous bornerons ici a évoquer brievement le probleme des erreurs et de leur accumu-
lation. Les formules de différences finies sont introduites, pour certaines d’entre elles, ‘a la
section suivante et & 1" annexe [A] Des formules d’intégration numérique sont démontrées
a 'annexe [Bl

La plupart des problemes de physique que nous allons aborder aboutissent & une (ou
plusieurs) équation(s) différentielle(s). Au coeur du probléeme de leur résolution numérique
se trouve donc la question de la représentation et du calcul d’une dérivée. Par exemple,
la formule d’ordre le plus bas en h = Ax de la dérivée de premier ordre pour une fonction

f(z), Eq.(A.22)), est :
%(:c) _ St Ag; —@) oA (1.1)

Le symbole O(Ax) signifie que I'erreur commise dans 'approximation de la dérivée sera

linéairement proportionnelle a Az, dans la limite Az — 0. C’est ’erreur de troncature
(on a tronqué ici le développement limité de la fonction f pour obtenir cvette formule de
différence finie). On retrouve donc l'erreur de troncature lors de ’évaluation numérique
de la dérivée.

Mais il y a un autre type d’erreur : non seulement les fonctions ne sont connues qu’en
un ensemble discret de points, la représentation numérique d’un nombre réel dans un
processeur utilise un nombre fini de bits, autrement dit la représentation de chaque valeur
f;j et chaque z; est elle-méme discréte. On appelle ce type d’erreur I’erreur d’arrondi
(le nombre réel est “arrondi” a sa plus proche représentation binaire sur le processeur).

Ces deux types d’erreurs sont illustrées a la FIG. pour le cas de I’évaluation numérique
de dsin(z)/dz en x = 7/4. On a représenté, avec des axes logarithmiques, 'erreur par
rapport a la solution exacte en fonction du choix de Axz. pour des Ax pas trop petits,
I'erreur diminue effectivement linéairement avec Az (la pente est +1 sur ce graphique
logarithmique). Mais pour Ax tendant vers zéro, l'erreur diverge et I’évaluation de la
dérivée diverge : ce comportement est di aux erreurs d’arrondi, exemplifiées par la
formule ci-dessus qui, au numérateur, évalue la différence de deux nombres voisins : il
y a perte d’information. On constate que si le comportement de I'erreur de troncature
est régulier, celui de 'erreur d’arrondi est erratique. Cela tient a la nature discrete de la
représentation binaire d'un nombre réel. En conséquence de ces deux sources d’erreur, la
précision sur le résultat est en pratique limitée & ~ 1077 — 1078, qui est & peu pres la
moitié de la précision de la représentation a 64 bits.

Dans la suite du cours, nous allons intégrer des équations différentielles en prenant un
grand nombre de points de la grille, ou de pas temporels, et la question de [’accumulation
des erreurs de troncature et d’arrondi doit étre surveillée.

6 Physique Numérique LV SPC EPFL



1.4. DIFFERENCES FINIES ET DEVELOPPEMENTS LIMITES

df(x)/dx
10° |
arrondi troncature
S 107°
w
1019} 1]
107%° 10710 107° 10°

A X

FIGURE 1.2 — Erreur sur l’évaluation numérique de la dérivée dsin(z)/dx en x = /4,
en fonction de Ax. On a utilisé la formule de différence finies “forward”, Eq.(1.1]).

1.4 Différences finies et développements limités

Dans la plupart des situations, des considérations d’ordre physique nous permettent de
supposer que les fonctions décrivant le systeme et son évolution sont continues et n fois (si
ce n’est indéfiniment) différentiables. On peut donc se baser sur le développement limité
de Taylor de ces fonctions au voisinage des points de discrétisation (appelés “points du
réseau” ou “points du maillage”).

Soit une fonction f € C*(R). Soit une discrétisation x; avec des points de maillage
équidistants, h; = v — x; = h,Vj. Soit f; = f(z;) et fj = df(z;)/dzv. On écrit les
développements limités de la fonction f au voisinage du point de maillage z;, que I'on
exprime aux points de maillage x4, 7 49 :

fia = f;—2hf+ 202 f) — gh?’f}?’) + ;—ih‘*f]@) . %mﬁ“ +O0Y  (1.2)
fro = fi—hfid gt = h O 4 S - O Lo (1)
fir1 = fi+hfi+ %hzf]’.’ + %h3fj(3) + 2—14114]”;4) + ﬁh‘r’ff’) + O  (1.4)
five = f;+2hf+ 202 f + ghi”ff’) + gh‘lf}“) + 13—220h5f}5) + O (L.5)

De I'Eq.(|1.3)), on obtient :
fi-i—fi= —hfj'.(’)(h2) .

Physique Numérique LV SPC EPFL 7



CHAPITRE 1. INTRODUCTION

En divisant par —h, on obtient :

fi= J; hfj L1 o). (1.6)

C’est la formule de la premiere dérivée "en arrite” (”backward”) ou "rétrograde”. Elle
est d’ordre 1 en h (autrement dit, l'erreur de troncature est proportionnelle a la taille du
maillage h).

On peut procéder de méme a partir de I'Eq.([1.4)) :

fier = £ = hf;O(R?) .

En divisant par h, on obtient :

/ f]+1 f]
g =il o). (1.7

C’est la formule de la premiere dérivée "en avant” (”forward”) ou ”progressive”. Elle a
une erreur d’ordre 1 en h (autrement dit, I'erreur de troncature est proportionnelle a la
taille du maillage h).

On peut faire mieux. En faisant la différence de I'Eq.(1.3)) et de I'Eq.([1.4)), on élimine les
termes de dérivées d’ordre pair et on obtient :

fj+1 - fj—l — 2hf], + O(hg)

En divisant cette expression par 2h, on a :

fi= f”l%f“ oh?)|. (1.8)

C’est la formule de la premiere dérivée centrée. Elle a une erreur d’ordre 2 en h (au-

trement dit, ’erreur de troncature est proportionnelle au carré de la taille du maillage,
h?).

On constate que prendre un schéma centré augmente ’ordre, donc la précision
obtenue, par rapport aux schémas décentrés. Ceci est illustré a la FigJ1.3, ou on a
représenté 'erreur sur I’évaluation de d sin(x)/dz en x = /4 en utilisant le schéma centré,
Eq.(L.8) (en rouge). On constate que I'erreur de troncature varie bien en h? (la pente est
2 sue le diagramme log-log). Par rapport au schéma décentré ”forward”, Eq. (en
noir), on constate bien I'avantage du schrha centré. Pour une taille de maillage donnée,
la précision est bien meilleure, tant qu’on n’est pas dominé par les erreurs d’arrondi. Le
minimum de Uerreur est ~ 107!, bien meilleur que les 10™® du schéma forward.

Mais quelle que soit la qualité du schéma et son ordre de convergence, les erreurs d’arrondi
sont inévitables. On trouve une divergence de 'erreur en ~ 1/h, indépendemment de
I'ordre du schéma utilisé.
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1.4. DIFFERENCES FINIES ET DEVELOPPEMENTS LIMITES

df(x)/dx
10° Y
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S
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FIGURE 1.3 — Erreur sur l’évaluation numérique de la dérivée dsin(z)/dx en x = /4,
en fonction de Ax, avec la formule de différences finies centrées, Eq.@, (rouge) et
avec la formule de différences finies ”forward”, Eq. (noir).

Une formule de différences finies que nous allons utiliser plusieurs fois dans la suite du
cours est pour la deuxieme dérivée. Elle s’obtient en additionnant les Eqs. (1.3]) et Eq.({1.4)),
ce qui élimine les termes de dérivées d’ordre impair :

fimt+ fis =2f; + B2f] + O(h*) . (1.9)

En divisant par h?, on obtient

- fi-1— QhJ;J + fit +om). (1.10)

C’est également une expression centrée. Elle a une erreur d’ordre 2 en h. Pour augmenter
I'ordre de l'erreur - et donc la précision - des formules de différences finies, il faut inclure
non seulement les points immédiatement voisins du point j, j + 1, mais aussi les points
au-dela : j£2, 43, .... Par exemple, on obtient la deuxiéeme dérivée avec une erreur d’ordre

4 en faisant la somme des Eqs(|1.3)) et(1.4]), puis de Eqs(|1.2)) et (1.5
1
fimi b frn = 205+ 12+ h Y+ O) (1.11)

1! 4
fiot fira = 2f;+4R2f1 + §h4 £+ 0% (1.12)

En prenant 16x Eq.(1.11) - Eq.(1.12]), on élimine f;4) :

—fi—2 +16f-1 + 16 f541 — fir2 = 30f; + 12h° f + O(h°)

et on obtient :

fi = %h? (—fim2 + 1651 = 30f; + 16 fi41 — fi2) + O(B) | (1.13)

Physique Numérique LV SPC EPFL 9
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On trouvera en annexe [A] la dérivation d’autres formules de différences finies.

1.5 Convergence numérique

Dans cette section, nous abordons la question de savoir comment les erreurs de tronca-
ture des schémas numériques peuvent étre quantifiés. En particulier, il est important de
déterminer comment la solution numérique se comporte avec une discrétisation de plus en

plus fine. Par exemple, pour les problemes d’évolution temporelle avec des pas de temps
At :

1. La solution numérique, pour At — 0, tend-elle vers une solution finie ?
2. Cette solution coincide-t-elle avec la solution exacte (analytique) du probleme ?
3. De quelle facon la précision du résultat numérique augmente-t-elle lorsque At
diminue ?
En d’autres termes : (1) le schéma numérique converge-t-il, (2) converge-t-il vers la
bonne solution, et (3) a quelle ordre le schéma converge-t-il 7

Ces questions sont typiquement abordées dans un cours d’analyse numérique, avec des
démonstrations mathématiques rigoureuses. Nous nous bornerons ici a donner la définition
de 'ordre de convergence, dans le cas d'une équation différentielle pour une fonction y(t),
du type

dy

avec une fonction connue f(y,t) et une condition initiale connue y(0) = yo. On s’intéresse
a la solution obtenue au temps final ¢ = ty. On supposera que la solution exacte du
probleme est analytique, c¢’est-a-dire qu’elle possede un développement en série entiere
au voisinage de tout point. La plupart des méthodes numériques ne s’appliquent cor-
rectement que si une telle hypothese est vérifiée. La solution numérique en ¢ = t¢ sera
généralement différente de la solution exacte en ce point. En discrétisant I'intervalle [0, ¢ ]
en N points de maillage équidistants, At = t;/N, on dit que la solution numérique
converge a ’ordre n si on peut écrire :

Ynum (£ ) = Yexact (T£) + cn(AE)" + Cna1 (AL + (1.14)

Autrement dit, tous les termes en c¢,,(At)™, avec m < n, doivent étre tels que ¢,,=0.

Dans ce qui suit, nous nous intéresserons a la fagon d’exécuter une étude de convergence
et de représenter (“montrer”) les résultats.

Deux cas de figure peuvent se présenter. Dans le premier cas, si on dispose d'une solution
exacte du probleme, alors on peut calculer une erreur, qui est la différence entre la
solution numérique et la solution exacte. En effectuant une série de simulations avec des

10 Physique Numérique LV SPC EPFL
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Halley RK4 & Verlet

error on T [year]
|

. . ,
10 Il Il
10° 10* 10°

steps

FiGure 1.4 — Convergence numérique de la période de révolution de la comete de
Halley, obtenue avec le schéma de Verlet (noir) et le schéma de Runge-Kutta d’ordre
4. Ici, on connait la solution exacte et donc on peut calculer une ereur = différence
entre solutions numérique et exacte. On a représenté l’erreur en fonction du nombre
de pas de temps sur une échelle log-log. Les lignes traitillées sont de pente —2 (noir),
respectivement —4 (rouge), indiquant que l’ordre de convergence de ces schémas est de 2
(Verlet), respectivement 4 (RKJ).

discrétisations de plus en plus fines, on peut alors représenter la valeur absolue de cette
erreur en fonction de At. En choisissant des échelles log-log, on obtient la réponse aux trois
questions ci-dessus. En particulier, la pente du graphe de 1’erreur en fonction de
At sur un diagramme log-log, dans la limite At — 0, est ’ordre de convergence
numérique. En effet, a partir de I’Eq., on obtient :

10g(|Ynum (1) — Yexact (t£)]) = log(cn) + nlog(At) + ... (1.15)

On peut aussi représenter le logarithme de I'erreur en fonction du logarithme du nombre
de pas de temps N :

108 (|Ynum (tf) — Yexact (tr)|) = log(ent?,) — nlog(N) + ... (1.16)

Au signe pres, la pente est 'ordre de convergence. Un exemple est montré a la Fig. 1.4} 11
s’agit de la période de révolution d’une comete, obtenue avec divers schémas numériques
qui seront examinés au Chapitre 2.]

Dans le deuxieme cas, si on ne dispose pas d'une solution exacte, on ne peut alors pas
calculer une erreur, et la question (2) restera ouverte. Par contre, on peut néanmoins
répondre aux questions (1) et (3). Il n’est pas opportun de représenter la quantité
calculée en fonction de At sur un diagramme log-log : ce genre de diagramme de

Physique Numérique LV SPC EPFL 11
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Pendule excite Verlet

-1.8304

-1.8305¢

—-1.8306}

0 (tfin)

-1.8307}

—-1.8308;

-1.8309 : : : :
0 0.2 0.4 0.6 0.8 1

(At? x 107

FIGURE 1.5 — Convergence numérique de la position finale d’un pendule simple soumsis
a une excitation verticale et un amortissement, obtenue avec le schéma de Verlet. Ici, on
ne connait pas la solution exacte, et donc on ne peut pas a priori calculer l'erreur. On a
représenté la valeur de la position finale du pendule en fonction de (At)? ; le fait que les
points s alignent sur ce graphique indique que [’ordre de convergence de ce schéma est de
2.

nous apporte pas 'information recherchée. En effet, en prenant le log de I'Eq.(1.14)), on
obtient :

108 (Ynum (t£)) = 108(Yexact (t£)) + (Cn/Yexact (t£)) (A" + ...) (1.17)

dont la représentation graphique en fonction de log(At) ne donne pas d’information
évidente sur n. La bonne méthode est de représenter la quantité calculée en
fonction de (At)", sur une échelle linéaire-linéaire. On utilise alors directement
I’expression de l’Eq.. Si les points de mesure s’alignent sur une droite (dans la li-
mite des petits At), alors on illustre ainsi que I'ordre de convergence est n. Un exemple est
montré a la Fig. [L.5] Il s’agit ici de la position finale d’un pendule simple avec amortisse-
ment et excitation extérieure, pour lequel il n’existe pas de solution exacte. On peut alors,
en supposant que le comportement en (At)"™ se prolonge jusque dans la limite At — 0,
extrapoler les données pour prendre lim At — 0 : cette valeur sera la valeur convergée.

On peut alors définir une “erreur” comme la différence entre un résultat pour un At donné
et cette valeur convergée. Ensuite, on peut représenter cette “erreur” en fonction de At
sur un diagramme log-log. On devrait alors confirmer que la pente sur se diagramme est
bien n, 'ordre de convergence.

Pratiquement tous les schémas numériques sont basés sur des développements limités des
fonctions jusqu’a un certain ordre. Par exemple, si I'erreur d’'un schéma, pour un pas
de temps, est O(At)?, diminuer le pas de temps d'un facteur 2 résulte un une erreur 4
fois plus petite. Cependant, la solution a un temps ¢ = t5;, donné, sera entachée d'une
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erreur O(At)! : ceci parce que les erreurs faites & chaque pas de temps s’additionnent,
et le nombre de pas de temps est ¢;,/(At). Ainsi, dans cet exemple, diminuer le pas de
temps d'un facteur 2 résulte en une erreur diminuée d’un facteur 2 au temps t = ¢, et
on parle de schéma d’ordre 1. Notons cependant qu’il existe des situations ou l'ordre de
convergence observé est supérieur a celui attendu : il peut en effet arriver que les erreurs
d’ordre le plus bas s’annullent.

1.6 Stabilité numérique

Dans les problemes d’évolution temporelle, on s’intéresse ici a la facon dont l'erreur
numérique commise a un pas de temps t = t,, se “propage” aux pas de temps ultérieurs

t=tni1,t =tpyo,....

Il arrive malheureusement, pour certains schémas numériques et pour certaines équations,
que la norme de l'erreur numérique soit amplifiée a chaque pas de temps par un facteur
supérieur a 1. L’erreur numérique augmente ainsi exponentiellement au cours du temps.
Le schéma numérique est alors dit instable pour I’équation considérée.

Il ne faut pas confondre les notions de stabilité et de convergence numériques. Un schéma
peut tres bien converger et étre instable : en effet, on peut avoir une solution numérique
qui tend vers la solution exacte dans la limite At — 0, & un instant ¢ = ¢4;, donné, mais
dont I'erreur numérique augmente exponentiellement en fonction de ;.

Réciproquement, un schéma numérique qui est stable peut ne pas converger. L’erreur
numérique, dans ce cas, n'augmente pas exponentiellement au cours du temps, mais ne
tend pas vers zéro lorsque At tend vers zéro.

Notons encore qu'un schéma numérique peut étre stable pour une certaine équation
mais instable pour une autre équation. Par exemple, nous verrons que le schéma d’Euler
explicite est stable pour le probleme de la désintégration, mais instable pour le probleme
de l'oscillateur harmonique.

Nous reviendrons plus en détail sur ces questions dans le chapitre suivant.
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Chapitre 2

Evolution Temporelle - Problemes a
valeurs initiales

Dans ce chapitre, nous allons présenter quelques-unes des méthodes numériques utilisées
pour la résolution de problemes donnés par un systeme d’équations différentielles ordi-
naires (EDO) couplées, dont la solution unique requiert la connaissance des conditions
initiales. Nous commencerons par le cas le plus simple d’'une EDO du premier ordre pour
une seule fonction inconnue du temps, y(t), avec une condition initiale yo donnée :

dy _

i fly,t) y(0) = yo (2.1)

Nous commencerons avec le schéma le plus simple : Euler explicite. Puis nous généralserons
aux systemes d’équations couplées et introduirons progressivement des schémas numériques
plus sophistiqués.

2.1 Schéma d’Euler explicite

Nous introduisons dans cette section un des schémas numériques les plus simples :
la méthode d’Euler explicite (appelée parfois Fuler progressive). Nous partirons d’un
exemple physique simple.

2.1.1 Exemple : force de visosité

Soit un corps, point matériel de masse m, soumis a une force de viscosité Fi ;. = —KU,
avec k un coefficient constant. En restreignant le mouvement a une dimension d’espace,

15



CHAPITRE 2. EVOLUTION TEMPORELLE - PROBLEMES A VALEURS

INITIALES
on a donc, de la deuxieéme loi de Newton, en posant v = k/m :
dv
— 2.2
il (2.2)
avec la condition initiale
v(0) = g . (2.3)
On trouve facilement la soution exacte de (12.2)-(2.1.1)) :
v(t) =vge M. (2.4)

. s . . . t
La solution numérique s’obtient sur un ensemble discret de valeurs du temps, {t, };-0""

Nous posons, pour simplifier, que ces valeurs discretes sont équidistantes, avec t,,,1 —t, =
At,Vn.

Notre point de départ est le développement en série de Taylor de la fonction

v(t), Eq.(1.4) avec f =v et h = At :

v(t + At) = v(t) + —(t)At + = —(t)(At)* + O(AL)? . (2.5)
Le schéma numérique le plus simple s’obtient en négligeant les termes d’ordre supérieur

a1 en At :
dv

pml
Autrement dit, en écrivant cette relation pour les temps discrétisés {t¢,}, on a

V(t+ Ab) & v(t) + — ()AL . (2.6)

dv

+ (t)AL (2.7)

V(tny1) = v(t,)

En substituant avec I’équation différentielle (2.2)), on obtient :

V(tns1) = o(t,) — yo(t,) At]. (2.8)

Cette approche pour calculer v(t) s’appelle la méthode d’Euler explicite. Le quali-
ficatif “explicite” vient du fait que I'on obtient une expression pour 1’état du systeme
au temps t,,1 explicitement en fonction de I’état au pas de temps précédent t,,, supposé
connu. Nous verrons plus loin, a la section [2.5) une méthode implicite, et a la section
2.11.2| une méthode semi-implicite.

Pour que le schéma fonctionne, il faut Uinitialiser avec la valeur v(ty) = vy donnée. En
détaillant, le schéma d’Euler explicite consiste donc :
1. déclaration des variables nécessaires, tableaux, etc

2. initialisation : lire la valeur de ~, celle de vy, celles du temps de début et de fin de
la simulation et de la taille du pas temporel At

3. calcul de valeurs auxiliaires : nombre de pas temporels nsteps
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2.1. SCHEMA D’EULER EXPLICITE

boucle temporelle : obtenir la valeur de v,,1 = v, — 7 * v, * At
n—n-+1

répéter la boucle temporelle tant que n < nsteps

RN -

imprimer et faire un graphique du résultat

8. diagnostic de la solution : comparer si possible avec la solution exacte
On peut utiliser le schéma d’Euler explicite pour intégrer d’autres équations différentielles
que celles décrivant le mouvement d’un corps soumis a une force visqueuse. On peut
généraliser a toute équation de la forme

% = f(y7t> ) (2'9>

avec f une fonction donnée de deux variables. Il suffit, dans le schéma d’Euler explicite,
de substituer le point [ ci-dessus par

Yn+1 = Yn + f(yna tn)At (210)

et d’écrire la fonction f(y,1).

La solution numérique obtenue avec n’est qu'une approximation de la solution
exacte. Un des problemes auxquels nous serons régulierement confrontés est de déterminer
a quel point la solution numérique est précise, voire méme si elle a un sens physique :
la solution numérique ne va-t-elle pas se “noyer” par une accumulation d’erreurs faites a
chaque pas temporel ?

Un bon moyen est d’effectuer des tests de convergence numérique : choisissant des
pas temporels At de plus en plus petits, on examine quelle est la valeur de la solution
numérique, a un instant ¢ donné, en fonction de At. On devrait pouvoir ensuite effectuer
une extrapolation des résultats dans la limite At — 0.

Dans les cas ou on dispose d’une solution exacte, on peut calculer I'erreur de fagon précise,
et vérifier si 'erreur converge bien vers zéro. On note cependant qu’ a cause des erreurs
d’arrondi dues a la représentation avec un nombre fini de bits des nombres réels, on ne
peut pas excéder la précision machine; et, dans certains cas, ces erreurs peuvent faire
diverger la solution !

Le schéma d’Euler explicite est dit d’ordre 1, parce qu’il provient d’un développement
limité d’ordre 1 en At, les termes en (At)? ayant été négligés. A chaque pas de temps, on
fait une erreur proportionnelle a (At)?. Pour simuler jusqu’a un temps final donné tg,, on
doit faire un nombre de pas de temps inversément proportionnel & At, Ngeps = tan/At.
L’erreur au temps final est le résultat de I’accumulation des erreurs faite a chaque pas de
temps et est donc proportionnelle & Nygeps(At)? ~ (At)!.

L’application du schéma d’Euler explicite au probleme du corps soumis a une force de vis-
cosité, Eq.(2.2), donne les résultats de la Fig. 2.1} On voit clairement la différence entre
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100

v [m/s]

40 :
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FIGURE 2.1 — Vitesse d’un corps soumis a une force de viscosité (v = 1), calculée avec
le schéma d’Euler explicite et pour différentes valeurs du pas temporel (lignes avec croizx).
La solution exacte est la ligne bleue.
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FIGURE 2.2 — FEltude de convergence du temps caractéristique de ralentissement pour le
cas de la Fig. [2.1. A gauche, résultats en fonction de At sur des échelles linéaires. A
droite, valeur absolue de ’erreur en fonction de At sur des échelles logarithmiques. La
ligne mince est de pente 1. La solution numérique converge bien vers la valeur analytique
exacte, et l'ordre de convergence est 1.
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FIGURE 2.3 — Schéma d’Euler explicite pour un corps soumis a une force de viscosité
pour de grandes valeurs de yAt. A gauche : pour yAt = 1.0,1.5,20.0. A droite pour
vAt = 2.5.

la solution exacte et la solution numérique. Fort heureusement, la solution numérique
converge vers la solution exacte lorsque le pas temporel At est choisi de plus en plus
petit. On représente a la Fig. deux facons de faire une étude de convergence. Comme
quantité pour laquelle nous vérifions la convergence, nous avons ici choisi le temps ca-
ractéristique de ralentissement, défini comme le temps pour que la vitesse décroisse d’un
facteur 1/e (vo/e est représenté par la ligne horizontale traitillée de la Fig. 2.1). La
premiere méthode consiste a reporter la quantité voulue en fonction de At (Fig. ,
a gauche), sur des échelles linéaires. Dans la limite At — 0, les résultats numériques
s’alignent bien, ce qui indique une convergence d’ordre 1 (parce que 'axe des x est (At)!).
La deuxieme méthode, qui s’applique ici car on connait la solution exacte, consiste a
représenter la valeur absolue de l'erreur sur le résultat en fonction de At, sur des échelles
logarithmiques (Fig. , a droite). La pente du graphe est 1, ce qui indique une conver-
gence d’ordre 1. Ainsi, 'ordre de convergence de 1, tel que prédit par la théorie, est bien
vérifié par nos simulations numériques.

Apres avoir examiné le comportement du schéma numérique dans la limite des petits At
(convergence), explorons ce qui se passe pour les grandes valeurs de At. Les résultats
sont montrés a la Fig. [2.3, Pour At = 1/, le schéma d’Euler explicite donne la solution
nulle apres un pas temporel. Pour 1/v < At < 2/~, la solution numérique oscille autour
de zéro; elle tend bien vers zéro pour t — 0o, mais comme elle a v < 0 a certains pas
de temps, on rejette cete solution comme étant non physique : une force de viscosité
ne peut jamais, a elle seule, inverser le sens de la vitesse. Pour At > 2/, la solution
numérique oscille avec une amplitude qui croit exponentiellement : il y a instabilité
numérique.

En résumé :

e limyAt — 0, la solution numérique converge vers la solution exacte.
e vAt = 1, solution nulle apres 1 pas temporel.
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e 1 < «vAt, solution non physique car présentant des inversions du sens de la vitesse.
e 2 < vAt, solution numériquement instable : erreur d’amplitude croissant exponentiel-
lement dans le temps.

Ainsi, il est nécessaire de choisir le pas temporel At plus petit que le temps caractéristique

de I’équation considérée 1/~ : |vAt << 1

2.1.2 Généralisation a un systeme d’équations couplées

Le schéma d’Euler explicite se généralise aisément aux systemes d’équations différentielles
ordinaires couplées. Notant ’ensemble de Ny fonctions du temps {y(j)(t)};y:fl par un
vecteur de fonctions y(¢), et I'ensemble de Ny fonctions a Ny + 1 variables (fonctions des
y9) et du temps t) par un vecteur f(y,t), on écrit le systeme d’équations différentielles
ordinaires couplées comme

dy@ : d
W p0 W ™ ) =1.N e | =y, 0)]. (2.11)
dt dt
Le schéma numérique d’Euler explicite s’écrit
y =y + FOWD, oy ) At | yais = ya + £(ya,ta) At]. (2.12)

On a distingué, dans les notations, les indices (subscripts), qui indiquent le numéro du
pas temporel, des exposants (superscipts), qui indiquent le numéro de la fonction.

Application : systeme a trois niveaux

Nous allons voir un des éléments constituant le LASER. Soit un ensemble d’atomes
identiques, dont on considere trois niveaux d’énergie. Depuis le niveau fondamental no.1,
les atomes ont une probabilité de transiter vers un état excité no.2, par exemple parce
qu’ils sont illuminés par des photons. Voir la FIG. [2.4]

Le niveau excité no.2 se désintegre spontanément en un niveau intermédiaire no.3. Celui-
ci de désintegre dans le niveau fondamental. On note la probabilité par unité de temps
de chacune de ces transitions par v, 72, vs. La population d’atomes dans chacun de ces
niveaux, notée Ny, No, N3, est donc décrite par :

dN-
d_tl = ’)/3N3 — ’YlNl (213)
dN.
= -l (2.14)
dN.
_dt3 Y2Na — 73N3 (2.15)
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2.2. DESINTEGRATION. MODELISATION STATISTIQUE (MONTE CARLO).
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FIGURE 2.4 — Laser a trois niveaux. Schéma de principe. Absorption (“pompe”) de
photons d’énergie hw, = Ey — Ey, avec probabilité ~, ; émission spontanée de photons
d’énergie hwy = FEy — E3, avec probabilité ~o ; émission induite de photons d’énergie
hws = E3 — Ey avec probabilité 3. Inversion de population : il y a plus d’atomes dans le
niweau 3 que dans le niveau 1 si la “pompe” est d’intensité suffisante, si le niveau Ey est
instable (donc temps de vie court), et si le niveau Es est métastable.

Suggestion d’exercice Résoudre ce probleme. La figure montre un résultat pour
v =1, v =10/3, v3 = 1/4, avec At = 0.05, a partir d’une condition initiale ou tous les
atomes sont dans I’état fondamental. Le niveau 1 se dépeuple au profit du no.2, qui atteint
un peuplement transitoire maximal, puis se dépeuple au profit du no.3. On analysera le
comportement asymptotique ({ — 00) et on comparera avec le calcul analytique. On
vérifiera également que le nombre total d’atomes est conservé.

Un résultat physique intéressant est qu’on observe une inversion de population : pour des
temps longs, le nombre d’atomes dans ’état excité no.3 est supérieur a celui dans 1’état
fondamental (no.1). Un tel processus joue un role important dans les lasers.

2.2 Désintégration. Modélisation statistique (Monte
Carlo).

On observe un processus de désintégration dans de nombreux systemes physiques. Par
exemple, de nombreux noyaux atomiques sont instables. Ou encore, les niveaux d’énergie
supérieurs des atomes sont généralement instables, a cause du couplage avec le champ
électromagnétique : un atome, dans un niveau d’énergie dit excité, se relaxe spontanément

Physique Numérique LV SPC EPFL 21



CHAPITRE 2. EVOLUTION TEMPORELLE - PROBLEMES A VALEURS
INITIALES

systeme 3 niveaux
1.4

171:1, 12:0.3, 13:4
1.2+ R

1+2+3

0.4

0.2r 2 -

FIGURE 2.5 — Populations dans 3 niveaux en fonction du temps, calculées avec le schéma
d’Euler explicite pour At = 0.05.

en un niveau d’énergie inférieur, tout en émettant un photon dont I’énergie est égale a la
différence des niveaux d’énergie (initial - final).

Le processus semble aléatoire, dans le sens qu’il est impossible, en ne considérant qu’'un
noyau atomique, de savoir exactement quand il va se désintégrer. On ne peut prédire que
la probabilité quun noyau donné se désintegre pendant un intervalle de temps donné.
Cette probabilité est constante au cours du temps.

Donc, en considérant un grand nombre de noyaux instables (ou d’atomes excités), le
nombre de désintégrations par unité de temps est proportionnel au nombre de noyaux
instables (ou atomes excités) non encore désintégrés. La constante de proportionnalité
est le tauz de désintégration . On exprime ceci mathématiquement (en faisant la limite
statistique d’un tres grand nombre) par :

dN

— = —yN 2.16

P gl (2.16)
avec la condition initiale

N(0) = Ny (2.17)
donnée. On définit un “temps de vie”, ou “constante de temps” 7 = 1/7. Clest la

mécanique quantique, et la physique atomique ou nucléaire, qui permet, en principe,
de calculer la valeur de v pour un niveau d’énergie atomique ou un noyau donné. Nous
ne ferons pas ce calcul ici, mais supposerons v donné. Le but est de résoudre 1’équation
ci-dessus donnant 1’évolution temporelle du nombre d’atomes ou de noyaux. On trouve

facilement la solution de (2.16)-(2.17) :
N(t) = Noe " . (2.18)
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On a donc une équation de méme nature que celle pour le corps soumis a une force de
viscosité, et on peut donc résoudre le probleme avec le schéma d’Euler explicite, comme
a la section précédente.

On présente ci-dessous une autre approche. Le processus de désintégration étant in-
trinsequement aléatoire, on est tenté d’essayer de reproduire cette caractéristique numéri-
quement. Ci-dessus, on a construit, a partir d'une nature discrete et aléatoire (les désinté-
grations ont lieu de fagon aléatoire, soudaine et spontanée), un modéle continu et détermi-
niste (voir I’Eq. : connaissant le nombre de particules a un instant donné, Eq,
on connait exactement, pour tous les temps ultérieurs, le nombre restant de particules :
la solution du probleme mathématique existe et est unique. Or, dans la réalité, deux
échantillons identiques (par example de matiere radioactive) ne vont jamais donner exac-
tement le méme N (¢). Il y a une certaine dispersion statistique des résultats. C’est ce que
nous aimerions obtenir par un calcul numérique.

On notera au passage que la résolution numérique de ce modele continu que nous avons
faite a la Sectionfaisait appel a des équations discrétes (et déterministes). Cependant,
la nature discrete de ce type de méthodes numériques n’a rien a voir avec la nature discrete
du phénomene physique de la désintégration.

L’idée est de simuler la réalité. En outre, cela nous permettra de comprendre comment
le modele continu et déterministe peut étre obtenu comme une limite du modele in-
trinsequement discret et aléatoire. En d’autres termes, on aura obtenu une autre méthode
pour résoudre I’Eq.. Dans le processus de désintégration, on ne peut connaitre que
la probabilité par unité de temps qu'une particule se désintegre. Cette probabilité est :

— constante au cours du temps,

— identique pour chaque particule du méme type,

— indépendante de la désintégration ou non des autres particules.
On construit le modele numérique directement a partir de la.

1. Initialisation : nombre de particules en ¢t = 0 (Ny), probabilité par unité de
temps (), choix d’un pas temporel (At), probabilité par intervalle temporel (P).

2. Boucle temporelle

3. Boucle sur les particules non encore désintégrées

4. Pour chaque particule non encore désintégrée et pour chaque intervalle de temps,
on choisit un nombre aléatoire entre 0 et 1 selon une distribution uniforme.

Si ce nombre est inférieur a P, on diminue d’une unité le nombre de particules.

Fin de la boucle sur les particules

N o

Fin de la boucle temporelle
8. Impression des résultats et comparaison avec le modele continu
Ce type de méthode nécessite un générateur de nombres aléatoires. En fait, comme les

algorithmes sont de nature intrinsequement déterministe, on parle en fait de générateur
pseudo-aléatoire. I1 n’est en fait pas si facile qu’il n’y parait de prime abord de construire
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Desintegration Monte Carlo
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FIGURE 2.6 — Désintégration d’une population de particules instables, en fonction du
temps, calculé avec le modéle numérique probabiliste présenté a la Section[2.3. Ny = 10
(haut), Nog = 100 (bas), At = 0.1, v = 1. Pour chaque Ny, quatre éxécutions du code
sont représentées.
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un "bon” générateur pseudo-aléatoire. Nous laissons ce sujet en dehors du champ de ce
cours, et nous bornerons a utiliser de tels générateurs issus de librairies.

Les résultats de ce modele sont présentés a la FIG. 2.6 pour v = 1 et différentes va-
leurs de Ny. Les résultats de chaque simulation sont différents : ceci est du au tirage du
nombre aléatoire dans I’algorithme. Ceci reproduit bien 'expérience : 4 échantillons de
10 particules instables ne se désintegrent jamais exactement de la méme fagon.

Pour une taille de ’échantillon initial de 10 (FIG. , haut), on note en particulier une
grande disparité des résultats pour N au temps de vie caractéristique 7 = 1/v (=1 dans
ce cas) : entre 2 et 6 particules. La moyenne de ces prédictions est 4, ce qui s’approche
du résultat de la solution exacte du modele continu.

Ceci suggere la facon dont les prédictions du modele discret aléatoire probabiliste vont
tendre vers le résultat du modele continu déterministe. Augmentant la taille de I’échantillon
initial & Ny = 100, on obtient les résultats de la FIG. (bas). On constate que les écarts
entre les 4 échantillons pour le nombre de particules relatif, N(t)/Ny, sont nettement plus
faibles que pour les simulations avec une taille de Ny = 10 de la FIG. 2.6]

On peut aussi considérer que les simulations avec un Ny donné correspondent a un
échantillonage d’un systeme physique réel contenant un grand nombre de particules.
Plus Ny est élevé, meilleur est ’échantillonage, et plus petite est la dispersion statistique
des résultats. On peut montrer que cette dispersion statistique o tend vers zéro comme

L (2.19)

Ces simulations sont aussi discrétisées dans le temps, et on peut vérifier (suggestion
d’exercice) que les résultats des simulations convergent vers la solution exacte du modele
continu lorsque Ny — oo et At — 0. Il faut effectuer une double convergence.

Ainsi, on peut considérer cet algorithme comme une facon de résoudre numériquement
I'Eq.(2.16)). Ce type de méthode, faisant appel a un échantillonage statistique, est souvent
appelé Monte Carlo. On y aura recours a la Section [£.1.4] et au Chapitre [5

2.3 Applications du schéma d’Euler explicite

Le schéma numérique treés simple (Euler explicite) présenté a la Section permet déja
de résoudre de nombreux problemes physiques que 1’on ne peut pas résoudre analytique-
ment, ou du moins tres difficilement.

Un exemple typique est I'étude de la dynamique Newtonienne (mécanique classique),
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ou de nombreux probléemes commencent par la phrase “on négligera 'effet des forces de
frottement”. Ou alors, il s’agit de problemes que 1’ on ne peut résoudre que dans certaines
limites (du style chute d’un corps dans la limite ¢ — oo, en régime stationnaire, etc).

Mais la dynamique Newtonienne est bien plus riche que ne le laisseraient supposer les
quelques problemes que 'on sait résoudre analytiquement. De plus, toute théorie devant
étre confrontée a ’expérience, on aimerait disposer d’un outil permettant cette confron-
tation dans des situations réalistes.

On observera toujours un certain écart entre valeurs théoriques et mesures expérimentales.
Il est important de déterminer quelle est la part de cet écart qui est due aux imprécisions
de mesure de la part qui est due aux effets que 'on a négligés dans la résolution des
équations... C’est une étape indispensable pour la validation d’une théorie ou d’'un modele.

2.3.1 Véhicule avec force de trainée aérodynamaique

Une voiture de masse m a un moteur de puissance maximale P,,,, et un couple maximal
donnant une force de poussée maximale Fp,,.. [Dans la réalité cette puissance et cette
force sont fonction du nombre de tours/minute du moteur et du rapport de transmission.
Ici, pour simplifier, on supposera Fi.x €t Pyayx constantes.] On aimerait calculer la vitesse
au cours du temps pour un départ arrété, sur une route horizontale. On tiendra compte
de la force de trainée aérodynamique, avec un coefficient C, (que 'on suposera constant,
pour simplifier)

F, = ——pSC, 7%, (2.20)

avec S une surface effective de la voiture, p la densité de lair, et €, = U/|7].

L’équation du mouvement pour v(t) est donnée par le théoreme de I’énergie cinétique

dEcin
= Poax — F 2.21
dt tv (2:21)
dv

= mva = Poax — Fiv (222)

dv Prnax Ft
— = - . 2.23
dt muv m ( )

Sans force de trainée, et sans tenir compte de la limite de la force de poussée Fl.y, la
solution exacte donne

v(t) = \/Ug + 2Ppaxt/m (2.24)

ou vy est la vitesse en ¢ = 0. Cette solution, pour un départ arrété (vy = 0), donne une
accélération infinie en t = 0. Ce n’est pas physique. Il faut tenir compte de la limite de
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Vehicule
300 ‘ ‘ ‘ -
v0=0 m=1200 P=60000 F=5000 dt=0.0156  __-*
2501 C0 .- ]
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t[s]

FIGURE 2.7 — Véhicule en accélération départ arrété, en tenant compte de la force
de trainée aérodynamique. Le cas sans force de trainée est en traitillés. Parameétres :

m = 1200kg, Poax = 60kW, Fo.x = 5000N, C, = 0.4, S = 2m?, schéma d’Euler explicite
avec At = 0.015625s.

la force de poussée Fi .. L’équation a résoudre est finalement :

dt  m

On applique le schéma d’Euler explicite pour résoudre ce probleme.

1 P
do 1 <min{ﬂ,Fm} —Ft) . (2.25)
v

Un exemple est donné a la FIG. [2.7] avec pour parametres m = 1200kg, Ppax = 60kW,
Flax = 5000N, C, = 0.4. Pour comparaison, le cas sans effet de trainée aérodynamique
est représenté en traitillés.

Suggestion d’exercice. Calculer le temps pour une accélération de 0 & 100 km/h et
tester la convergence numérique. On peut obtenir aussi la limite asymptotique lim;_, o, v(t)
analytiquement et la comparer aux résultats numériques. On calculera le méme probleme,
mais pour une route en pente. On peut aussi regarder ce qui se passe lorsque le conducteur
coupe le moteur a partir d’'une vitesse initiale vg # 0, quelle est la vitesse limite en fonction
de la pente, etc.

2.3.2 Rentrée dans Patmosphere

La chute des corps au voisinage de la surface terrestre est fortement influencée par la
présence de 'atmosphere. On verra dans cet exemple a quel point I’atmosphere joue un
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role de “bouclier protecteur” contre les objets célestes (météorites, etc) attirés par la
gravitation terrestre.

On considére une météorite de masse m, densité py; = 5000kg/m?, arrivant “ de I'infini”
a proximité de la terre. Elle a une vitesse vy de 11 km/s verticale lorsque son altitude
est zp = 200km. On aimerait connaitre quelle sera la vitesse d’impact au sol. On tiendra
compte de I'atmosphere, avec une densité p(z) = poe™*/*, po = 1.3kg/m? et une épaisseur
caractéristique A = 20km. On supposera la météorite de forme sphérique et un C, = 0.3
constant donné.

[N.B. : d’on vient cette dépendance de la densité exponentiellement décroissante avec
'altitude ? La valeur de A = 20km est/elle réaliste pour I’atmosphere terrestre 7].

Suggestion d’exercice. On appliquera le schéma d’Euler explicite a ce probleme. On
remarque que les équations de base sont semblables a celles de la voiture, mais avec la
gravitation en plus et la puissance du moteur en moins. Un résultat est montré a la FIG.

28

Suggestion d’exercice. On étudiera la convergence numérique des résultats avec At,
et on fera une étude de la vitesse d’impact en fonction de la masse de la météorite. On
calculera la puissance de la force de trainée en fonction du temps.

Dans la réalité, la puissance de cette force de trainée est convertie en chaleur. Une partie
de cette chaleur chauffe I’'atmosphere, a des températures telles que I'air devient partiel-
lement ionisé (plasma) [Dans un tel plasma les ondes RF utilisées pour la communication
avec les astronautes ne se propagent plus : c’est la raison du “blackout” observé lors des
rentrées dans I'atmosphere des astronautes|. Une autre partie de cette chaleur chauffe le
météorite [ou I'engin spatial... cause de la catastrophe d’Atlantis] et le sublime : ¢’est une
bonne nouvelle pour nous s’il s’agit d'une météorite, mais une difficulté pour le design
des vaisseaux spatiaux [bouclier thermique, tuiles céramiques, etc]. Une simulation plus
réaliste tiendrait compte de cet effet d’ablation, la masse de la météorite se réduisant
lors de sa chute, avec émission de gaz tres chauds, qui forment la trainée lumineuse des
“étoiles filantes”.

On peut aussi étudier ce qui se passe avec un projectile lancé depuis le sol, avec une vitesse
initiale vers le haut ; on comparera avec ce qui se passerait s’il n’y avait pas d’atmosphere.

Il est aisé de généraliser ces problemes au cas ou la vitesse n’est pas purement verticale
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4 Meteorite
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FIGURE 2.8 — Impact d'une météorite de densité 5 x 103kg/m?, tenant compte de la
force de frottement de l’air de [’atmosphere terrestre. Méthode d’Euler explicite. Position
(haut) et vitesse (milieu) en fonction du temps, pour une masse m = 1000kg. Vitesse en
fonction de Ualtitude (bas), pour 3 météorites de masses m = 10,100 et 1000kg.
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(v,), mais a aussi des composantes horizontales v, v,. On définit le “vecteur” de fonctions
(2.26)

On a

dy _ (2.27)

avec v = |U).

2.3.3 Balistique avec rotation : portance, effet Magnus

Il s’agit de tenir compte d’une force de portance aérodynamique qui s’exerce sur les corps
en mouvement combiné de translation et de rotation dans les fluides. Un corps en rotation
dans un fluide va entrainer ’air dans son voisinage de telle sorte que, combinées a la vitesse
de translation, les vitesses résultantes du fluide soient différentes d’un coté et de I'autre du
corps. L’application de I’équation de Bernoulli donne une force résultante perpendiculaire
au vecteur vitesse de rotation et perpendiculaire a la vitesse de translation. C’est [’effet
Magnus. Voir Cours de Physique III. On obtient une résultante

—

F, = pv,LCé, X €, (2.28)

avec p la densité du fluide, v la vitesse de translation, L la dimension transversale du
corps, €, la direction de ’axe de rotation du corps et C' = frﬁ - dl la circulation de
la vitesse autour du corps. La circulation de la vitesse est proportionnelle a la vitesse
angulaire de rotation w, au carré des dimensions linéaires du corps et a la vitesse de
translation v. On a donc une force |F;| x pv2S, avec S ~ [2, que I'on écrit habituellement
sous la forme

F,= %pSCyUQ (2.29)

C’est une force de portance, avec C, le coefficient de portance et S une surface de
référence du corps considéré. Dans le cas du corps en rotation, le C, est proportionnel
a la vitesse de rotation. Le calcul détaillé du C, n’est pas possible analytiquement, sauf
pour des cas tres simples, et moyennant un certain nombre d’hypotheses simplificatrices :
par exemple un écoulement fluide stationnaire, incompressible, 2D, autour d’un cylindre
de rayon R. On trouve C,, ~ 2rwR/v (Evt. en exercice). Pour un ballon sphérique, il est
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extréemement difficile de le calculer analytiquement. On supposera dans la suite la force
de portance de l'effet Magnus donnée par

E, = uR*pi x @ (2.30)
avec un coefficient (sans dimensions) p donné.

Cette force de portance est responsable des effets de courbure de la trajectoire de la
balle dans de nombreux sports (football, ping-pong, baseball, etc). On se propose ici de
calculer numériquement de telles trajectoires.

Magnus Magnus

z [m]
O B N W M

5 0
y [m] y [m]

FIGURE 2.9 — Tir d’un coup franc, avec rotation de la balle, incluant la force de trainée
et la force de portance due a leffet Magnus. Vue en 3D (4 gauche), et vue d’en haut (a
droite). Méthode d’Euler explicite, 4 exécutions avec At = 0.1,0.05,0.025,0.0125s. Pour

comparaison, on a représenté en rouge traitillés la trajectoire sans rotation de la balle.

Pour simplifier, on supposera & = constant, négligeant ainsi le ralentissement de la vitesse

de rotation par l'effet des forces de viscosité. Le vecteur & fait un angle v avec la verticale,
dans le plan (y, z). On a donc, dans les notations de I'Eq.(22.27)),

Uy
d .
y Uz
dt —3=pSCrvv, + - uRP pw(siny v, — cosy vy) (2.31)

—ﬁpSC’xvvy + %uRZ%pw COS 7Y Uy
—5-pSChvv, — g — SR pwsiny v,
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Ceci est implémenté en utilisant 1’algorithme d’Euler explicite. Un résultat est montré a
la FIG. 2.9] On tire un coup franc au football, avec |0y| = 20m/s, ¥ faisant un angle
a = 30° avec I'horizontale, et le ballon faisant 2 tours/s autour de 1’axe vertical (y = 0).
Les parametres sont : m = 0.42kg, C, = 0.4, u = 6.28, p = 1.3kg/m3, R = 0.11m. Le tir
est initialement dans le plan (z, z), mais on voit clairement la déviation du ballon selon
Y, qui atteint environ 7m a son point de chute.

Suggestion d’exercice. Considérer le tir d’une balle de tennis, avec vecteur vitesse de
rotation dans le plan horizontal. Etudier les effets (lift, slice) sur les trajectoires.

2.4 Instabilité numérique - schéma d’Euler explicite
- mouvements oscillatoires

Dans cette section, nous allons résoudre des problemes oscillatoires. Ils sont donnés par
une équation différentielle du 2e ordre du type
A’z F(x,v,t)

= . 2.32
dt? m ( )

2.4.1 Desciption de ’instabilité numérique - oscillateur harmo-
nique

Dans I'exemple le plus simple du ressort linéaire, on a F'(z,v,t) = F(x) = —kx, ou k est
une constante. On obtient alors la solution générale de cette équation :

x(t) = Acos(wt + ) (2.33)

avec w = \/k/m. A et ¢ sont des constantes réelles, déterminées par les conditions
initiales (position et vitesse en t = 0).

Pour résoudre numériquement cette équation, (et ultérieurement avec des forces F'(z, v, t)
plus compliquées que le ressort linéaire), on commence par la réécrire en définissant un
vecteur de fonctions y(¢) dont les composantes sont

_dx

y () =at), y?(t) = priOF (2.34)

Ceci permet d’écrire 1'équation du 2e ordre Eq.(2.32) comme un systeme d’équations
différentielles couplées du ler ordre

d

Sy =f(y) (2.35)
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avec

= y® (2.36)
£ = Fy® y® ¢)/m (2.37)

Ceci est donc équivalent a 'Eq.(2.11)), écrit ici sous une forme vectorielle. Avec v(t) =
dz(t)/dt, 'Eq. (2.32)) est équivalente au systeme

%(i):(Fmit)/m) . (2.38)

Pour le probleme du ressort linéaire, cela revient a

TORETS]

En utilisant le schéma d’Euler explicite, Eq.(2.12)), on obtient le résultat de la FIG.
[2.10] I1 y a manifestement un probléme. La solution est bien proche de la solution exacte
pour les temps courts, mais pour les temps longs elle s’en écarte avec une amplitude des
oscillations qui croit exponentiellement.

On peut donc imaginer qu’en choisissant un At plus petit on va converger vers le bon
résultat. Mais le probleme subsiste, il est simplement repoussé a des temps ultérieurs :
I’amplitude des oscillations finit toujours par croitre exponentiellement. Aussi petit soit
At # 0, il existe donc un temps au dela duquel le calcul numérique s’écarte completement
de la solution physique correcte.

C’est un probleme d’instabilité numeérique.

2.4.2 Analyse de stabilité du schéma d’Euler explicite : propa-
gation de l’erreur

Soit y(t) la solution exacte de 1’équation différentielle . Soit y, la valeur de y au
temps t,, produite par le schéma numérique. Soit e, l'erreur, telle que y,, = y(t,) + e,.
Le but du calcul ci-dessous est de déterminer ’erreur au temps n + 1, en d’autres termes
de déterminer comment l'erreur va se “propager”.

Le schéma d’Euler explicite est

Vor1 = Y(tn) e, +f(y(t,) +e,)At = (2.41)
of
Vo1 ~ y(tn) +e,+ {f(y(tn)) + @enl At . (2.42)
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Euler oscillateur

-20 I I I I I
0 5 10 15 20 25 30

t

Euler oscillateur
10 T

Energie mecanique
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FIGURE 2.10 — Oscillateur harmonique avec la méthode d’Euler explicite, k =1, m = 1.
Trois exécutions avec At = 0.2,0.1,0.05. Le schéma est instable, avec une croissance
exponentielle de 'amplitude des oscillations (haut) et de [’énergie mécanique (bas) (qui
devrait étre conservée). Le tauz de croissance est proportionnel a At.
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Avec ypi1 = y(tas1) + €npr et y(tnr) = y(t,) + (dy/dt) At = y(t,) + £(y(t,))At, on a

of
€1 = (I + Atg) e, (2.43)
ou I est la matrice identité et (0f/0y);; = 0f;/0y;. En définissant la matrice de gain G
telle que
e,+1 = Ge, (2.44)
on a
of
G=(I+At—)]. 2.45
< i 83/) (245)

La norme de 'erreur va s’amplifier, et donc le schéma numérique sera instable s’il existe
une valeur propre de \; de G avec
|IAi| > 1. (2.46)

Réciproquement, le schéma sera stable si les valeurs propres \; de G sont telles que

N <1, Vi. (2.47)

Appliquons cette analyse de stabilité au schéma d’Euler explicite dans le cas de 1'oscilla-
teur harmonique. Avec f; = v et f; = —(k/m)x, on a
1 At

G = ( —(k/m)At 1 ) . (2.48)

On a I'équation caractéristique pour les valeurs propres \; de G :
(1= N2+ (k/m)(At)* =0 (2.49)

dont les solutions sont
M2 =1xi\/k/mAt. (2.50)
On a

|)\172| = \/1 + (k/m)(At)2 = |)\172| >1 , VAt, (251)

ce qui veut dire que le schéma d’Euler explicite est toujours instable pour le
probleme de l'oscillateur harmonique.

2.4.3 Analyse de stabilité du schéma d’Euler explicite : solution
analytique des équations discrétisées

Dans cette section, on donne une autre analyse du phénomene d’instabilité numérique.
Pour des équations linéaires, on peut écrire le systemes d’équations différentielles de la
forme

d
“yv=M 92.52
Y y (2.52)
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ol M est une matrice ny x ny (ny est le nombre de fonctions dans le vecteur y). Pour
illustration, dans le cas de l'oscillateur harmonique, on a

d [z 0 1 x
i (0) = (i o) (7)- 23
Le schéma d’Euler explicite s’écrit alors
Vi1 = (I+MAt)y, . (2.54)

Cherchons une solution & ces équations discrétisées du type y(t) = Ae™!, avec A € C™/
etweC E| [On rappelle que si w est réel, cela correspond a une oscillation non amortie ; si
w est purement imaginaire, cela correspond a une solution exponentiellement décroissante
ou croissante, selon le signe de ¥(w); si w a une partie réelle et une partie imaginaire,
cela correspond a une solution oscillante dont I'amplitude croit ou décroit selon le signe
de §(w)]. Introduisant cet Ansatz dans le schéma d’Euler explicite ci-dessus, on a

Aete@At — (T + MAL)Ae™! (2.55)

En supposant
wAt << 1], (2.56)

on fait un développement limité a I'ordre 2 en wAft :
WA = 1 4wt — %w2At2 + O((wAt)?). (2.57)
Insérant dans , on obtient le systeme d’équations linéaire homogene
[(m - %wQAt)I - M] A=0 (2.58)

qui a une solution non triviale si et seulement si son déterminant est nul. Pour le probleme
de l'oscillateur harmonique, on a

iw — LAt -1
2 A —
( k/m W — %w2At ) 0. (2.59)

A lordre 1 en wAt, on obtient —w?(1 + iwAt) + k/m =0 = w? = (k/m)(1 — iwAt) =

k At k
LY 2.
w e - (2.60)

( v ) — A (VRm)tmaie | (2.61)

Ainsi

v

On retrouve bien le résultat numérique de la FIG. : une oscillation sinusoidale de
fréquence /k/m, avec une amplitude croissant exponentiellement dans le temps, avec un
taux de croissance v = (k/m)(At/2). Cette croissance exponentielle, non-physique, est
la signature d’une instabilité numérique.

1. La solution “physique” est la partie réele de cete fonction complexe.
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2.4.4 Vérification de la conservation de I’énergie, schéma d’Eu-
ler explicite

Dans le cas de l'oscillateur harmonique, on sait que I’énergie mécanique est conservée :

1 1
Free(t) = §m112(t) + 5/{952 = const. (2.62)

Nous allons vérifier cette propriété pour le schéma d’Euler explicite. La méthode est
simple : il s’agit d’écrire I’énergie mécanique au temps t,.1 et au temps t,,, puis comparer
les deux expressions. On a :

Emec,n-l—l = §mvi+1 + §k$i+1 .
On substitue le schéma d’Euler pour v, et x,,1 :

1 k 1 )
FEueeni1 = =m | v, — —x, At | + =k (x, + v, At)
' 2 m 2

1 1 1 k? 1
Ereent1 = —mvi + —k‘xi — vk, At + vk, At + ——ajiAtz + —kngtQ )
’ 2 2 2m 2

On identifie Eyec, €t on obtient :
k
Emec,nJrl = Emec,n + _Ejmec,nAt2 . (263)
m

Comme k > 0, m > 0 et Eye. > 0 (sauf pour le cas trivial z(t) = 0,v(t) = 0), on a que
Emec,n—i—l > Emec,n ,VTL. (264)

Ainsi, ’énergie mécanique, au lieu de rester constante, croit a chaque pas de
temps. On peut méme écrire 'Eq.([2.63)), soustrayant Eyec,, puis en divisant par At :

Emec n+1 — Emec n k
: — = | —Atl | Eneen
At <m ) ’

Cette équation n’est autre que ’approximation par différences finies de I’équation différentielle

dEmec _ ( LN t) B
m

dt

Dont la solution est

Emec(t) = Emec(o) exp(it) ) (265)

L’énergie mécanique du schéma d’Euler explicite, au lieu de rester constante,

croit exponentiellement dans le temps, avec un taux de croissance ¥ = (k/m)At.

On note que ce taux de croissance est le double de celui trouvé pour la solution analytique
du schéma d’Euler, voir Eq.(2.61)).

Bien que cette instabilité numérique ait un taux de croissance qui tende vers zéro avec
At, on aimerait avoir un algorithme qui évite completement 'instabilité. C’est le but des
trois sections suivantes.
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2.5 Schéma d’Euler implicite

Le schéma d’Euler explicite est basé sur 'approximation de la premiere dérivée des fonc-
tions inconnues y au temps t,, ¢’est-a-dire au début de l'intervalle temporel [t,,,t,11]

Yn+1 — Yn
At

On en avait obtenu le schéma d’Euler explicite, que 'on réécrit ici :

= £(yn,t,) + O(AL) (2.66)

Ynt1 = ¥Yn + f(Yn7 tn)At y (267)

qui est directement utilisable pour implémenter ’algorithme.

L’idée de la méthode implicite se base sur 'approximation de la premiere dérivée de la
fonction y au temps t,,.1, c’est-a-dire a la fin de lintervalle temporel [t,, t,11]

YT (i, bs) + O(AY) (268)
On obtient, en multipliant par At et négligeant les termes d’ordre 2 en At, une équation

pour Ypi1 :

Yn+1 = Yn + E(¥ni1, tns1) AL (2.69)

La résolultion de cette équation n’est pas toujours triviale, selon la complexité des fonc-

tions f. Il y a plusieurs méthodes possibles, dont des méthodes itératives. Nous présentons
ici la plus simple de celles-ci : la méthode du point fixe. L’idée est de choisir comme
premiere estimation (k = 0, k sera un compteur des itérations) :

yor = va (2.70)

Ensuite, on effecture une boucle itérative, k — k + 1 :

Ygf:ll) =Y¥Yn + f(ygfi)-la thrl)At (271>

Pour arréter la boucle itérative, on mesure l'erreur que 'on fait sur la résolution de

I'Eq.(Z69) -
(k+1) (k+1)
d= Hyn—‘rl i 2 f(yn+1 5 n+1)AtH (272)
et on indique a I’algorithme d’arréter les itérations lorsque cette erreur d est plus petite

qu'une tolérance spécifiée €. Cette méthode fonctionne bien dans le cas de 'oscillateur
harmonique.

Ainsi, I’algorithme d’Euler implicite consiste en deux itérations imbriquées :
— Une boucle itérative sur le temps (¢, — t,41),
— ... et, a chaque pas de temps, une itération du point fixe (kK — k + 1).
On suggere de 'implémenter et de le tester en exercice.

En résumé :
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1. Le schéma d’Euler implicite converge : a un intant donné ¢, la solution numérique
tend vers la solution exacte pour At — 0.

2. La convergence est d’ordre un en At : 'erreur (i.e. la différence entre solution
numérique et solution convergée) est proportionnelle & (At)!.

3. Le schéma d’Euler implicite est inconditionnellement stable pour le probleme de
loscillateur harmonique. Cela signifie que, quelle que soit la valeur de At, I'erreur
numérique ne croit pas exponentiellement dans le temps. En effet, en appliquant
I’analyse de stabilité de propagation de l'erreur, comme a la section [2.4.2] on

—1
€11 = (I — Atﬁ) e,
dy

et pour l'oscillateur harmonique la matrice de gain est :

G = ( (k;/nlfb)m o )_1 = @%ﬁmz) ( —(k:/%n)At n ) (2.74)

Les valeurs propres de G sont
1 k
AMo=——"—— |10/ —At 2.75
12 (1+§At2)< i/ — ) (2.75)

1
= ——— <1, VAL. (2.76)
1+ EA

4. La solution analytique du schéma d’Euler implicite pour le probleme de 1'os-

obtient cette fois :

(2.73)

et leur norme est

\)\1,2

cillateur harmonique est une sinusoidale avec une amplitude exponentiellement
décroissante dans le temps. Cet amortissement est d’origine numérique, le
taux de décroissance est v = —(k/m)(At/2). En appliquant la méme démarche et
les mémes définitions qu’a la section [2.4.3] le schéma d’Euler implicite s’écrit :

(I—MAO)Y1 =Yn - (2.77)

Avec I’Ansatz
yn fry Aethn (278)

et le développement linité de exp(iwAt) au 2e ordre, on obtient :
1
{(1 + iwAt — é(wAt)Q) (I—AtM) — I} Vo =0. (2.79)

Ce systeme algébrique d’équations linéaire homogene pour y,, n’admet de solution
non triviale que si son déterminant est nul, ce qui donne :

k k
(w2 — —> +i (2— — w2> WAt =0 . (2.80)
m m
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En rdolvant perrturbativement ordre par ordre en (wAt), on a, a 'ordre 0 :

W — 4,/ (2.81)
m
et & l'ordre 1 : L As
@ ;=0 2.82
w Zm 5 ( )
Donc
k At Ik
=4+i———+4/—|. 2.83
w —Hm 2 m ( )
Ainsi

( N ) — A (VEm)tmtkmisee | (2.84)

()

C’est une oscillation sinusoidale de fréquence \/k/m, d’amplitude décroissant ex-
ponentiellement avec le taux v = —(k/m)At/2. Cela décrit bien un mouvement
amorti. Cependant, cet amortissement est d’origine purement numérique. Compa-

rez avec le cas du schéma d’Euler explicite, Eq.(2.61]).

. Le schéma d’Euler implicite ne conserve pas ’énergie mécanique. En fait, quelle

que soit la valeur de At, il dissipe I’énergie mécanique. Cette dissipation, d’origine
numeérique et non physique, implique que le mouvement tend toujours asymptoti-
quement (lim,_,,) vers la position d’équilibre. En faisant la méme démarche qu’a

la section [2.4.4] on obtient :

k
Emec,n—l—l = Emec,n - _Emec,nAt2 . (285)
m

Comme k > 0, m > 0 et Eye > 0 (sauf pour le cas trivial z(t) = 0,v(t) = 0), on
a que

Emec,n+1 < Emec,n 7vn' (286)

Ainsi, ’énergie mécanique, au lieu de rester constante, dimunue a chaque
pas de temps. On peut méme écrire I'Eq.([2.63)), soustrayant Epe., puis en divi-

sant par At :
Emec n+1 = Emec n k
’ —=—| —At Emecn
At (m ) ’

Cette équation n’est autre que 'approximation par différences finies de I’équation

différentielle B "
mec — <—At) Emec
m

dt

Dont la solution est

Frec(t) = Emec(0) exp(—7t) |, (2.87)

avec 7 = (k/m)At. Le taux d’amortissement est proportionnel a At. Il est donc

bien d’origine numérique. Ce taux tend vers zéro lorsque At = 0 : la méthode
converge.
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stability

Convergence 10°

Euler explicit

ol Euler explicit
10 _ 10710F
o =
O .6 e =
5 10 LIEJ .
1077
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Euler implicit=7"
o ‘ 1030+ ‘ ‘ ‘ ]
107 10710 107 0 1 2 3 4
At t[s] 107
FIGURE 2.11 — A gauche : convergence de l'erreur sur la vitesse finale des schémas

d’Euler explicite et implicite. La ligne traitillée est une droite de pente 1. A droite :
énergie en fonction du temps. La ligne horizontale en traitillés est la solution analytique :
I’énergie est constante. Proton dans un champ magnétique.

En résumé, le schéma d’Euler implicite, appliqué a 1’oscillateur harmonique :
— converge a 'ordre 1 en At,
— est stable,
— n’est pas conservatif,
— est dissipatif.

Illustration : application au mouvement d’une particule chargée dans un
champ magnétique uniforme et constant.

On montre facilement (exercice) que les équations du mouvement pour la vitesse sont
mathématiquement semblables a celles de 'oscillateur harmonique. On a appliqué les
schémas d’Euler explicite et implicite pour les comparer. Le probleme est résoluble ana-
lytiquement, on a la solution exacte et donc on peut obtenir ’erreur numérique.

Le cas physique est celui d’un proton, de masse m = 1.6726 x 10~2"kg, de charge ¢ =
1.6022 x 1071°C, dans un champ magnétique B = 4T, avec une vitesse initiale vy =
5 x 10°m/s. L’étude de convergence de l'erreur sur la vitesse finale apres 5 périodes
de rotation est montrée a la Figl2.11] On observe bien une convergence d’ordre 1 pour
les deux schémas. Le schéma explicite tend systématiquement a produire une erreur
supérieure a cele du schéma implicite.

Pour ce qui est de la stabilité numérique et des propriétés de conservation de ’énergie
cinétique, on montre & la Fig2.11|1’évolution temporelle de I’énergie. L’énergie du schéma
explicite croit exponentiellement dans le temps, ce qui est bien le signe d’une instabilité,
alors que celle du schéma implicite décroit exponentiellement dans le temps, ce qui est
signe de stabilité, mais malheureusement aucun des deux schéma ne conserve 1’énergie.
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FIGURE 2.12 — A gauche : convergence de l'erreur sur la vitesse finale des schémas
d’Euler semi-implicite, explicite et implicite. Les lignes traitillées sont des droites de
pente 1 et 2, respectivement. A droite : énergie en fonction du temps. Le schéma semi-
implicite satisfait la conservation de I'énergie. Proton dans un champ magnétique.

2.6 Schéma d’Euler semi-implicite

L’inspection de la Fig suggere qu’un schéma qui mélangerait les aspects explicite et
implicite serait meilleur que chacun des deux schémas pris séparément. D’ou I'idée d'un

schéma semzi-implicite.

On peut unifier la présentation de ces trois schémas d’Euler (explicite, implicite, semi-
implicite) en faisant la moyenne pondérée des Eqs.(2.67) et -

Yn+1 = Yn + (af(Yna tn) + (1 - O‘)f(}’m—la n—i—l))At (2'88)

avec @ = 1 pour le schéma explicite, @« = 0 pour le schéma implicite et & = 1/2 pour le
schéma semi-implicite.

Le schéma semi-implicite implique la résolution de la partie implicite. On peut utiliser, en
I’adaptant, la méthode du point fixe présentée a la section précédente, Eq.. Comme
précédemment, on choisit comme premiere estimation (k = 0, k sera un compteur des
itérations) :

ygj—ll) =Yn (2.89)

Ensuite, on effecture une boucle itérative, k — k + 1 :

y 5 =y, 4 (af(yn) + (1 — )y ™)) tai)) AL (2.90)

Pour arréter la boucle itérative, on mesure l'erreur que l'on fait sur la résolution de

I'Eq. 238) :

d=[ly* Y =y, — (af(yn) + (1 — )f (y &0 taia)) At (2.91)
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et on indique a 'algorithme d’arréter les itérations lorsque cette erreur d est plus petite
qu’une tolérance spécifiée e.

On illustre a la Fig{2.12| les résultats obtenus pour le probleme de la particule chargée
dans un champ magnétique, en reportant les trois schémas pour les comparer.

Pour ce qui est de la convergence, les résultats du schéma semi-implicite ne se situent
pas entre ceux des schémas explicite et implicite. On observe un ordre de convergence
d’ordre 2, et non d’ordre 1. La précision du résultat numérique est plusieurs ordres de
grandeur meilleure. Nous avions déja observé qu’'un schéma de différences finies centré
offre un ordre de convergence supérieur pour 1’évaluation de la dérivée, voir Figll.3|

Pour ce qui est de l’évolution temporelle de 'énergie mécanique, on observe que, a
une tolérance € pres sur les itérations du point fixe, le schéma semi-implicite conserve
I’énergie exactement. C’est une propriété tres intéressante, qui permet de faire de
longues simulations, en évitant l'instabilité du schéma explicite tout en évitant 1’érosion
de I'énergie du schéma implicite.

2.7 Schémas symplectiques : Euler-Cromer, Verlet
et variantes

Voir cours de mécanique analytique : la dynamique Hamiltonienne est une reformula-
tion de la dynamique Newtonienne. Les équations du mouvement sont écrites pour un
systeme classique a M degrés de liberté, en utilisant les coordonnées généralisées q et
les moments conjugués p, et 'Hamiltonien H(p,q). On a utilisé la notation vectorielle

qa=1(q1,9,-qu) , P= (P1,P2, -, Pm)-

dq 9H dp  9H

- 2 S 2.92
dt op  dt dq (2.92)

Par exemple, pour un systeme de particules de masses m, d’énergie cinétique K =
>, pi/2m, soumises & des forces dérivant d’un potentiel V(qi,qo, .., qur), les équations
s’écrivent

dp oV

= - _Z_ _—F 2.93
dq

— = . 2.94
m p/m (2.94)

On sait bien que dans de tels systemes ’énergie mécanique (qui n’est autre que la valeur
numérique de I'Hamiltonien) est une constante du mouvement. On vérifie cette propriété
pour controler la qualité de la solution numérique. Mais il y a bien d’autres quantités qui
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sont conservées. En reliant les deux vecteurs q et p pour former un vecteur z (appelé

Z:(g>= (2.95)

on peut écrire les équations du mouvement Hamiltoniennes, Eq.(2.92)), comme une équation

vecteur de l'espace de phase) :

d’évolution temporelle pour z
dz oH
L _gJ. =
dt 0z

J = ( —(I) (I) ) (2.97)

appelée “matrice symplectique”. Une propriété des transformations canoniques est de

(2.96)

avec la matrice J

conserver la “forme symplectique” définie par
s(z1,22) = z1 - Jzy . (2.98)

Par exemple, si z;(0) et z3(0) représentent deux conditions initiales différentes, la quan-
tité s(z1(t),z2(t)) est une constante du mouvement. L’idée est d’utiliser cette quantité
conservée comme indicateur de qualité des schémas numériques.

2.7.1 Algorithme d’Euler-Cromer

Le schéma d’Euler explicite, Section [2.1.2] appliqué au probleme Eqs. (2.9312.94)) donne-
rait
p(t+ At) = p(t)+ AtF(q(t)) (2.99)
q(t+ At) = q(t) + Atp(t)/m (2.100)

L’idée est, au lieu d’utiliser le moment p(¢) pour avancer les coordonnées dans ([2.100)),
d’utiliser le moment a l'instant ¢ + At obtenu de (2.99). On a ainsi 'algorithme Euler-
Cromer “A” :

p(t+At) = p(t)+ AtF(q(t)) (2.101)
q(t+ At) = q(t) + Atp(t+ At)/m (2.102)

On peut aussi inverser 'ordre dans lequel on évalue p et q, ce qui donne 1’algorithme
Euler-Cromer “B” :

q(t+At) = q(t)+ Atp(t)/m (2.103)
p(t+ At) = p(t)+ AtF(q(t + At)) (2.104)
Ces algorithmes ont des propriétés remarquables lorsqu’ils sont appliqués au probleme de

I'oscillateur harmonique, par exemple. La FIG. montre que I'instabilité numérique a
disparu. La convergence numérique avec At est bien supérieure : les trois résultats, pour
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Euler-Cromer B oscillateur
1.5 T ‘ ‘

0.2 0.1 0.05

0.5 4

-15 1 1 1 1 1
0 5 10 15 20 25 30

t

Euler—-Cromer B oscillateur
0.58

0.56
0.54
0.52%

0.54

Energie mecanique

0.48

0.46

0.44 L L L L L
0 5 10 15 20 25 30

FIGURE 2.13 — Oscillateur harmonique avec la méthode d’FEuler-Cromer, k=1, m = 1.
Trois exécutions avec At = 0.2,0.1,0.05. Le schéma est stable, [’amplitude des oscillations
(haut) est constante et l’énergie mécanique (bas) est conservée en moyenne, avec une
erreur instantanée qui tend vers zéro avec At.
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At =0.2,0.1,0.05 sont pratiquement indiscernables a 1’échelle de la figure (comparer avec
le schéma d’Euler explicite, FIG. . On note que I'énergie mécanique, bien que pas
exactement conservée a tous les temps, est conservée exactement en moyenne temporelle,
la non-conservation instantanée tendant vers zéro proportionellement a At. C’est une
propriété intéressante, surtout lorsque 1’'on veut faire de longues simulations.

Les algorithmes “A” et “B” donnent des résultats tres similaires (FIG. [2.14]). On remarque
que les erreurs sur I'énergie mécanique des deux schémas sont opposées. Cela suggere de
combiner ces deux algorithmes.

2.7.2 Algorithme de Verlet et ses variantes

On obtient cet algorithme en divisant le pas temporel At en deux. Pour la premiere
moitié, on utilise I'algorithme Euler-Cromer “A” et pour la deuxieme moitié 1’algorithme
Euler-Cromer “B”. On obtient

p(t+At/2) = p(t)+ (At/2)F(q(t))

( (
q(t + At/2) = q(t)+ (At/2m)p(t + At/2) (2.105)
q(t+At) = q(t+ At/2) + (At/2m)p(t + At/2) '
p(t+At) = p(t+ At/2) + (At/2)F(q(t + At))

En éliminant les quantités évaluées au milieu de lUintervalle temporel (¢t + At/2), on
obtient

q(t+At) = q(t) + (At/m) p(t) + ((At)*/2m) F(q(t)) + O ((At)*)
p(t+At) = p(t)+(At/2) [F(q(t + At)) + F(q(t))]

(2.106)

L’algorithme de Stormer-Verlet existe en plusieurs formulations. Celle que nous avons
présentée ici est due a Swope en 1982 ; elle est parfois appelée velocity Verlet. Une autre
formulation est le Verlet leapfrog, (ou saute-mouton), due & Vineyard en 1962 :

p(t+At/2) = p(t— At/2) + AtF(q(t))

qa(t +Af) = q(t) + (At/m)p(t + At/2) + O ((At)) (2.107)

Dans cette formulation, lorsque les conditions initiales sont connues en ¢ = 0, I'algo-
rithme doit étre initialisé par un “demi-pas temporel” pour p. Plus précisément, pour
le premier pas temporel, on remplace la premiere ligne de I'Eq.(2.107) par p(At/2) =
p(0) + (At/2) F(q(0)). L’algorithme peut ensuite se poursuivre normalement.

Une troisieme formulation (celle de Verlet en 1967)E| s’obtient de 1’équation

T9_ Ly(qu) (2.108

2. Stormer avait déja utilisé ce schéma en ... 1907 pour le calcul des trajectoires des particules piégées
dans le champ magnétique terretre.
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FIGURE 2.14 — Oscillateur harmonique avec la méthode d’Fuler-Cromer, k=1, m =1,
At = 0.2. Les algorithmes “A” et “B” donnent des résultats trés similaires.
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avec I'approximation par différences finies
dQ—q(t) _ ! (a(t + At) — 2q(t) + q(t — At)) + O ((At)?) (2.109)
dt? (At)? '
ce qui conduit a
(At)® "
q(t + At) =2q(t) — q(t — At) + - F(q(t)) + O ((AD)Y) |- (2.110)

Cet algorithme requiert une estimation pour q(—At) pour étre initialisé.

On remarque que les moments p n’interviennent pas explicitement dans cet algorithme.
On peut les obtenir a posterior: a partir de la deuxieme des équations Eq.(2.106)), ou
avec une estimation de différences finies centrées :

P(t) = S (alt + M) — q(t — A1) + O ((At)%) (2.111)

Les formulations de “velocity-Verlet”, Eq.(2.106]) et “Verlet”, Eq.(2.110)) sont strictement

équivalentes. En effet, en notant, pour simplifier, q; = q(¢;), p; = p(¢;), I'Eq.(2.106])
s’écrit, pour le pas t;+1 et le pas ¢; :

Q1 = q; + (At/m)p; + ((At)*/2m)F(q;) (2.112)
@ = g1+ (At/m)p;1 + ((At)*/2m)F(q; 1) (2.113)
pj+1 = P;j+ (At/2)(F(q;+1 + F(ay))) (2.114)
p; = Pj-1+(At/2)(F(q; +F(g;-1))) (2.115)

Soustrayant —, on a:
Qj+1— Q5 = dj — dj-1 + (At/m)(p; — pj-1) + ((At)*/2m)(F(q;) — F(q;-1)) (2.116)
Substituant p; — p;_1 a partir de I’Eq., on obtient
qj+1 = 205 — qj-1 + ((At)*/m)F(q;) (2.117)

qui est bien I'expression de I'Eq.(2.110)).

2.7.3 Analyse de la stabilité du schéma de Verlet

On fait une analyse des erreurs comme a la Section [2.4.2| Pour le probleme de l'oscillateur
harmonique, en utilisant 'algorithme Eq.(2.110)), les erreurs e(t) obéissent a :

e(t+ At) = (2 — (k/m)(At)*)e(t) — e(t — At) . (2.118)
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Définissons une matrice d’amplification d’erreurs G par

( §E§)+ At) ) e ( gg)_ AY ) . (2.119)

On a donc dans notre cas

La condition de stabilité est que toutes les valeurs propres \; de G soient de
module inférieur ou égal a 1. L’équation caractéristique pour ces valeurs propres est

det(G — AI) = 0, (2.121)

ce qui donne

(A1)2 .

(2.122)
Pour (k/m)(At)? < 4, on a |\ ] =1 et I’algorithme de Verlet est stable.

N (2= (k/m) (AN +1 =0 = Ay — (1 - 2@32)) L :;_22 (Aj)4 _ %

Suggestion d’exercice. On vérifiera les propriétés de stabilité et de convergence de cet
algorithme.

On montre un example & la FIG.[2.15d’application du schéma, sous la forme de 'Eq.(2.106]) ;
la précision est bien meilleure que pour lalgorithme d’ Euler-Cromer (voir FIG.
pour un méme pas temporel At. Cependant, ’'intérét majeur de cet algorithme
est qu’il peut étre utilisé pour de longues simulations, sans qu’il y ait accu-
mulation systématique d’erreurs. Par exemple, I’énergie mécanique reste conservée
en moyenne sur une période. De plus, I'erreur instantanée sur F,,.. converge vers zéro en
(At)? (voir exercice).

La propriété “symplectique” de l'algorithme est illustrée a la FIG. 2.16] La forme sym-
plectique, Eq., peut étre interprétée géométriquement dans ’espace de phase (q,p)
comme l'aire du quadrilatere construit sur z; et z,. Ainsi, les systemes Hamiltoniens
conservent les aires dans ’espace de phase. Dans la FIG. on a choisi 4 condi-
tions initiales voisines de (x = 1,v = 0), formant un quadrilatére. On a représenté des
instatntanés de ce quadrilatere au cours de son évolution temporelle. S’il y a tres légere
déformation, I’aire est par contre exactement conservée.

Suggestion d’exercice. Pendule simple (force en sin @), étudier la période des oscil-
lations en fonction de 'amplitude. A partir de la conservation de 1’énergie mécanique,
dériver une expression pour la période, que I'on intégrera numériquement (avec, p.ex. la
méthode des trapezes, voir Annexe . Comparer avec les résultats des simulations.
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FIGURE 2.15 — Oscillateur harmonique avec la méthode de Verlet (“velocity Verlet”,
Eq.(2.104)), k =1, m =1, At = 0.2. Le schéma est stable, 'amplitude des oscillations
(haut) est constante et l’énergie mécanique (bas) est conservée en moyenne, avec une
erreur instantanée qui tend vers zéro avec (At)?.
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Velocity Verlet oscillateur
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FIGURE 2.16 — Oscillateur harmonique avec la méthode de Verlet (“velocity Verlet”,
Eq. ), k=1, m=1, At = 0.2, 4 conditions initiales au voisinage de (x = 0,v =
0) formant un quadrilatére dont ’évolution temporelle est illustrée par des instantanés.
L’algorithme reproduit fidelement la propriété fondamentale de conservation de [’aire de
I’espace de phase.

2.7.4 Extension de Verlet a des forces dépendant explicitement
du temps et de la vitesse

La section précédente a présenté des algorithmes qui s’appliquent directement a des
systemes dynamiques ou les forces ne dépendent explicitement que de la position. Ainsi,
I’algorithme de Verlet "velocity-Verlet”, Eq.(2.106|), pour les équations

()= Cagym) (2123)

s'écrit, en posant @(Z) = F(&)/m,

Fio = &+ A+ L6(T)(At)? (2.124)
G = 0+ 2 (@(@) + a(@5)) At |
Uj+1 Ui T3 J g+l

Une premiere généralisation, a des forces dépendant explicitement du temps, est immédiate,

en posant @(Z,t) = F(Z,t)/m
Ty = I+ U;At+ 3d(T5, t5) (At)?

_, S o 05 2.125
U1 = U+ 5 (@@, ) + @@, 1)) At (2.125)

Si on a des forces qui dépendent explicitement de la vitesse, alors il n’est souvent pas
possible de trouver un algorithme symplectique, tout simplement parce que le systeme
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d’équations ne satisfait alors plus la condition symplectique. C’est le cas par exemple
des forces de friction ou de trainée aérodynamique. On peut néanmoins proposer un
algorithme qui sera encore d’ordre 2 et qui sera symplectique dans la limite des forces de
friction ou de trainée tendant vers zéro.

On se restreindra au cas ou la partie de la force dépendant explicitement de la vitesse est
additive :
F(Z,v,t) = Fi(Z,t) + F3(U, 1) (2.126)

On définit alors, en divisant par la masse m :
a(Z,v,t) = a, (Z,t) + ax(v,t) . (2.127)

Dans la boucle temporelle, on commence par faire la mise a jour de la position, comme
dans l'algorithme de base :

1
Tjy1 = T; + U;At + 56(@-, Uj, ;) (At)? (2.128)

On fait alors un demsi-pas pour la vitesse :

— — 1—» — —
Uiz = U + 5a(Z;, Uy, ty) At (2.129)

La mise a jour de la vitesse se fait avec la méme expression que dans ’algorithme de base
pour la partie @;(Z,t), et avec un pas centré en j + 1/2 pour la partie dy(7) :

—_

ﬁjJrl = 17] + 5 (ql(fj, tj) + Jl(fj+1, tj+1)> At + 52(13}4.1/2, tj+1/2)At (2130)

L’algorithme est constitué des expressions ([2.128))(12.129)) (2.130)). Il implique I'écriture de

deux fonctions distinctes a1(%,t) et as(¥,t). A chaque pas de temps, ces fonctions sont
appelées deux fois.

On peut formuler I'expression (2.130) autrement, en écrivant le dernier terme comme
(1/2)(72 (ﬁj.,_l/g, tj+1/2)At + (1/2)(72 (ﬁj.,_l/g, tj+1/2)At et en 'insérant dans la parenthése du
2e terme, pour obtenir :

Tis1 =0 + 3 (@1(Z;, t;) + @2(Tj31)2, tiv1y2) + @1 (Tj31, ) + Go(Tjr1y2, tjray2)) At
(2.131)
Si d; et d; ne dépendent pas tous deux explicitement du temps, alors en regrou-
pant et se rappelant la définition de la fonction @ = @; + ds, on a :

Uier = 0 + 5 (@35, Ujarya, ) + AT, iy, 1)) At (2.132)

N | —

L’algorithme est alors composé des expressions (2.128)(2.129) (2.132). Il implique a

chaque pas de temps 3 appels a la fonction accéleration, d(Z,v,t), avec 3 combinai-
sons différentes d’arguments.
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FIGURE 2.17 — Schéma de Runge-Kutta d’ordre 2.

2.8 Schémas de Runge-Kutta

Ces schémas s’appliquent a des équations différentielles du ler ordre

i—?; =f(y,t). (2.133)
On se limitera ici a énoncer 1'idée de base de tels schémas. Si on revient au schéma
d’Euler, Eq., il approxime la valeur de f sur l'intervalle [t; t;,1] par une constante,
évaluée au début de l'intervalle temporel. Une meilleure approche est de calculer d’abord
un “prédicteur” pour y a la mi-temps t; 112, évaluer £;11/5 = £(y;11/2,tiy1/2), puis refaire
un pas complet en utilisant f;;/, au lieu de f;. Cela donne 'algorithme de Runge-Kutta
d’ordre 2, voir Fig. 2.17]:

yiri = yitko

Cet algorithme est d’ordre 2, autrement dit I'erreur sur un pas de temps est d’ordre
O(At)3, et l'erreur numérique globale jusqu'a un temps donné t = ¢y, est O(At)?,
ceci pour autant que la fonction f et la solution y soient infiniment différentiables. La
preuve mathématique est présentée ci-dessous. De plus, on peut se poser la question si
I’algorithme ci-dessus, Eq., est le seul algorithme d’ordre 2 possible : par exemple,
peut-on choisir un autre point que le milieu de I'intervalle, £;,,/2, pour évaluer la fonction
f? La réponse est qu’il y a une infinité d’autres choix possibles.

Essayons de généraliser 1'algorithme Eq.([2.134]). Soit 3 nombres a, b, A\ entre 0 et 1. On
pose alors un schéma généralisé :
ko = Atf(y; + Ak, t + AAt) (2.135)
Yis1 = Yi+aky+bky
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FIGURE 2.18 — Schéma de Runge-Kutta d’ordre 4.

Ainsi, on obtient la solution au pas suivant en prenant comme estimation de dy/dt (donc
de f) une somme pondérée d'une évaluation en début d’intervalle (k;) et d'une évaluation
quelque part entre le début et la fin de I'intervalle (k). Le but est de trouver un ensemble
d’équations qui nous donnera les valeurs de a, b, A telles que 'algorithme soit d’ordre 2.
Pour que l'algorithme soit d’ordre 2, il faut que la solution numérique coincide avec le
développement limité de la solution exacte au moins jusqu’aux termes d’ordre 2. A partir

du schéma Eq.(2.135)), on obtient :
Yit1 = Yi + altf(yi, ti) + bALf(y; + Ak, t; + AAY) (2.136)

En développant la fonction f au voisinage de (y;,¢;), on obtient :

f f
Yis1 = yi + At(a +b) f + (At)? ()\bg—yf + Ab%) + O(At)? (2.137)
D’autre part, nous obtenons le développement limité de la solution exacte :
1 [of f
y(ti + At) = y(t;) + Atf + (At)2§ (% + g—yf) + O(AL)* . (2.138)

(NB : pour obtenir cette relation, on a substitué dy/d¢ par f, conformément a I’équation
différentielle). En comparant ces deux dernieres expressions, nous obtenons les conditions
suivantes pour que le schéma soit d’ordre 2 :

1
a+b=1, )\b:§;. (2.139)

L’algorithme donné précédemment, Eq.(2.134]), correspond ainsi & a = 0,b =1, A = 1/2.
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On peut aussi choisir, par exemple, a = b = 1/2, A = 1, ce qui donne :

Yit1 = Yi+ %(kl + ko)
Dans cet algorithme, on estime ainsi la “pente” comme la moyenne des estimations en
début et fin d’intervalle.

On peut faire mieux encore avec I’algorithme de Runge-Kutta d’ordre 4, voir Fig. :

kl = At f(y“ tl)
ky = Atf(y; + % 1 tiv1/2)
k3 = At f(yl + 2, z+1/2) (2141)
ki = Aty + Kot 1)
Yit1 = Yitg [k1 + 2k + 2ks + ky]

Les schémas de Runge-Kutta du 4e ordre sont tres utilisés dans toutes sortes d’applica-
tions de la physique et des sciences de l'ingénieur. Ce sont des schémas qui ont montré
leur “robustesse”, dans le sens qu’ils donnent de bons résultats dans la plupart des cas.
Leur avantage principal réside dans la précision élevée obtenue avec relativement peu
de pas temporels : la convergence est tres rapide, a cause de 'ordre élevé du schéma.
Mais il faut malgré tout faire attention : il y a des situations pour lesquelles ces schémas
Runge-Kutta ne convergent pas du tout ou sont instables. Nous ne ferons pas l'analyse
numérique de la convergence et de la stabilité des schémas Runge-Kutta dans ce cours,
mais nous en ferons des applications dans la suite. De méme que pour le schéma Runge-
Kutta d’ordre 2, il existe une infinité de schémas de type Runge-Kutta d’ordre 4. On
trouve dans la littérature plusieurs variantes de ces schémas.

2.9 Applications a divers systemes oscillants

On considere un pendule a ressort amorti, puis un pendule simple excité et amorti, et
enfin un pendule articulé. On observe dans certains cas 1’apparition du chaos.

2.9.1 Pendule amorti

Um corps de masse m est attaché a un ressort de constante k. Il subit également une

force de frottement visqueux F, = —vv.
Equation du mouvement : ma = F', avec F' = —kx —vv =
d?x dx
@—l—(u/m)a—%(k’/m)xzo. (2.142)
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FIGURE 2.19 — Oscillateur harmonique amorti, Eq., avec la méthode de Verlet
(“velocity Verlet”, Eq.(2.106)), k =1, m =1, v = 0.1, At = 0.4. Position x(t) (en haut
a gauche), énergie mécanique Epne.(t) (en haut a droite), vérification du théoréme de
I’énergie mécanique dEye./dt (courbe avec +) et puissance des forces non conservatives
P, = —vv? (courbe avec o) (en bas a gauche), et orbite dans l'espace de phase (x,v) (en

bas a droite).

56

Physique Numérique LV SPC EPFL
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Nous utiliserons la méthode de “velocity Verlet”, Eq.(2.106)). La force dépend de la posi-
tion et de la vitesse. Cela requiert une modification de I'algorithme (suggestion d’exercice).
Un exemple de résultat est donné a la FIG. [2.19]

2.9.2 Pendule avec excitation extérieure. Résonance. Régime
chaotique.

Soit un point matériel de masse m attaché a une tige mince rigide de masse négligeable,
de longueur [, a un point O fixe. En plus de la gravitation, il est soumis a une force de

frottement visqueux F, = —kv et a un couple de force My = M sin(Qt). Et bien str, il
y a la force de liaison (= force de soutien = “tension du fil”). En partant de
dlo -
= = My , 2.143
dt ' (2.143)

écrite en utilisant les coordonnées polaires (7, 6), on obtient
mi*0 = —lmgsin @ — >0 + M sin(Qt) . (2.144)

En posant v = xk/m, A= M/(mi?), on a

b+ v + % sing = Asin(Qt)]. (2.145)

Pour de petits mouvements (sinf = ), wy = \/g_/l est la fréquence propre du systeme
libre (A = 0) non amorti (v = 0). Lorsqu’on excite le pendule avec un couple extérieur
de fréquence Q2 = wy, apparait le phénomene de résonance, illustré a la FIG. [2.20] L’am-
plitude des oscillations est bien plus élevée que lorsque la fréquence d’excitation ne cor-
respond pas a la fréquence propre. Le systeme accumule ainsi une plus grande quantité
d’énergie mécanique.

Le mouvement devient vraiment intéressant pour des amplitudes d’excitation plus im-
portantes. A la FIG. on compare le mouvement périodique, régulier, obtenu avec
A =1 au mouvement irrégulier, “capricieux”, chaotique avec une amplitude légerement
plus élevée, A = 1.25. Il ne s’agit pas d’une phase transitoire juste un peu plus longue :
ce comportement chaotique se poursuit indéfiniment (image du bas de la FIG. .

2.9.3 Section de Poincaré. Attracteurs étranges. Divergence des
orbites.

L’orbite dans 'espace de phase (0, w), ou on a défini w = 0 = df/dt, FIG. [2.22, montre

clairement que le pendule ne suit pas un mouvement régulier. On a I'impression que si
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FIGURE 2.20 — Résonance d’un pendule amorti excité , Eq. , avec la méthode de
Verlet (“velocity Verlet”, Eq. ), g/l=1,v=0.1, A= 0.1. Position 0(t) (en haut),

énergie mécanique Erne.(t) (en bas), pour trois valeurs de Q.
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VV Pendule g/I=1 v=0.5 Q=0.667 A=1
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t
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FIGURE 2.21 — Transition vers le chaos d’un pendule amorti excité , Eq., avec
la méthode de Verlet (“velocity Verlet”, Eq.(2.106)), g/l = 1, v = 0.5, Q = 2/3. On
a représenté la vitesse angulaire w(t) = 0(t). Avec A = 1.0 (haut), le mouvement est
régqulier, périodique. Avec A = 1.25, le mouvement est chaotique.
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VV Pendule g/I=1 v=0.5 Q=0.667 A=1.25
25 T T T T T T

15 1

VV Pendule g/I=1 v=0.5 Q=0.667 A=1.25
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-1.5¢

FIGURE 2.22 — Mouvement d’un pendule amorti excité , Eq. , en régime chaotique,
avec la méthode de Verlet (“velocity Verlet”, Eq.(2.106)), g/l =1, v = 0.5, Q = 2/3,
A = 1.25. On a représenté l'orbite dans l’espace de phase (0,w) (haut) et la section
de Poincaré (bas) pour deux conditions initiales trés différentes : (6(0) = 1,w(0) = 0)
(points noirs) et ((0) = 0,w(0) = 1) (points rouges) .
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FiGURE 2.23 — Sections de Poincaré pour diverses conditions initiales d’un pendule
simple avec excitation verticale et sans amortissement, g=1=1, v =0, 2 =1, A=0.5.
L image du bas est un zoom d’une région de l'image du haut.
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Caractérisation du mouvement chaotique d’un pendule amorti excité,

Eq. , par la sensitiwité auz conditions initiales. Haut : écart |A8| entre deux trajec-
toires obtenues a partir de conditions initiales qui différent de 105 Pour comparaison,
un régime non chaotique, avec A = 1.0, est représenté en traitillés : dans ce cas l’écart

entre les trajectoires reste du méme ordre que [’écart initial. Bas

: écart |AQ] entre 2

trajectoires obtenues a partir de la méme condition initiale, mais deuz valeurs différentes
de At. Les droites traitillées soulignent le caractére exponentiellement divergent, dans le

cas chaotique.
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on continue la simulation assez longtemps, l'orbite va finir par “remplir” uniformément
I’espace de phase, tout point de cet espace pouvant étre atteint par le pendule a un
moment donné ou un autre, et ceci avec une densité de probabilité uniforme (c.a.d. la
méme probabilité quel que soit le point de I'espace de phase), ce qui serait le cas si le
mouvement du pendule était parfaitement aléatoire. Mais la réalité est bien différente.
Le mouvement du pendule n’est pas aléatoire; bien qu’irrégulier, il y a une certaine
“structure” au mouvement.

On peut s’en rendre compte graphiquement en ne représentant pas tous les points de
I'orbite, mais seulement ceux aux temps multiples de la période d’excitation, donc I'en-
semble des points (0(t),w(t)) tels que t = n27/€, avec n entier. On appelle ce type
de représentation une section de Poincaré. On voit sur la FIG. (en bas) qu’'une
structure apparait : les points sont arrangés selon un ensemble de lignes de formes com-
pliquées, que 'on appelle attracteur étrange. La notion d’attracteur se comprend a partir
d’un exemple plus simple : celui du pendule amorti mais non excité. Danc ce cas, toute
condition initiale va résulter en une solution (6 = 0,w = 0) pour des temps suffisamments
longs. Le point (6 = 0,w = 0) “attire” toutes les conditions initiales, c’est I'attracteur,
trivial, dans ce cas. Dans le cas qui nous intéresse, avec amortissment ET excitation,
toute condition initiale va résulter en une section de Poincaré ayant la méme structure de
lignes complexes sur lesquelles les points vont se trouver. La FIG. (en bas) montre en
fait deux sections de Poincaré, I'une avec les points noirs, 'autre avec les points rouges,
correspondants a deux conditions initiales tres différentes. (Note technique : on a ignoré
dans cette figure les 50 premiers points, i.e. les 50 premieres périodes d’oscillation). Au-
cun point rouge ne coincide exactement avec un point noir, et cependant les points noirs
et rouges se rassemblent selon de la méme structure de lignes. Cette structure “attire”
toutes les conditions initiales, d’ou le nom d’attracteur.

Pour compléter la discussion, lorsqu’il n’y pas pas d’amortissement, il n’y a généralement
pas d’attracteur. Par exemple, pour un pendule simple sans excitation ni amortissement,
le mouvement oscillatoire va continuer indéfiniment, et le point (# = 0,w = 0) n’est
plus un attracteur. Si on considere un pendule simple, avec excitation verticalelﬂ et sans
amortissement, chaque condition initiale produit sa section de Poincaré généralement
distincte des autres, voir FIG[2.23] L’espace de phase se sépare en régions avec des sections
imbriquées les unes dans les autres, des régions avec des chaines d’ilots et des régions
stochastiques ou le mouvement est chaotique.

Une des “signatures” du mouvement chaotique est la sensibilité aux condi-
tions initiales. Dans le régime chaotique, deux trajectoires obtenues a partir de condi-
tions initiales infinitésimalement voisines finissent toujours par diverger exponentielle-
ment. On lillustre & la FIG. 2.24 Dans le cas non chaotique (A = 1.0, traitillés), les
deux trajectoires restent proches I'une de 'autre tout au long du mouvement. Alors que
dans le cas chaotique (A = 1.25), il y a toujours un moment ou les trajectoires s’écartent

3. L’équation différentielle est alors quelque peu différente de 1'Eq.([2.145|) (suggestion d’exercice).
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I'une de 'autre de plusieurs ordres de grandeur, aussi petit que soit 1’écart entre les deux
conditions initiales. Une conséquence de ce comportement est d’empécher la convergence
numérique avec At au dela de quelques secondes (image du bas).

On sait de la théorie des équations différentielles ordinaires qu'une fois que les condi-
tions initiales sont spécifiées, la solution du mouvement est unique. Le systeme est dit
déterministe. Mais comment se fait-il que le mouvement en régime chaotique soit a la
fois déterministe et pratiquement imprédictible ?

Suggestion d’exercice. Avec les parametres des FIGS[2.22/2.24] choisir différentes
conditions initiales et montrer que lattracteur étrange (section de Poincaré) est tou-
jours le méme. Choisir des At différents, pour une méme condition initiale, et montrer
que les trajectoires simulées finissent par s’écarter I'une de I'autre. Changer 'amplitude
et essayez d’obtenir d’autres attracteurs. Essayez de trouver A pour que le mouvement
devienne périodique avec une période multiple de la période d’excitation. (Indication :
essayez A € [1.4 1.5] ou A € [1.6 1.8]).

Suggestion d’exercice. Considérer un pendule de longueur [, masse m, avec amortisse-
ment, dont le point d’attache est un point O’ mobile animé d’un mouvement oscillatoire
vertical yo(t) = dsin(§2t).

a) Mettre le pendule “a I'envers” (condition initiale 6y proche de 7). Etudier ce qui se
passe lorsque le point d’attache est immobile (d = 0). Prendre ensuite les parametres
l=1m, v =0.1, d = 0.3m, /27 = 3. C’est le phénomene de stabilisation non linéaire.

b) Avec l = 1m, v = 0.1, d = 0.07m, choisissez une condition initiale autour de 6y = 0.15
et variez la fréquence entre /27 = 0.7 et /27 = 1.2. Observez ce qui se passe autour
de la fréquence /2 = 1.0 : on obtient des oscillations de grande amplitude, dont la
fréquence est la moitié de la fréquence d’excitation. Alors que pour des autres valeurs de
la fréquence, les oscillations restent de petite amplitude. C’est le phénomene de résonance
paramétrique.

2.9.4 Pendule articulé. Chaos dans un systeme conservatif.

On considere un systeme formé de deux tiges minces de longueurs Ly, Ly, masses mq, ma,
attachées I'une a 'autre par une extrémité. Une des tiges est attachée a un point fixe O.
On négligera les forces de frottement. Voir FIG. [2.25]

C’est un systeme conservatif a deux degrés de liberté. On choisira 0, et 05, les angles de
chacune des deux tiges par rapport a la verticale.
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Mg

FIGURE 2.25 — Pendule articulé.

Les équations du mouvement peuvent s’obtenir soit directement a partir des équations de
Newton (2e et 3e loi) et le théoreme du moment cinétique. Ou encore par le Lagrangien,
ou par I’'Hamiltonien (voir cours de Mécanique Analytique). On préferera la méthode des
équations de Lagrange (exercice).

[N.B. : L’Hamiltonien est en effet non séparable. Ceci a pour conséquence qu’il n’est pas
aisé de trouver un algorithme symplectique. En particulier, 'application de I'algorithme
de Verlet, Eq.(2.106) & ce probleme (en exercice), montre que I'énergie mécanique n’est
pas bien conservée, sauf pour les petits mouvements. |

On comparera la méthode de Verlet avec une méthode Runge-Kutta du 4e ordre. On

montre aux FIGS)2.26| [2.27] et [2.28] le cas de 2 tiges de densité uniforme, de masses

my1 = mg = 0.2kg, et longueurs L; = L, = 0.2m. Pour des conditions initiales voisines de
la position d’équilibre #; = 65 = 0, le mouvement reste dans le voisinage, c¢’est un point
d’équilibre stable. On observe un mouvement quasi-périodique de plus en plus complexe a
mesure que I’on augmente les amplitudes des conditions initiales. A partir d’'une certaine
amplitude, le mouvement devient chaotique.

Suggestion d’exercice. On vérifiera une des caractéristiques du chaos, a savoir la sen-
sibilité aux conditions initiales. On controlera la qualité de la simulation numérique en
mesurant la conservation de I’énergie mécanique et en variant At.
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FIGURE 2.26 — Mouvement du pendule articulé pour de faibles amplitudes, pour une
condition initiale 019 = —0 = w/100. : 6,(t), O2(t) (en haut), (01,w1) (au milieu), et
analyse de la fréquence du signal (en bas). Le mouvement est constitué d’une supersposi-
tion des 2 modes propres linéaires.
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FIGURE 2.27 — Mouvement du pendule articulé pour une condition initiale 61 = —6gy =

0.3m. 01(t), 02(t) (en haut), (61,w1) (au milieu), et analyse de la fréquence du signal (en
bas). Le mouvement apparait comme une superposition de plusieurs fréquences dues auz
effets de couplage non linéaire.
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FIGURE 2.28 — Mouvement du pendule articulé pour une condition initiale 61 = —69 =

/2. 01(t), O5(t) (en haut), (01,w1) (au milieu), et analyse de la fréquence du signal (en
bas). Le mouvement est chaotique.
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Pour de faibles amplitudes, ’algorithme de Verlet conserve bien I’énergie mécanique en
moyenne temporelle, mais ce n’est plus le cas lorsque I'amplitude devient plus importante.
L’algorithme de Runge Kutta du 4e ordre s’avere alors plus performant.

2.10 Gravitation. Schémas adaptatifs

2.10.1 Généralités : 1 ou 2 corps - mais pas plus

Les problemes de mouvements gravitationnels (force en 1/r?) sont abordables par des
méthodes analytiques pour 1 ou 2 corps. Des que le systeme considéré comporte 3 corps
ou plus, les choses deviennent extrémement complexes et il n’y a pas de solution exacte.

Les méthodes numériques, cependant, peuvent assez aisément se généraliser a un nombre
de corps quelconque. Nous allons en montrer quelques exemples. Dans cette section, on
vérifiera la précision des simulations pour des cas a 1 ou 2 corps en comparant les résultats
avec les solutions analytiques exactes.

Soit un systeme de N corps de masses m;,7 = 1..N. Les équations du mouvement s’ob-
tiennent de la 2e loi de Newton pour chacun des corps :
dei N Gmimj 5 o o 5

mzﬁ = Z —T Tij s rij =T, — Tj . (2146)
J#i J
Le systeme est conservatif, avec des forces ne dépendant pas de la vitesse et dérivant
d’'un potentiel. Les algorithmes d’Euler-Cromer et de Verlet sont appropriés a ce genre
de situation. On peut aussi utiliser I'algorithme de Runge-Kutta.

On simule 'orbite terrestre, sachant que la distance terre-soleil est au minimum 7.,;, =
147098074km, au maximum 7y, = 152097701km, et que la vitesse de la terre est au mi-
nimum v, = 29.291km/s, au maximum v, = 30.287km/s. On rappelle que l'orbite est
une ellipse. Le moment cinétique est conservé, ce qui veut dire que 7maxVUmin = TminVmax-
Avec la méthode Euler-Cromer, on montre les résultats a la FIG. 2.29] L’orbite est
presque circulaire, Uellipticité étant a peine visible sur la trajectoire dans le plan (z,y).
En représentant r(t), la non-circularité est bien visible. Par une étude de convergence
avec At, on peut obtenir des valeurs précises pour la période, les distances minimales et
maximales, etc.

Suggestion d’exercice. Trouver la masse du soleil, en utilisant I'intégration numérique
d’ Euler-Cromer (ou Verlet ou Runge Kutta), connaissant ry,;, = 147098074km et vy =
30.287km/s. On ajustera la masse du soleil jusqu’a trouver la bonne période d’un an
= 365.2564 jours et le bon 7., = 152097701km.
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FIGURE 2.29 — Simulation de ['orbite terrestre avec ['algorithme d’ FEuler-Cromer. En
haut & gauche : vue dans le plan (x,y). En haut a droite : distance terre-soleil en fonc-
tion du temps, 5 simulations a des valeurs de At différentes. Au milieu, convergence de
la période (gauche) et de la conservation de l’énergie mécanique (droite). En bas, conver-
gence de la distance terre-soleil minimale (gauche) et maximale (droite).
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Suggestion d’exercice. Vérifier la 3e loi de Kepler pour diverses planetes et cometes
du systeéme solaire. Rappel : T2 /a® = const, ou T est la période de révolution et a le demi
grand-axe.

Suggestion d’exercice. Considérer un systeme gravitationnel a 2 corps. Vérifier que le
mouvement relatif 75, — 7 est équivalent au mouvement a 1 corps, mais avec la masse
réduite 1 = mymso/(mq+my). Vérifier que le centre de masse du systéme a un mouvement
rectiligne uniforme. Représenter les trajectoires dans le référentiel du centre de masse.

Suggestion d’exercice. Etudier ce qui se passerait si la force de gravitation était en
1/7”, et examiner 3 cas: <1, 8=25¢et 3 =3.

Suggestion d’exercice. Précession de l'orbite de Mercure (effet de relativité générale) :
on modélise cet effet par une force

mi1meo «
Fr—G (1 —> . 9147
7”%2 * 72 ( )

Considérer d’abord le cas a = 0, et trouver les conditions initiales pour Mercure, sachant
que le demi grand axe est a = 0.39 AU, et 'excentricité e = 0.206. Indications : 1 AU=
distance moyenne terre-soleil = 149 597 870 691 m. ry.c = (1 + e)a, Tmin = (1 — €)a.
Trouver vyax €t VUmin.

Prendre ensuite o = 0.005AU 2 et calculer I’angle # au périhélie de plusieurs révolutions
successives, puis en déduire la vitesse de précession df/d¢. Prendre des valeurs décroissantes
de « et extrapoler la valeur de df/dt pour la valeur physique de ov = 1.1 x 1078AU 2.
Comparer avec la valeur mesurée de 43 secondes d’arc par siecle.

Suggestion d’exercice. Engin spatial avec poussée, transitions d’orbites.

Suggestion d’exercice. Comparer les algorithmes Runge-Kutta d’ordre 2, Runge-Kutta
d’ordre 4, Euler-Cromer et Verlet pour longues simulations d’une orbite gravitationnelle.
Controler la précision de la conservation de I’énergie, et celle de la conservation du mo-
ment cinétique.

2.10.2 Probleme a 3 corps

Les systemes gravitationnels que 'on peut résoudre exactement avec des méthodes ana-
lytiques se limitent aux problemes a 1 ou 2 corps. Pour 1 corps, on suppose un des deux
objets célestes de masse beaucoup plus élevée que I'autre, et ainsi on le suppose fixe. On
obtient un mouvement central en 1/r?, avec les lois de Kepler : I- trajectoires coniques
(ellipse, parabole ou hyperbole) avec le corps central a I'un des foyers; II- loi des aires
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(conservation du moment cinétique) ; III- le rapport des carrés des périodes de révolution
est égal au rapport des cubes des demi-grands axes dans le cas d’orbites elliptiques. Voir
cours de Physique de lere année.

Si les 2 corps célestes ont des masses comparables (étoile double, par exemple), le mou-
vement relatif, 7o = 7 — 7, obéit formellement aux mémes équations que le probleme
& un corps, mais avec la masse réduite yu = myms/(my + ms) au lieu de la masse d’un
des 2 corps. Une autre facon d’aborder le probleme a 2 corps est de se placer dans le
référentiel du centre de masse ; chacun des 2 objets célestes obéira au lois de Kepler, mais
ou le centre de masse est un des foyers de chacune des coniques.

Mais le mode réel a bien plus de 2 corps célestes. Nous allons examiner ce qui se passe
avec 3 corps célestes.

Orbite terrestre dans un systeme d’étoiles doubles

Examinons d’abord l'effet de Jupiter sur l'orbite de la Terre. On considere donc 3 corps :
la terre, Jupiter, et le soleil, que 'on considerera comme des points matériels (particules).
Les équations du mouvement s’obtiennent de la 2e loi de Newton :

dva = = Gmgmgsg ,,
Mo~ = ZFaﬁa Fog=—— 3 b (7 —75) , a,8=1,23, (2.148)
pFa

ou ﬁag est la force exercée sur la particule o par la particule 5.

Comme schéma numérique, comme il s’agit d'un systeme conservatif, on utilisera 1’al-
gorithme de “Velocity Verlet”, Eq.. On peut en principe utiliser un algorithme
encore plus simple, Euler-Cromer par exemple, mais la précision n’est pas suffisante et
contraint a prendre des At trop petits.

Plutot que d’utiliser les unités S.I., on écrit les équations dans le systeme d’unités nor-
malisées suivant. L’'unité de longueur est I’ Unité Astronomique, [UA], définie comme le
demi grand-axe de l'orbite terrestre autour du soleil, qui vaut 149.597871 millions de km,
et 1 année comme unité de temps, soit 365.256898 jours.

Si on prend les valeurs réelles des masses de la terre, de Jupiter et du soleil, on constate
que l'effet de Jupiter sur l'orbite terrestre est extrémement petit. L’orbite terrestre est
stable, ce qui n’est pas vraiment une surprise, étant donné les 4.6 millards d’années que
cela dure.

Supposons maintenant que Jupiter soit de masse plus élevée. En multipliant la masse
réelle de Jupiter par un facteur de 300, on obtient les résultats de la FIG. [2.30, Les
orbites du soleil et de “Jupiter” sont des ellipses pratiquement circulaires avec un des
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3 corps M Jupiter*300
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FIGURE 2.30 — Trajectoires du soleil (rouge, étoile), de “Jupiter” s’il avait 300 fois
sa masse réelle (bleu, diamant) et de la terre (noir, cercle). Algorithme de Stérmer-
Verlet (Velocity Verlet), Eq. , avec At = 0.0lan. En bas, I’évolution temporelle des
distances entre les 3 corps est représentée.
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FIGURE 2.31 — Trajectoires du soleil (rouge, étoile), de “Jupiter” s’il avait 700 fois sa
masse réelle (bleu, diamant) et de la terre (noir, cercle). Algorithme de Stérmer-Verlet
(Velocity Verlet), Eq.(2.106), avec At = 0.0lan (en haut) et At = 0.001lan (au milieu et
en bas). Il y a capture de la terre par Jupiter. Durée de 50 ans (en haut et au milieu) et
de 100 ans (en bas).
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foyers au centre de masse du sous-systeme {soleil,” Jupiter” }. On a en effet, pour cette
simulation, choisi les conditions initiales du soleil et de “Jupiter” de telle sorte que la
vitesse du centre de masse du sous-systeme soit nulle. Pour ces parametres, la masse de la
terre est beaucoup plus petite que les deux autres corps, et ainsi le mouvement du sous-
systeme {soleil,” Jupiter” } est pratiquement un mouvement & deux corps. Le mouvement
de la terre est par contre fortement différent! Il serait tres difficile de vivre sur cette
terre-la : la distance terre-soleil varierait beaucoup au cours de I’année.

Si Jupiter était encore plus massique, la situation serait vraiment catastrophique pour
nous. On montre a la FIG. un résultat avec la masse réelle de Jupiter multipliée par
700. La trajectoire de la terre devient chaotique. Elle est par moments “capturée” par
“Jupiter”. Elle entre presque en collision avec le soleil ou avec “Jupiter”. Il est intéressant
de constater la grande sensibilité de la simulation : 'image du haut a été obtenue avec
At = 0.01an, celle du milieu avec At = 0.001lan. La durée physique (50 ans) simulée, et
les conditions initiales sont les mémes. Cependant, dans la premiere simulation, la terre
se trouve toujours proche du soleil, alors que la deuxieme simulation, plus précise, prédit
presque une collision avec “Jupiter”.

2.10.3 Schémas adaptatifs : pas d’intégration variable

Une analyse plus fine des résultats numériques de la section précédente montre que les
erreurs s’accumulent surtout lorsque 2 des corps sont proches I'une de 'autre. C’est a ce
moment-la que leur vitesse et leur accélération sont les plus élevées.

C’est la raison pour laquelle il faut un pas temporel At suffisamment petit. Mais prendre
un At petit est tres couteux en temps de calcul. De plus, la plupart du temps, les corps
célestes sont assez éloignés et un At assez grand suffit a garantir une certaine précision.

L’idée est donc de choisir le pas temporel en ’ajustant dynamiquement au cours
de la simulation, afin de garantir un niveau de précision donné. Les algorithmes
“single full timestep”, comme le Velocity Verlet, Eq., et les algorithmes de Runge-
Kutta, Eqs., se pretent relativement facilement a cette modification.

La stratégie est, au pas temporel ¢;, étant donné la solution y;, de faire 2 estimations de la
solution au pas temporel suivant ¢ = t; + At. Voir Fig. La premiere estimation, yﬁ)l,
s’obtient en faisant un pas temporel entier At. La deuxieéme estimation, yﬁ)l, s’obtient
en faisant un premier demi-pas pour aller de ¢; a t; + At /2, suivi d'un deuxiéme demi-pas
pour aller de t; + At/2 a t; + At. On mesure la valeur absolue de la différence obtenue,
d, et on la compare a une précision requise donnée, .

— Sid < €, on passe au pas de temps suivant, en essayant de l’augmenter par rapport

au pas de temps actuel.
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FIGURE 2.32 — Principe du schéma adaptatif. On obtient une estimation de [’erreur en
mesurant la différence d entre deuz évaluations de la solution en t + At.

— Si d > e, il faut recommencer, c’est-a-dire revenir au temps t;, choisir un pas de
temps plus court, et refaire les deux évaluations comme décrit au paragraphe ci-
dessus pour obtenir une nouvelle évaluation de la différence d. Tant que d > ¢, on
doit recommencer.

La question est donc : comment choisir le pas de temps (plus long ou plus court), étant
donné une mesure de I’écart d? La réponse a cette question dépend de ['ordre du schéma
numérique considéré. Supposons que le schéma soit convergent au voisinage de (y;,t;),
d’ordre n. Cela implique donc :

i = Yewe + Ci (A" 40 (M) (2.149)
Y = Yewe + Coa (A1/2)" 4+ Cy (A/2)" 1 O (A1 (2.150)

avec C1, Cy,, Cqp des vecteurs de constantes. Pour At suffisamment petit, on peut faire
I’hypothese simplificatrice C; = Cy, = Cy, = C, qui veut dire que la vitesse de conver-
gence est la méme dans le voisinage considéré de (y;, t;). Négligeant O (At)" ™, on obtient
donc

|
d =yl —y?| = |C] (At (1 - 2—n) (2.151)

On veut choisir une nouvelle valeur de At, At,cw, telle que 'écart d,.,, calculé avec cette
nouvelle valeur soit inférieur a la précision demandée :

O] (Atpe)™ ™ (1 — 2%) <e (2.152)

En comparant ces deux dernires expressions, on a donc :

1
€\ nt1
Alpoy = At <c_l> o (2.153)
Pour éviter une éventuelle boucle infinie lorsqu’on raccourcit le pas de temps, il est
judicieux de multiplier par un facteur f < 1, c’est-a-dire tant que d > ¢, on refait le pas
avec

Abretaire = | Al (2) - : (2.154)
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FIGURE 2.33 — Trajectoires du soleil (rouge, étoile), de “Jupiter” s’il avait 700 fois sa
masse réelle (bleu, diamant) et de la terre (noir, cercle). Mémes paramétres physiques
que la FIG. . Algorithme de Runge-Kutta du je ordre, Eq., avec pas temporel
variable, deux éxécutions avec deuz précisions différentes : 965 pas (ligne avec +) et 1469
pas (ligne). En bas, I’évolution temporelle de At est représentée pour le cas a 965 pas.
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Convergence de Uerreur sur la période de révolution de la comete de

Halley, en fonction du nombre de pas de temps. Différents schémas sont utilisés : Verlet
(noir), Runge-Kutta (rouge) avec At fize (cercles) ou adaptatif (carrés). Pour compa-
raison, on a également utilisé la fonction Matlab ode4b5, qui est aussi a pas de temps

adaptatif.
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On prend typiquement f =~ 0.95 — 0.99.

On montre un exemple, le probleme gravitationnel a trois corps avec un schéma Runge-
Kutta d’ordre 4 a pas adaptatif, a la FIG. Avec 965 pas temporels, la méthode
est aussi précise que la méthode de Verlet a pas fixe avec 50000 pas temporels. On a
représenté aussi comment le pas temporel At varie au cours du temps.

Un autre exemple, le probleme gravitationnel a un corps, pour la trajectoire de la comete
de Halley, est illustré a la Fig. ou l'erreur sur la période de révolution est représentée
en fonction du nombre de pas temporels effectués. On varie le nombre de pas en variant
la précision requise €. Cette comete a une trajectoire tres elliptique, et la distance avec
le soleil varie fortement au cours de son orbite. Dans de telles situations, un schéma a
pas temporel adaptatif est particulitement efficace : dans cet exemple, avec la méthode
Runge-Kutta d’ordre 4, pour 5000 pas de temps, le schéma adaptatif est 10 millions de
fois plus précis qu’avec un At fixe!

Suggestion d’exercice. Prendre 3 corps célestes de masses dans le rapport 3 :4 :5.
Condition initiale : positions aux sommets d’un triangle rectangle de longueurs de cotés
3 :4 :5 (faisant face a la masse correspondante), et vitesses initiales toutes nulles. Etudier
et comparer divers schémas numériques a pas temporel fixe, leur comportement avec At,
puis considérer un schéma a pas variable.

Suggestion d’exercice : Points de Lagrange. Probleme & 3 corps ou un des corps
est de masse bien plus petite que les deux autres (appelé probleme réduit). Se placer
dans le référentiel tournant dans lequel les 2 corps massiques sont fixes. Calculer ’énergie
potentielle pour le 3e corps et observer qu’il y a des positions d’équilibre, soit en forme
d’extrema soit en forme de points selle. Prendre pour le mouvement du 3e corps des condi-
tions initiales voisines d’une des positions d’équilibre et étudier la stabilité des orbites
obtenues.

2.10.4 Solide en rotation chaotique dans un champ gravitation-
nel

On considere une planete de masse M autour de laquelle gravite un satellite, modélisé par
un ensemble de 2 points matériels de masses mq, mo reliés par une tige rigide de masse
négligeable, de longueur L. On étudiera le cas ou la tige est dans le plan de l'orbite du
satellite. On supposera M >> mq, msq, de telle sorte que la planete puisse étre considérée
comme immobile. La longueur L est beaucoup plus petite que la distance rg du centre
de gravité du satellite au centre de la planete. Mais L n’est pas nul. Donc, puisque les
positions 7 et 75 des deux points matériels au centre de la planete sont différents, les forces
gravitationnelles exercent un couple non nul sur le satellite. Il y aura donc accélération
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FIGURE 2.35 — Modeéle d’un satellite solide rigide en orbite autour d’une planete de
masse M. Pour des raisons de clarté de la figure, la taille du satellite a été fortement
exagérée.

angulaire du satellite. Voir FIG. Soit 6 I'angle de la tige avec 'axe des x. Soit 7 la
position du centre de masse. Le moment des forces de gravitation par rapport a G est

IS0 = (Fy — 7g) X Fy+ (7 — Fg) x Fy | (2.155)

avec GM
=22 =12 (2.156)

7o

7

Le moment cinétique relatif a G est
2
Lo=1Ic@, w=d0/dt, Io=>» mifi—7a). (2.157)
i=1

L’équation du moment cinétique dans le référentiel du centre de masse (rappel : ¢’est un
référentiel en translation avec G)

dle -
— = Mg 2.158
nous donne, a lordre le plus bas en L/rg (exercice) :
d 3GM
d—b: = ———=—(2gsinf — yg cos0)(xq cos § + yg sin ) . (2.159)
e

En utilisant le programme écrit pour le mouvement gravitationnel a 1 corps et y rajoutant
Pintégration de df/dt = w et dw/dt de 'Eq.(2.159) ci-dessus, on obtient les résultats de la
FIG. . L’algorithme de Runge-Kutta d’ordre 4 avec un pas de temps fixe, At = 1073
an, a été utilisé.
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FIGURE 2.36 — Rotation d’un satellite de longueur finie en orbite autour d’une planéte.
Cas d’une orbite circulaire (haut) : mouvement réqulier, périodique. Cas d’une orbite
elliptique (milieu) : mouvement irrégulier, chaotique. Sensibilité aux conditions initiales
dans le cas chaotique : écart entre 2 trajectoires |AO(t)| pour deux conditions initiales
voisines, |AQ(0)] = 1075 (bas). Schéma de Runge-Kutta d’ordre 4 a pas de temps fize
At = 1073 an.
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Tout d’abord, pour une orbite circulaire, le mouvement de rotation du satellite est
régulier, périodique. Pour une orbite elliptique, cependant, le mouvement de rotation
devient chaotique. II devient effectivement imprédictible, ce que l'on peut vérifier en
prenant deux conditions initiales tres proches et en mesurant I'écart Af entre les deux
mouvements : il y a croissance exponentielle au cours du temps.

Il existe un exemple spectaculaire de rotation chaotique dans le systeme solaire : Hyperion,
une des lunes de Saturne. Elle a une orbite excentrique, qui lui cause ce mouvement de
rotation chaotique. Pour plus de détails, voir par exemple sous
http://solarviews.com/eng/hyperion.htm.

Suggestion d’exercice. Solide en rotation libre. Ecrire, puis résoudre les équations
pour la vitesse angulaire < d’'un corps solide dont les moments principaux d’inertie sont
I, < I, < I3. Choisir des conditions initiales avec & proche des axes principaux. Analyser
la stabilité ou I'instabilité de la rotation au voisinage des axes principaux.

Suggestion d’exercice. Solide soumis a des couples de forces. Précession de ’axe des
poles due au couple de forces exercé par la lune sur la terre (aplatie par leffet de sa
rotation propre).

2.11 Particules dans un champ magnétique

2.11.1 Dérive des particules dans des champs inhomogenes

Soit une particule chargée, de masse m, charge ¢, en mouvement dans un champ magnétique
statique B(Z) et un champ électrique statique E(Z). Les équations du mouvement s’ob-
tiennent directement de la force de Lorentz et de la deuxieme loi de Newton :

U= L (B@) + v x B@) (2.160)

— == )+ v z)) . :

dt m
Dans le cas B uniforme, et E= 0, il est facile d’obtenir la solution analytique exacte du
mouvement : il est uniforme dans la direction de B, et circulaire uniforme dans le plan
perpendiculaire a B. La fréquence angulaire du mouvement circulaire est la fréquence
cyclotronique w. = q¢B/m, le rayon du cercle est appelé rayon de Larmor pyp = v, [w,.

Les choses se compliquent quand B n’est pas uniforme. Mais il est facile d’intégrer
numériquement les équations du mouvement. Pour fixer les idées, plagons un systeme
de coordonnées cartésiennes avec z || B, et supposons

B(%) = By(1 + ax)é, . (2.161)
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Le mouvement parallele, selon z, est toujours uniforme. Mais, dans le plan perpendi-
culaire, (z,y), on observe qu’au mouvement circulaire se superpose une dérive dans la
direction y. La FIG. 2.37 montre les résultats de I'intégration numérique avec un schéma
Runge-Kutta d’ordre 4. La dérive a lieu dans la direction L B et L VB. La direction de
cette dérive dépend du signe de la charge : on montre les résultats pour un ion positif et
pour un électron.

Cette constatation est a la base de travaux théoriques analysant le mouvement en le
séparant en une composante rapide (le mouvement de gyration cyclotronique) et une
composante lente (la dérive). La dérivation des équations de dérive sort du cadre de ce
cours : elle sera abordée au cours de Physique des Plasmas. Mentionnons juste le résultat :
la vitesse de dérive due au gradient de champ magnétique s’écrit

Ly tui/2

Uy = WB x VB. (2.162)
Ce mouvement de dérive est représenté en traitillés sur la FIG. [2.37 Le calcul numérique
vérifie donc bien la théorie. On peut aussi vérifier les points suivants : le rayon de gyration
est bien py = v, /w,, la fréquence du mouvement de gyration est bien w. = ¢B/m, et
I’énergie cinétique de la particule est bien conservée. On montre a la FIG. comment
la conservation de 1’énergie converge en prenant des At de plus en plus petits.

Suggestion d’exercice. Superposer au champ magnétique B(Z) = By(1 4+ ax)é, un
champ électrique uniforme dans la direction y. Montrer qu’a la vitesse de dérive due au
gradient de champ magnétique se superpose une dérive vy = E x B /B?%, indépendante
de la charge, de la masse, et de la vitesse de la particule.

Suggestion d’exercice. Considérer un champ magnétique curviligne et non uniforme
avec B,(z) = By + Bjcos(2nz/L), By, By et L étant des constantes données. Utiliser
I’équation V - B = 0 en coordonnées cylindriques pour trouver B,(r, z). On projettera
ensuite sur les coordonnées cartésiennes. Etudier le mouvement d’une particule chargée
de charge ¢, masse m dans ce champ magnétique. Choisir différentes conditions initiales,
et observer qu’a partir d'un certain rapport entre v, et v) la particule est réfléchie dans
la direction z : c’est [’effet miroir, observé par exemple pour les particules du vent solaire
dans le champ magnétique terrestre. On montre a la FIG. quelques résultats typiques.
On a choisi la postition initiale a I'endroit B minimum. Avec v, /v au temps t = 0
suffisamment petit, la particule arrive a passer les maxima de B , elle est dite “passante”
(trajectoire noire sur la FIG. 2.3§). Avec vy /vj(t = 0) suffisamment large, la particule
est réfléchie 1a ou le champ magnétique est plus intense, elle est dite “piégée” (trajectoire
bleue sur la FIG. [2.38 Dans la théorie des dérives, on montre que le moment magnétique

de la particule
2
mvy
= 2.163
h= 55 (2.163)

est conservé en moyenne : mis a part des oscillations lors du mouvement cyclotronique

rapide, le moment est conservé aux échelles de temps du mouvement de dérive lent. Avec

Physique Numérique LV SPC EPFL 83



CHAPITRE 2. EVOLUTION TEMPORELLE - PROBLEMES A VALEURS
INITIALES

-3 B=1 RK4
12X\10 T T T
10+
8,
6,
4t
E
> 2
0,
_27
_4,
_67
4 -2 0 2 4
x [m] x103
10 B=1 RK4
4.794%10 ‘
4.792}
oocAt:
4794 1|
v‘ .067
4.788} ’
©4.786] A1
()
£
Wy 784}
4.782}
4.78¢ A7
4.778}
4.776 ‘ ‘ ‘
0 2 4 6 8
t[s] x 10"

FIGURE 2.37 — Trajectoire d’un électron (en haut a gauche), d’un ion positif (en haut a
droite) dans un champ magnétique rectiligne paralléle a z et d’intensité variable selon x.
Une dérive lente dans la direction L B et L VB se superpose au, mouvement rapide de
gyration cyclotronique. Schéma de Runge-Kutta d’ordre 4. On vérifie (en bas) la conser-
vation de l’énergie de la particule.
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FIGURE 2.38 — Effet miroir dans un champ magnétique curviligne. En haut : particule
passante (noir) et particule piégée (blew). Au milieu : vy (t) et v (t) pour la particule
piégée (on remarque que le signe de v s’inverse!). En bas : conservation approzimative,
et en moyenne, du moment magnétique de la particule piégée. Schéma de Runge-Kutta
d’ordre 4.
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FIGURE 2.39 — Energie (a gauche) et moment magnétique (a droite) de la prticule au
cours du temps. Normalement, [’énergie devrait éte consrevée exactement, et le moment
magnétique devrait étre conservé en moyenne temporelle. Le schéma de Runge-Kutta ne
conserve pas bien, alors que le schéma de Boris-Buneman est bien meilleur.

le fait que I’énergie cinétique de la particule est conservé, on peut obtenir la condition
pour laquelle une particule sera réfléchie (piégée) :

’UH(tZO) Binax L,
wi= < \/ Bty — 1 = piégee. (2.164)

2.11.2 Schéma de Boris-Buneman

Le schéma de Runge-Kutta, méme s’il est d’ordre 4, ne conserve pas bien 'énergie et le
moment magnétique pour de longues simulations. Il y a systématiquement une accumu-
lation d’erreurs qui fait que ’énergie de la particule, ainsi que son moment magnétique,
“s’érodent” au cours du temps. La Fig. 2.39] illustre ceci, ol on a prolongé la simulation

de la Fig. [2.3§

On peut faire mieux, avec le schéma de Boris-Buneman [9] 10, [I1]. Pour simplifier les
notations, nous écrivons v_ = v, la vitesse de la particule a 'instant t = ¢,,, et ¥y = ¥,
sa vitesse a 'instant ¢ = t,,,1. Pour une particule dans un champ magnétique seulement
(E = 0), on écrit 'équation différentielle du mouvement, Eq., avec des différences
finies centrées pour la dérivée temporelle, et la moyenne des vitesses en début et fin
d’intervalle pour le membre de droite :

vy -1 q (U 4V -
_ == —— B. 2.165
At m ( 2 ) 8 ( )
En rappelant la définition w. = ¢B/m, et en posant €| = é/B, on a :
wcAt — — —
vy =9_ + ) (Up +0-) x €] (2.166)
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C’est un schéma dit semi-implicite : la solution au pas de temps ultérieur dépend de la
solution au pas précédent, v_, (partie dite explicite) et de la solution au temps ultérieur,
Uy, (partie dite implicite). Dans le cas précis, on peut en fait résoudre la partie semi-
implicite analytiquement. On obtient, apres quelques calculs :

weAL
2

. . WAL . .
=0+ = | U= X €+

T (WAt 2) (T- x €]) x e_') : (2.167)

On peut montrer (exercice) que le schéma de Boris-Buneman conserve ’énergie mécanique
exactement. La conservation du moment magnétique est également bien meilleure : voir

FigP2.39,

Dans le cas d’'une présence simultanée d’un champ électrique E (Z) et d’'un champ magnétique
B(Z), le schéma de Boris-Buneman s’écrit :

- = T+ U,At/2

V. = T+ (¢/m)E(F_)At/2

— — We Z_)A — we(Z-)A — — [ = —
b= Ot et (0 X 6@ + =R X ¢(T-)) X 6\\(1’—))

Unt1 = Us + (q/m)E(T-)At/2
Tpp1 = T+ U1 AL/2
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Chapitre 3

Intégration Spatiale : Problemes aux
limites

On s’intéresse ici a ’évolution de systemes physiques variant dans I'espace et le temps.
De tels systemes sont souvent décrit par des Equations aux Dérivées Partielles (EDP)
opérant sur des champs scalaires et/ou vectoriels. Dans ce cours, nous nous limiterons
aux champs scalaires, c’est-a-dire des fonctions f(Z,t) a valeurs réelles ou complexes.

Nous considererons trois équations fondamentales tres importantes de la physique :
I’équation d’advection-diffusion, I’équation d’onde et I’équation de Schrodinger. Trois
schémas numériques seront introduits et utilisés pour résoudre ces trois équations : les
différences finies explicites a deux et trois niveaux et le schéma semi-implicite de Crank-
Nicolson.

3.1 Cas 1-D : méthode de tir

Dans le cas unidimensionnel (1-D), il est souvent possible de se ramener & un probleme
aux valeurs initiales. On peut ainsi utiliser les méthodes numériques vues au chapitre
précédent, en remplagant formellement t — .

Dans cette section, nous allons présenter deux exemples : (1) calculer la distribution de
pression, densité et température dans 'atmosphere terrestre, connaissant la température
et la densité au sol; (2) calculer la distribution de pression, densité et température au
coeur du soleil.

Ces deux études nous permettront d’aborder le probleme des singularités des équations.
Elles sont de deux origines différentes : la premiere est d’origine physique, lorsque la
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densité est nulle ; la deuxieme est d’ordre géométrique, il s’agit de la singularité du systeme
de coordonnées utilisées (sphériques dans le cas du soleil). La présence de ces singularités
nécessite des adaptations des schémas numériques et peuvent altérer leurs propriétés de
convergence.

3.1.1 Modeles fluides d’atmosphere planétaire. Singularité de
I’équation

On supposera ’épaisseur de 'atmosphere négligeable par rapport au rayon de la planete.
On supposera la masse de I'atmosphere négligeable par rapport a celle de la planete. Ceci
nous permet d’approximer 'accélération de la pesanteur par une constante g. On néglige
le mouvement de 'atmosphere et la rotation de la terre. Les équations de base sont celles
de la mécanique des fluides, avec un champ de vitesse fluide #(Z, t) = 0, V¢, V¥ (statique),
un champ de densité p(Z,t), un champ de pression P(Z,t) et un champ de température
T(Z,t). De Navier-Stokes (ou Euler), on a

0=-VP+pj. (3.1)
De I’équation d’état de la thermodynamique des gaz parfaits, on a
P = (p/m)ksT , (3.2)

oll m est la masse d’une molécule, kg = 1.3807 x 10723 est la constante de Boltzmann.
Comme tout systeme fluide, les équations doivent étre complétées par une hypothese
supplémentaire (on parle de fermeture du systéme d’équations).

Dans le modele isotherme, on suppose 7' = T = const. Il vient donc

kB TO
m

0=—-Vp + pg . (3.3)

Avec les hypotheses d’atmosphere mince et statique, on a des champs qui ne dépendent
que de laltitude z (axe cartésien vertical). Il vient donc

p=0, (3.4)

qui s’integre facilement, a partir de la condition initiale py = p(0) = mPy/(ksTp), comme

 kgTy
=L

p=poc A

(3.5)

Le modele isotherme n’est certainement pas tres réaliste : on sait bien que la température
varie avec l'altitude. Un autre modele est basé sur I'hypothese que les échanges de chaleur
(transport) sont négligeables (6@ =~ 0). Dans le modeéle adiabatique, appelé aussi
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polytropique, on a Pp~" = const, avec v I'indice d’adiabaticité ou rapport des chaleurs

spécifiques. On rappelle que |1 <~v < 2| On pose P = Cp?, ou C est une constante

déterminée par les conditions au bord z =0 :

C = (RBTD)7 ! (3.6)

)
m PO7

et on trouve, en substituant dans I’'Eq.(3.1) (exercice) :

d - g(y—1)
—(p ) = = 3.7
- ") e (3.7)
dont la solution est, avec la condition au bord p(0) = po,
/(v=1)
oog(r=1 !
p= <P3 f— C—VZ> : (3.8)

Nous allons intégrer numériquement ces équations. Cela nous permettra d’illustrer le
probleme de la singularité. On réécrit 1’équation différentielle ci-dessus, Eq.(3.7]), comme

(3.9)

IN.B. : Pour v = 1, cette équation, avec C' tiré de , conduit a I’Eq. pour le

modele de Patmosphere isotherme.] C’est une équation différentielle du ler ordre, et on

peut utiliser le schéma d’Euler, Eq., avec la variable d’intégration z remplacant

la variable temporelle. On trouve le résultat de la FIG. L’intégration se passe sans

probléeme jusqu’au moment ot la densité devient nulle, en
v kpTh

20 = ——
T =1 myg

(3.10)

Mathématiquement, notre équation a des problemes a ce point-la; elle est singuliere, avec
le comportement suivant :
d™p 1 d"p 1
li =0; lim —(z) = —; lim —(2) = > — . (3.11
lim p(2) =0 lim ——(2) = 0,¥m < o lm D7) =00, Vn 2 p— (3.11)
Pour z > 2y, la solution mathématique est complexe, et n’a pas de signification physique :
zo représente, dans ce modele adiabatique, le sommet de I’atmosphere.

Il est intéressant d’essayer d’intégrer le probleme inverse : supposons la position du som-
met de 'atmosphere, 2y, connue, et calculons quelle est la densité au sol. Intégrer “en
marche arriere”, c.a.d. a partir de la condition initiale z = zy, p = 0, avec un pas Az < 0
donne la solution numérique p nulle partout! Le probleme vient de la singularité.

La solution est d’examiner analytiquement le comportement au voisinage de la singularité,
et prendre une condition initiale en z = z,; = 20 — € avec p(zo — €) consistant avec le
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FIGURE 3.1 — Densité de l’atmosphere terrestre calculée avec le schéma d’Euler explicite.
Modeéle adiabatique, v = T/5. En z = zog = v/(y—1)(kgTo/myg) (ligne traitillée verticale),
la densité s’annulle. L’intégration numérique “en avant” (ligne noire avec losanges) de-
vient non physique des que la solution numérique trouve p < 0. Lintégration numérique
“en arriere” (lignes rouges avec croix), a partir de zg — €, doit se faire en tenant compte
du caractere singulier de I’équation au voisinage de z = zg. On peut montrer que la den-
sité au sol, calculée a partir du sommet de [’atmospheére, converge bien avec Az — 0.
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comportement singulier de la solution au voisinage de zy. On obtient le comportement
au voisinage de zy avec 1’Ansatz

p=A(zg— 2)* = Ae” (3.12)

que 'on substitue dans ’équation différentielle (3.9) pour obtenir

1 Cy 1/(1—)
Ty (9(7—1)) (3.13)
et done )
Cy - B
p(z-mit) = (m) 61/(7 1) . (314)

On effectue ensuite 'intégration numérique, dont on étudie les propriétés de convergence
avec At, voir ala FIG. 3.1 et la dépendance en e. Le résultat convergé en At ne devrait pas
dépendre du choix de e. Plus exactement, on devrait faire lim._,o,. Cependant, ceci n’est
pas faisable numériquement, car plus € est petit, plus on se rapproche de la singularité de
I’équation différentielle, et pour € trop petit, les erreurs numériques dues a cette proximité
I’emportent sur ’approximation e fini. En fait, si on utilise un schéma numérique d’ordre
élevé, la proximité de la singularité peut faire perdre [’ordre de convergence du schéma : en
effet, 'ordre de convergence n’est effectif que pour une régularité suffisante de la solution,
ce qui n’est pas le cas au voisinage d’une singularité.

Suggestion d’exercice. Calculer quelle serait la densité au sol si 'atmosphere avait
une hauteur de 50km. Faire les études de convergence avec At et de comportement au
voisinage de la singularité.

3.1.2 Distribution de pression, densité et température au coeur
du soleil

Singularité du systéme de coordonnées

Quelle est la densité au centre du soleil 7 L’impossibilité de mesures expérimentales in
situ implique la nécessité de développer des modeles théoriques, basés sur un certain
nombre d’hypotheses. Le probleme est un peu plus compliqué que le cas d'une atmosphere
planétaire mince, ou on négligeait la masse de I'atmosphere par rapport a celle de la terre
(solide). Dans une étoile, la masse est celle du gaz, et cette masse dépend du rayon.

Nous allons faire les hypotheses suivantes :
— fluide au repos
— équilibre des forces de pression et des forces gravitationnelles
— équation d’état polytropique :

Pp~ = const (3.15)
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FIGURE 3.2 — Pression, densité, masse et température a l'intérieur du soleil, calculés
avec le modéle polytropique, v = 4/3, et utilisant un schéma Runge-Kutta d’ordre /.

avec v une constante donnée
— symétrie sphérique, on néglige la rotation du soleil
Le soleil est composé majoritairement d’hydrogene completement ionisé, pour lequel v =
5/3, et de photons, pour lesquels v = 4/3. On simplifiera en ne considérant qu’une seule
valeur de v pour tout l'intérieur du soleil.

Soit (r,0,¢) les coordonnées sphériques centrées au centre de masse du soleil. Soient
P(r) la pression, m(r) la masse contenue & 'intérieur d’une sphere de rayon r, et p(r) la
densité. Les équations de base sont ainsi :

1) Statique des fluides =

P pGm

2

(3.16)

dr r
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2) Masse dm contenue dans une sphere de rayon r, d’épaisseur dr =

d
d—T: = d7mr?p . (3.17)

3) Equation d’état polytropique =
Pp7 7" =K. (3.18)

A partir de ces équations, on peut montrer (exercice) que I'on obtient I’équation suivante
pour la densité :

1 d 2 'V—de _
e (7“ K~p e AmpG | . (3.19)

Méthode de tir. Elle consiste a intégrer numériquement, avec une des méthodes pour
les valeurs initiales développées précédemment (avec r au lieu de ¢ comme variable
d’intégration) : Euler, Runge-Kutta, etc. Il faut préciser 2 conditions initiales, puisque
¢’est une équation du 2e ordre :

p(0) = po
3.20
L0 b (320
On ajustera la valeur initiale py jusqu’a obtenir le rayon du soleil R = 7 x 10°m et la

masse du soleil M = m(R) = 2 x 10%%kg.

Singularité en r = 0. L’équation a résoudre est singuliere en r = 0. Ce type de sin-
gularité est lié au choix des coordonnées sphériques. Ce n’est donc pas une singularité
d’origine physique : physiquement parlant, tout est régulier en » = 0. Mais ceci impose de
prendre la condition initiale non pas en r = 0, mais en r = €. On choisira ¢ << R. Pour
démarrer I'intégration correctement, il faut choisir dp/dr(e). En partant des équations de

base (3.16)-(3.18)), on obtient

dp 1
L6~ ——rh

(3.21)

avec m(e) ~ (4/3)mpoe® la masse contenue a l'intérieur de la petite sphere de rayon e.
(N.B. L’approximation vient du fait que 'on a considéré p ~ const = pg a U'intérieur de
cette petite sphere). Un exemple, avec v = 4/3, est montré a la FIG. .

Suggestion d’exercice. Calculer la température, la densité et la pression au centre du
soleil. Comparer les cas v = 5/3 et v = 4/3. Indication : prendre la densité a la surface
du soleil p(R) = 10~ 'kg/m? ou p(R) = 10~*kg/m?® comme critere de détermination de R.
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3.2 Diifférences finies. Equation de Poisson

3.2.1 Electrodynamique et limite statique

On se bornera dans cette section a rappeler I'essentiel des équations de base. Pour plus
de détails, voir les cours de Physique 3 et 4.

On décrit l'interaction entre particules chargées électriquement par l'intermédiaire du
concept de champs électromagnétiques, abrégé EM : E(Z,t), B(Z,t), champs vec-
toriels.

Un ensemble de charges ¢; sera décrit par un champ scalaire densité de charge p(7,1t).

Un ensemble de charges en mouvement sera décrit par un courant électrique 7, ou un
champ vectoriel densité de courant j(Z,t).

Les champs E, B sont créés par les champs p,j. Ces champs obéissent aux équations
de Maxwell :

B = = E=_—
v Zl@ V x =
= = - 10E

Les champs E et B sont tels qu’'une charge ¢ dans un champ EM subit une force, la force
de Lorentz :

ﬁ:q<ﬁ+6xé) . (3.23)

—

Avec les lois de la dynamique de Newton, [mad = F'[, on a une théorie décrivant I’en-

semble des phénomeénes EM (électrodynamique classique).

Dans la limite de champs statiques, 0/0t = 0 et les équations de pour les champs E et
B se découplent. Pour ’électrostatique,

—

vV E=L  vxE=o0. (3.24)

€0
De la 2e équation, on tire 'existence d'un potentiel scalaire ¢(Z) tel que

E=-v¢, V¢=-L. (3.25)

€0
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Pour la magnétostatiqueﬂ

V-B=0, VxB=puy. (3.26)
De la le équation, on tire I'existence d’un potentiel vecteur /T(f) tel que

B=VxA, V*4A=—uyj. (3.27)

Pour la derniére équation, on a utilisé la jauge de Coulomb : V - A=0.

Les équations pour E(Z) et pour B(Z) dans le vide (cas p = 0, ] = 0) sont identiques. Cela
ne signifie pas pour autant qu’elles ont des solutions identiques : la différence tient aux
sources de ces champs et de leur topologie : des charges ponctelles pour E, des boucles
de courant pour B. Cela implique des topologies fondamentalement différentes pour les
lignes de champ E et B.

Les équations pour ¢ et pour A sont également de méme nature (du moins si on les écrit en
coordonnées cartésiennes). Cela veut dire que les méthodes pour résoudre les problemes
d’électrostatique sont en principe applicables aux problemes de magnétostatique. Il faut
cependant faire attention aux conditions aux bords, qui pourront étre différentes d’un
probleme a 'autre.

3.2.2 Equations aux différences finies. Formulation matricielle

On s’intéresse ici aux problemes a valeurs aux bords, décrits par un systeme linéaire
d’équations aux dérivées partielles (EDP). Comme exemple type, on considérera le probleme
électrostatique, décrit par un potentiel scalaire ¢(Z), satisfaisant 1’équation de Poisson :

V24(Z) = —p() /0, VEEQ, (3.28)

ou p(Z) est le champ densité de charge, gy la permittivité du vide et €2 le domaine spatial
considéré. Le probleme a une solution unique si on pose des conditions aux limites, ou

conditions aux bords
o(@) =V (), VIeo, (3.29)

avec V(Z) une fonction connue sur le bord 092 du domaine €.

La structure générale de telles équations peut s’écrire

L(6(T) = b(@)], VFeQ; ¢(@) =V(F), VT €N, (3.30)

avec £ un opérateur différentiel linéaire.

1. En fait on devrait parler de “magnétostationnaire”, puisqu’il s’agit du champ magnétique créé par
écoulement stationnaire de charges.
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La discrétisation consiste & définir un maillage {(z;,y;, 2x)}, équidistant dans chaque
direction, avec h, = Azx = x;41 — x;, hy = Ay = yj1 —yj, h. = Az = 241 — 2. On
approxime ensuite les opérateurs différentiels apparaissant dans le systeme d’EDP par des
différences finies. On obtient ainsi un systeme d’équations linéaires algébrique pour les
inconnues discrétisées ¢; j r = (i, y;, 2x) qui approxime le probleme exact. Par exemple,
les différences finies d’ordre le plus bas, Eq.7 donnent

0%¢ 1
922 ik ~ 2 (Pi-1jk — 205k + Pit1jk) - (3.31)
On fait de méme pour 9%¢/dy* et 9%¢/0z* pour obtenir le systeme linéaire d’équations
algébriques approximant 1’équation de Poisson :

—2(h2h2+h2h2+h2h2
G Zhghghg 214) Gijk + h—lg (iz1jk + Pit1,4k) (3.32)

i (Digrk + Gigrrk) + 5z (Pigh-1 + Gigher) = Diji -

I est intéressant d’écrire ces équations dans le cas particulier hy, = hy = h, = h :

1
2 (=605 jk + Gic1jk + Git1,k + i1k + Pijr1k + Pijk—1 + Gijrr1) =i - (3.33)

Dans le cas p(¥) = 0,VZ € Q — 09, (équation de Laplace : potentiel électrostatique dans
le vide), on a b; j; = 0 pour tous les points intérieurs au domaine Q. On a alors

Gijk = é (Pi—1,k + D1k + Gij-1h + Gigrrk + Gigr—1 + Pijkr1) > V(T Y5, 2) ¢ 0Q
(3.34)
ce qui veut dire que le potentiel aux points intérieurs du maillage est la moyenne arithmétique
des valeurs du potentiel aux points les plus proches voisins du maillage. Les valeurs du
potentiel aux points du maillage situés sur le bord 9€) sont données directement par les
conditions aux bords.

Dans tous les cas, on peut écrire le probleme EDP linéaire discrétisé comme
AP =D (3.35)

avec A une matrice N x N avec N = N,N,N, le nombre total de points du maillage,
® et b des vecteurs de N élements. Pour ce faire, il faut définir une numérotation des
points de maillage. En 1-D, c’est trivial. En 2-D (et 3-D), il faut décider si on numérote
d’abord en suivant x, puis y, (puis z), ou dans un autre ordre. Voir un exemple 2-D en
FIG.[3.3] On obtient la matrice A avec une structure de bande (“multi-diagonale”). Dans
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b NN -
y Ty —NxNy
N NA42 N43 N+ 2NA 2N
|
1 2 B 4 NA N,
X

FIGURE 3.3 — Numérotation des noeuds d’un maillage 2-D. Ici, on a numéroté en suivant
d’abord selon x, puis selon y.

le cas 2-D de I'équation de Poisson, avec h, = h, = h, = h, on obtient :

—4 1 . 1.
1 -4 1 . 1.
1 —4 1 1.
. 1 -4 . . 1.
1. -4 1 . 1.
1 1. 1 -4 1 . 1.
A‘ﬁ 1. 1 -4 1 1. (3.36)
1. 1 -4 . . 1
1. —4 1 .
1. 1 -4 1 .
1. 1 —4 1
1 1 —4

La matrice A ci-dessus doit encore étre modifiée pour inclure les conditions aux bords.
Il faut remplacer, pour tous les indices de ligne et colonne qui correspondent a un point
du bord, I’équation par la condition au bord correspondante : on met 1 sur la diagonale
de A et on met la valeur au bord V' (z;,y;, z;) a I’élément correspondant du vecteur b.

Si on n’inclut pas ces conditions aux limites, la matrice A est singuliere et il est impossible
de résoudre le systeme linéaire AP = b.

3.2.3 Résolution du systéme linéaire. Méthodes directes (Gauss)
et itératives (Jacobi, Gauss-Seidel, SOR)

Il y a deux groupes de méthodes pour résoudre le systeme linéaire A® = b. Les méthodes
directes et les méthodes itératives. On se limitera ici a en rappeler et en décrire
quelques-unes.
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Méthodes directes : élimination de Gauss, décomposition A = LL”, décomposition
A=LDU.

Méthodes itératives : La plupart sont applicables seulement aux matrices symétriques
définies positives. C’est notamment le cas de l'opérateur Laplacien discrétisé que nous
étudions, (mais ce n’est pas le cas de toute équation différentielle!). Ecrivons la matrice
A =L+ D + R, avec LL une matrice triangulaire inférieure, D une matrice diagonale et
R une une matrice triangulaire supérieure.

La méthode de Jacobi consiste a résoudre, a la (n + 1)-ieme itération,
Do) = b — Lo™ — RO™ (3.37)

On notera que dans le cas du probleme de Poisson dans le vide, on a un systeme homogene
(b = 0), et la méthode de Jacobi revient a prendre, a chaque itération, la moyenne des
plus proches voisins, voir Eq.(3.34]).

La méthode de Gauss-Seidel consiste a résoudre, a la (n + 1)-ieme itération :
(L+ D)) = b — RO™ . (3.38)

Ce systeme est facile a résoudre en commencant a un bout de la matrice et en résolvant
une ligne apres 'autre, séquentiellement (substitution “forward”).

La méthode SOR, dite aussi de sur-relaxation, est une fagon d’accélérer la convergence de
la méthode de Gauss-Seidel. Soit o un nombre réel. En multipliant l’Eq. par « et
en soustrayant formellement (o — 1)D® de part et d’autre, on résout, a la (n + 1)-ieme
I'itération :

(oL 4+ D)d" ) = ab — (aR 4 (o — 1)D) &™) (3.39)
On peut remarquer que la matrice ((o + D) reste triangulaire, et on résout, comme
Gauss-Seidel, par substitution. Notons qu’il n'y a pas besoin de stocker explicitement
les matrices L, D, R, etc., en mémoire. L'implémentation de cet algorithme revient, a
Uintérieur de la boucle de substitution (ligne no.i), a faire ’étape Gauss-Seidel

™) = (b — L&Y — ROM) /D, (3.40)
puis la surrelaxation proprement dite :

B — o 4 o (¢<*> _q>§n>) . (3.41)

)

Avec a < 1 on a une méthode de sous-relaxation, avec & = 1 on retrouve la méthode de
Gauss-Seidel, avec 1 < o < 2 on parle de sur-relaxation, alors qu’avec a > 2 ’algorithme
diverge.

On définit le résidu a l'itération n

r™ = |b— Ad™)|| (3.42)
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et on choisit un critere d’arrét pour les itérations r < €, ol € est une précision requise.

Il y a bien d’autres méthodes itératives. Par exemple, celles basées sur les gradients
conjugués, qui consistent a choisir judicieusement les directions des relaxations succes-
sives. Elles nécessitent généralement un préconditionnement de la matrice pour étre effi-
caces.

Mentionnons que de nombreuses librairies numériques sont disponibles pour résoudre les
systemes algébriques linéaires.

3.2.4 Electrostatique en 2-D, différences finies, GS-SOR. Conver-
gence des itérations

On applique la discrétisation par différences finies au probleme d'un condensateur rec-
tangulaire, de taille finie. On montre des exemples aux FIGS[3.4] et [3.5] Les méthodes de
Gauss-Seidel sans et avec sur-relaxation (SOR) convergent vers la méme solution. Pour
un maillage N, = 101, N, = 61, apres quelques dizaines d’itérations SOR avec o = 1.9,
la solution est convergée “a l'oeil nu”, c.a.d. qu’on ne distingue plus de différence, a
I’échelle de la figure, sur les lignes de niveau du potentiel. Pour ces figures, on a utilisé le
critere d’arrét des itérations : résidu r < e = 1076,

On remarque, au niveau de la physique du résultat, le champ électrique plus intense vers
les angles du conducteur intérieur. (Le champ électrique étant le gradient du potentiel,
des équipotentielles serrées indiquent un champ électrique intense). La densité de charge a
la surface d’un conducteur, et donc I'intensité du champ électrique dans son voisinage, est
inversément proportionnelle au rayon de courbure de la surface (voir cours de Physique
III-IV). C’est l’effet de pointe. Sur I’ image du bas de la FIG. , I’effet de renforcement
de l'intensité du champ électrique est encore plus manifeste lorsque 1’électrode intérieure
est mince et est placée a proximité du conducteur extérieur. S’il y a claquage, c¢’est vers
la pointe que cela se produira : ¢’est sur ce principe que sont basés les paratonnerres.

On peut utiliser la loi de Gauss pour le champ électrique

ﬁ E - do = Qunt/c0 (3.43)
S

pour calculer la charge sur le conducteur interne. Pour ce faire, il faut d’abord calculer
le champ E a partir de la solution numérique ¢(x;,y;). On peut le faire par exemple en
utilisant les différences finies centrées du premier ordre, Eq.(A.16]),

Eiliviy2 = —00/0x|i11/2

Eyljy12 = —06/0yljs1/2 (3.44)
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Contours of § GSSOR h=0.01 o=1.9 nit=177

Contours of |E| GSSOR h=0.01 o=1.9 nit=177

N &
* =
0.1t | 1
> Of \ ]
—0.1! / ‘ |
-0.2 S >
O | s
-0.5 0 0.5
X

FI1GURE 3.4 — Condensateur rectangulaire. Conditions aux bords ¢ = 1V sur le conduc-
teur intérieur, ¢ = 0 sur le conducteur extérieur. Méthode de différences finies, maillage
N, = 101, N, = 61 . Probléme matriciel résolu avec Gauss-Seidel et SOR, paramétre
de sur-relazation o = 1.9, précision requise : résidu r < € = 107%. En haut : lignes de
niveau du potentiel (de 0 & 1V). En bas : lignes de niveau de |E| (de 0 & 13.6 V/m).
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Contours of § GSSOR h=0.01 o=1.9 nit=171

0.5

Contours of |E| GSSOR h=0.01 o=1.9 nit=171

0.3
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-0.5 0 0.5
X

FiGURE 3.5 — Condensateur rectangulaire. Conditions aux bords ¢ = 1V sur le conduc-
teur intérieur, ¢ = 0 sur le conducteur extérieur. Méthode de différences finies, maillage
N, =101, N, = 61. Probléme matriciel résolu avec Gauss-Seidel et SOR, parametre de
sur-relazation o = 1.9, précision requise : résidur < € = 107%. En haut : lignes de niveau
du potentiel (de 0 6 1V). En bas : lignes de niveau de |E| (de 0 a 26.4 V/m).
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5 Iterations GS-SOR h=0.01
10 ‘ ‘ ‘ ‘
10’
GS
E
210"
0
]
= SOR 0=1.9
10—10 |
10 ‘ ‘ ‘ ‘
0 100 200 300 400 500
iteration

FIGURE 3.6 — Convergence du résidu avec les itérations des méthodes de Gauss-Seidel
et de sur-relazation (SOR), pour le cas de la FIG.[3.5,

Il faut noter que le champ E est défini aux milieux des segments du maillage, et que F,
et E, ne sont ainsi pas définis aux mémes points. On choisit ensuite une surface fermée
S entourant le conducteur interne. On prendra pour surface S un rectangle aligné avec
les milieux des cellules du maillage. Enfin, on doit effectuer I'intégrale. On choisira la
méthode d’ordre le plus bas, étant donné que 'approximation par différences finies que
nous avons choisie est d’ordre le plus bas. On prendra garde a l’orientation de do sur les
4 faces du rectangle.

Au niveau de la numérique, on étudie la convergence des itérations pour résoudre le
probleme matriciel (FIG. [3.6). Avec sur-relaxation (SOR) et un parameétre de sur-relaxation
a = 1.9, la convergence est fortement accélérée par rapport a Gauss-Seidel (e = 1). On
remarque clairement aussi qu'on ne peut pas aller en dessous d’un résidu de 107 : on a
alors atteint la précision machine (64 bits dans ce cas).

Un autre test de validation de la solution numérique consiste a vérifier la loi de Gauss pour
des surfaces fermées S différentes. Pour toute surface fermée S entourant le conducteur
interne et entierement contenue a l'intérieur du conducteur externe, I'intégrale de Gauss
(flux du champ électrique a travers S) devrait donner le méme résultat. Les différences
sont ainsi une mesure de I'erreur numérique. La valeur du résultat permet de calculer,
avec la relation Q = CAV, la capacité du systéme. Pour toute surface fermée n’entourant
aucune partie de conducteur, la charge enfermée est nulle, et le flux du champ électrique
devrait étre nul. Dans ce cas, la valeur du résultat fournit une autre mesure de ’erreur
numérique.
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L’erreur numérique a en principe trois origines distinctes : premierement, ’erreur sur la
convergence de la méthode itérative pour résoudre le systeme matriciel (Gauss-Seidel ou
SOR) ; deuxiemement, l'erreur de discrétisation venant du fait que la taille du maillage
est finie (h), ou erreur de troncature; troisiemement, les erreurs d’arrondi. Pour le cas
de la FIG. 3.5 l'intégrale de Gauss donne, aprés 171 itérations de Gauss-Seidel SOR
(v = 1.9), 6.1511173 pour S tout pres du conducteur interne et 6.1511178 pour S tout
pres du conducteur externe, soit une erreur relative de 10~7. Pour S n’entourant que
du vide, on obtient —3.4 x 1077 (au lieu de zéro). On vérifie que I'erreur semble tendre
vers zéro avec le nombre d’itérations SOR. L’erreur relative ne peut toutefois pas étre
inférieure a la précision machine : les erreurs d’arrondi empéchent d’aller a des précisions
encore meilleures.

Un test similaire, mais avec un réseau plus grossier, conduit au méme résultat qualitatif
(mais avec un nombre d’itérations GSSOR moins élevé).

Ces tests montrent que, pour le schéma numérique considéré, la loi de Gauss pour le
champ électrique est satisfaite “exactement” (a la précision machine), indépendamment
des erreurs de troncature, pour autant que l'on résolve le systeme algébrique linéaire
“exactement” (a la précision machine) et que ’on choisisse des surfaces fermées S passant
par les milieux des cellules du réseau. Lorsqu’on choisit d’autres surfaces S, les erreurs
de troncature réapparaissent a cause des interpolations que 1’'on doit faire.

Satisfaire la loi de Gauss pour certaines surfaces S bien choisies avec une précision ma-
chine ne veut pas dire que la précision sur la solution du probleme est atteinte a la
précision machine quelle que soit la taille du maillage. Il reste les erreurs de troncature.
On les examinera en exercice, en considérant la solution ¢ en des endroits particuliers, et
en observant comment la solution converge en ces endroits, en prenant des maillages de
plus en plus fins.

Suggestion d’exercice. Calculer le potentiel créé par une paire de conducteurs minces
de taille finie placés dans une boite conductrice rectangulaire. Vérifier le théoreme de
Gauss en prenant différentes surfaces fermées entourant 'un ou l'autre conducteur, ou
les deux. On montre a la FIG. un exemple de configuration asymétrique. Le flux du
champ électrique pour une surface S entourant les deux conducteurs intérieurs est-il nul ?
Le flux du champ électrique est-il le méme, au signe pres, pour S; autour du conducteur
de gauche et pour Sy autour du conducteur de droite ?

Suggestion d’exercice. Calculer le potentiel créé par une charge ponctuelle, en coor-
données sphériques. Indication : la singularité du probleme en r = 0 peut étre traitée en
considérant une charge non pas parfaitement ponctuelle, mais avec une taille finie. Il faut
veiller a ce que cette taille ne soit pas plus petite que la taille du réseau Ar, afin d’avoir
plusieurs points de discrétisation sur la “particule”. Comparer avec le résultat analytique
exact.
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Contours of ¢ GSSOR h=0.0125 0=1.8 nit=161
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F1GURE 3.7 — Condensateur rectangulaire asymétrique. Conditions auzx bords ¢ = 10V
sur le conducteur intérieur de gauche, ¢ = —10V sur le conducteur intérieur de droite,
¢ = 0 sur le conducteur extérieur. Méthode de différences finies, maillage N, = 81, N, =
81 . Probleme matriciel résolu avec Gauss-Seidel et SOR, parametre de sur-relazation
a = 1.8, précision requise : résidu r < € = 107%. En haut : lignes de niveau du potentiel
(de -10V & +10V). En bas : lignes de niveau de |E| (de 0 & 191 V/m).

106 Physique Numérique LV SPC EPFL



3.2. DIIFFERENCES FINIES. EQUATION DE POISSON

3.2.5 Optimisation et complexité de I’algorithme

Dans le probleme de I'équation de Laplace 2-D, avec N points de maillage dans chaque
direction, on a au minimum de l'ordre de N? opérations & effectuer, en supposant un
algorithme “idéal”, qui donnerait la solution ¢;; en une seule itération. Un tel algorithme
n’existe généralement pas, sauf bien str dans les cas ou une solution analytique exacte
du probleme peut étre trouvée.

Avec le schéma aux différences finies et ’algorithme de Gauss-Seidel, on trouve que le
nombre d’itérations requis pour atteindre une précision donnée est proportionnel & N?
environ. Donc, puisque chaque pas de Gauss-Seidel implique de 'ordre de N? opérations,
on a un algorithme qui cofite de 'ordre de N* opérations. Pour des tailles de maillage
importantes, ceci peut vite devenir prohibitif.

Avec la sur-relaxation (SOR), on peut améliorer considérablement les choses. La FIG.
(haut) montre le nombre d’itérations requis pour une précision sur le résidu r < ¢ = 1073
en fonction du parametre de sur-relaxation «, pour différentes tailles N du maillage N x N
utilisé. Le cas physique est celui de la FIG.[3.7 Le choix optimal de o dépend de N, et est
empiriquement donné par gyt ~ 2 — const/N (image du milieu). Le nombre d’itérations
requis pour atteindre une précision donnée est proportionnel a N (image du bas). Le cott
de D’algorithme SOR & l'optimum est donc d’ordre N3, et non N* comme Gauss-Seidel
sans sur-relaxation.

On pourrait résoudre le systeme algébrique linéaire AP = b, Eq., “d’un seul coup”,
¢’est-a-dire en une itération. Ce sont les méthodes dites directes qui permettent de le faire,
par exemple 1’élimination de Gauss, ou via la décomposition de Cholesky A = LL”. Si
on résout ainsi, en considérant toute la matrice A commme une matrice carrée N? x N2,
I'algorithme requiert de l'ordre de (N?)3 opérations arithmétiques. On obtient un cotit
qui est de 'ordre de N®, qui devient vite exorbitant. On peut faire mieux en considérant
le fait que la matrice A a, pour un maillage recangulaire structuré, une structure de
matrice de bande : voir Eq.. La largeur de la bande est proportionnelle au nombre
de points de maillage dans une direction, N. Les algorithmes directs d’élimination de
Gauss ou de factorisation de Cholesky nécessitent un nombre d’opérations proportionnel
au cube de la largeur de bande. On aboutit donc a un cotit de ’algorithme proportionnel
a N*. Il y a un prix a payer supplémentaire, en terme de mémoire, puisqu’il faut stocker
la matrice A et sa décomposition.

La conclusion de cette discussion est que l'algorithme SOR semble le plus performant
pour ce genre de probleme (Laplacien). Des difficultés apparaissent lorsque le domaine
de résolution est de géométrie plus complexe et nécessite un maillage non-équidistant,
auquel cas il peut étre dificile de trouver un « optimal. Lorsque d’autres opérateurs sont
considérés, il se peut que les méthodes itératives simples, comme SOR, ne convergent tout
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FI1GURE 3.8 — Nombre d’itérations SOR en fonction de o, pour l’équation de Laplace 2D
résolue par différences finies sur un maillage N X N (haut). Paramétre SOR « optimal
en fonction de 1/N (miliew). Nombre d’itérations SOR requis pour une précision € =
1073 en fonction de N (bas). Le cas physique correspond au condensateur rectangulaire

asymétrique de la FIG.[3.]
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simplement pas !E| Dans ce cas, les méthodes directes peuvent étre les plus appropriées.

3.2.6 Géomeétrie plus complexe

Considérons le probleme d’une paire électrodes conductrices aux potentiels V, et Vj,
placées dans le vide a l'intérieur d'une boite rectangulaire conductrice au potentiel 0.
C’est la méme situation qu’a la FIG. 3.7, mais cette fois on considere des électrodes de
formes non rectangulaires.

On résout, comme précédemment, avec la méthode des différences finies sur un maillage
cartésien (z;,y;) et 'algorithme GS-SOR. Par exemple, choisissons des électrodes ellip-
tiques placées avec une orientation quelconque par rapport aux axes (z,y). La FIG.
montre la solution numérique obtenue pour V, = +10V, V,, = —5V, des ellipses de demi-
axes a X b = 0.35 x 0.1m et 0.25 x 0.15m, centrées en (0.25,0.5)m et (0.7,0.3)m, avec
leurs grands-axes inclinés de 80 et 150 degrés par rapport a l’axe x, respectivement. La
boite extérieure est carrée de coté L = 1m. Le maillage est 160 x 160, et la parametre de
surrelaxation est o = 1.9. Pour atteindre un résidu inférieur & € = 1073, 147 itérations
GS-SOR sont nécessaires.

Si 'algorithme converge bien, dans le sens que la solution numérique ¢; ; converge avec
les itérations SOR, il y a un probleme avec le champ électrique au voisinage des surfaces
des électrodes. Des irrégularités apparaissent, qui ne sont pas physiques, mais qui sont
dues au fait que ces conducteurs sont représentés sur un maillage cartésien rectangulaire,
et que la surface des conducteurs n’est pas alignée avec les lignes de coordonnées. Cela
implique que la représentation numérique de la surface, supposée lisse en réalité, est en
“marche d’escalier”, et on voit en fait un effet de pointe purement numérique aux coins
de ces “marches d’escalier”. La solution pour E nlest donc pas bonne au voisinage des
surfaces des €électrodes.

La solution a ce probleme dépasse le cadre de ce cours. Mentionnons quand méme la
méthode des éléments finis, qui peut étre utilisée avec des maillages dont les noeuds
peuvent étre plagés le long des surfaces. On peut également utiliser les éléments finis sur
des systemes de coordonnées curvilignes. Des méthodes de raffinement du maillage dans
les régions de fort gradient de la solution ont également été développées.

2. Ces méthodes ne convergent que si la matrice A est symétrique positive définie.
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Contours of ¢ GSSOR h=0.00625 a=1.9 nit=147
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FiGure 3.9 — Condensateur avec électrodes elliptiques. Conditions auzx bords ¢ = 10V
sur le conducteur intérieur de gauche, ¢ = —5V sur le conducteur intérieur de droite,
¢ = 0 sur le conducteur extérieur. Méthode de différences finies, maillage N, = 161, N, =
161 . Probleme matriciel résolu avec Gauss-Seidel et SOR, paramétre de sur-relaxation
a = 1.9, précision requise : résidu r < € = 1073. En haut : lignes de niveau du potentiel

(de -5V & +10V). En bas : lignes de niveau de |E| (de 0 & 150 V/m).
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3.3 Forme variationnelle. Eléments finis

Soit un systeme d’équations aux dérivées partielles (EDP) avec conditions aux limites de
type Dirichletf :

L(o@) = b(@)], [Vica]; [s(@) = V@), vieonl, (3.45)

avec L un opérateur différentiel linéaire.

3.3.1 Description de la méthode

La méthode des éléments finis pour obtenir une approximation de la solution a ces EDP
est construite sur les bases suivants, dont la forme variationnelle des équations est
I'un des piliers, I'autre étant ’approximation des fonctions en développant sur une base
de fonctions élémentaires de support fini. La démarche est consituée des points
suivants.

1. La définition d'un produit scalaire
1.9) = [ n@o(@ds (3.46)

et de la norme ||¢|| = \/(¢, ®).

2. La construction d’une forme variationnelle (dite “faible”), en choisissant une fonc-
tion test n(Z), multipliant 'Eq.(3.45)) par n(Z), puis intégrant sur le domaine Q.
L’EDP avec conditions aux limites, Eq.(3.45), est donc équivalente au probleme
variationnel suivant : trouver ¢ € C"(Q2) telle que

(n, £(¢)) = (n,0) |, [Vn(Z) € C"(Q)|n(Z) = 0,V € 9Q ;| ¢(F) = V(Z),VZ € 9Q|.
(3.47)

3. Une intégration par parties. Pour illustration, nous prendrons le cas de I'opérateur
de Laplace, £ = V? :

(1, V2¢):/77V2¢d3$=/(—VU-V¢+V-(77V¢)) P
Q Q

On applique ensuite le théoreme de Gauss (appelé aussi théoréme de la divergence)
au dernier terme, pour obtenir :

(n, V?¢) == — /Q Vn-Voddz + /8 ) nVe¢ - do . (3.48)

Le dernier terme est parfois nul, selon les conditions aux bords : on parle dans
ce cas de conditions auz bords naturelles. Pour les opérateurs £ symétriques que

3. Ici de type Dirichlet, mais on peut avoir d’autres conditions : Neuman, mixtes ou périodiques.

Physique Numérique LV SPC EPFL 111



CHAPITRE 3. INTEGRATION SPATIALE : PROBLEMES AUX LIMITES

nous considererons dans ce cours, l'intégration par parties conduit a symétriser
explicitement la forme variationnelle :

—(L(n), L(¢)) = (n,b) , V() € C"(Q) . (3.49)
Pour notre illustration, £ = V2 et £ = V.

4. Une approximation numérique du probleme variationnel. L’idée de base est de
considérer un sous-espace de l'espace des fonctions, noté CP(€2,), qui est celui
des fonctions continues différentiables d’ordre p par morceaux, représentables sur
une base de fonctions A;(Z) ayant un support de taille finie, définie sur une
discrétisation (un maillage) de 'espace :

o(F) =y o3h(7) . (3.50)
J
On fait de méme pour la fonction test 7. Si la fonction test est choisie avec les

= Zm/\i(f) : (3.51)

on obtient ce qui s’appelle la méthode de Galerkin. Les fonctions de base A; sont

mémes fonctions de base,

généralement des polynomes par morceaux. Pour fixer les idées, on a représenté a
la FIG. .10 le cas 1-D des éléments finis linéaires (p = 1), sur un maillage {z;}.
Noter que les points du maillage ne doivent pas forcément étre équidistants : c¢’est
une des souplesses importantes que permet la méthode des éléments finis (par
rapport aux différences finies).

5. La substitution de cette approximation numérique, Eqs. (3.50 , dans le probleme

variationnel :
- ZZ% (/ L(A)L(A;) ) an (/ Aibd%) , ;. (3.52)
0

Définissons la matrice A avec A;; = expression entre les grandes parentheses
du membre de gauche, le vecteur ® des inconnues ¢;, et le vecteur b avec b;
= expression entre parentheses du membre de droite. Le probléeme variationnel
discrétisé ci-dessus, Eq., doit étre vérifié pour tout n;, ce qui veut dire que
I’égalité doit etre satisfaite pour chaque terme de la somme sur 7. On obtient ainsi
un systeme d’équations linéaires algébriques

. (3.53)

A est une matrice N x N, N étant le nombre de points du maillage. L’étape
de construction des éléments de matrice A;; nécessite le calcul d’ intégrales fai-
sant intervenir des produits des fonctions de base, A;A;, et de leurs dérivées, par
exemple (OA;/0x)(0A;/0x). Comme ces fonctions de base ont un support fini, ces
intégrales sont nulles sauf pour ¢ voisin de j. En conséquence, la matrice A a une
structure de matrice de bande, dont la largeur dépend de l'ordre des éléments et
de la dimensionalité du probleme. Dans le cas d’éléments finis linéaires 1-D, FIG.
3.10 chaque élément A; ne recouvre que les plus proches voisins, A;_; et A; 1, en
plus de lui-méme; la matrice A est alors tridiagonale.
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X,

< » o » o ».
< > L >

FIGURE 3.10 — Eléments finis linéaires 1-D. Fonctions de base \;(x) et représentation
(approximation) d’une fonction ¢(x) par ces éléments finis.

6. L’imposition des conditions aux bords ezplicites. On le fait généralement au niveau
du systeme algébrique linéaire A® = b. Par exemple, dans le cas de conditions de
Dirichlet et d’éléments finis linéaires, on a

pour tout i tel que Z(x;) soit un point sur la surface 9. Dans le cas de condi-
tions aux bords plus compliquées, et/ou d’éléments finis d’ordre plus élevé, leur
application implique généralement de faire des combinaisons linéaires des lignes et
colonnes de A et du membre de droite b.

7. La résolution du systeme algébrique linéaire (3.53)). Voir Section (3.2.3]

On notera au passage que l'intégration par parties permet de faire décroitre l'ordre de
lopérateur différentiel : par exemple, pour une équation du 2e ordre, la forme variation-
nelle intégrée par parties ne fera intervenir que les dérivées du ler ordre : cela permet
I'utilisation de fonctions de base liné€aires pour une équation différentielle qui au départ
fait intervenir les 2e dérivées.

Intégration numérique des éléments de matrice et du terme de droite

On se restreindra au cas 1-D. L’algorithme de construction de ces éléments consiste a
calculer, pour chaque intervalle [xy, xy1], de taille hy = x5 — x (les hy peuvent étre
tous différents), la contribution aux éléments de matrice et du terme de droite. Ce sont
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des intégrales du type
Th+1
/ f(z)dx (3.55)
Tk
On peut utiliser la régle du point milieu ou celle des trapezes (Annexe ou, encore
mieux, un mélange des deux, avec un parametre p compris entre 0 et 1 :

/+ f(z)dx ~ hy {p f(xy) +2f (Trs1) +(1—-p)f (%)] : (3.56)

3.3.2 Elements finis - Equation de Poisson 1-D

Soit © un intervalle [z,, x;]. On place des électrodes en x = x, et x = 13, aux potentiels
V, et V. Entre les deux électrodes se trouve une distribution de charge, de densité p(x)
donnée. On aimerait calculer le potentiel ¢(z) et le champ électrique E,(z) entre les deux
électrodes.

Il faut donc trouver une solution au probleme :

%(x) = —%(:) NV €]z, m[,  o(xe) = Va, o(xp) =V} . (3.57)

En suivant la méthode présentée a la section précédente, on construit la forme variation-
nelle en multipliant I’équation de Poisson ([3.57)) par une fonction test n(zx) et en intégrant

Tp d2 Tp
/ nﬁgd:v:/ —np/eodx . (3.58)

Tp d77d¢ d¢ Th B /asb
/xa 1o do dx {ndx} =/ np/eo dx . (3.59)

Ta

entre x, et xy :

Intégrant par parties,

Le terme intégré, aux bornes de 'intervalle €, peut étre considéré comme nul; en effet,
comme ¢ est connu aux bords, par les conditions aux limites, il n’est pas nécessaire de
faire la variation en ces points. Autrement dit, on peut choisir n nul en * = z, et en
x = xp. Le probleme variationnel s’énonce alors comme suit : trouver une fonction ¢(x)

% dp dg B zp
/xa Tz dr = /ma np/eodz . (3.60)

soit satisfaite pour toute fonction n(z) a valeur nulle en x, et en xzy, et telle que ¢(x,) =

Vm (b(xb) = % .

telle que 1’équation

Attention aux conditions sur la fonction-test 1. Un exemple d’erreur de raisonnement est

le suivant. Prenons pour simplifier la cas du vide, p(z) = 0,Vz € [x,, x]. L’équation de

Poisson devient une équation de Laplace :
d?¢

@—()
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Donc d¢/dz = C, avec C' = const, et ¢(z) = Cx+ D, avec D = const. Avec les conditions
aux limites, on trouve facilement la solution ¢(x) =V, + (V, — V,)(x — x,)/(2p — x,). En
considérant la forme variationnelle, Eq.(3.60|) avec p = 0, et en posant g = dn/dz, on a :

Ty d¢
—dz = .61
/xa g4, e = 0,vg. (3.61)
On en conclut a6
@ = O, V.CL’ .

Mais évidemment cela contredit la solution du probleme! Ou est donc I'erreur ?

L’erreur est que nous avons oublié de transcrire la condition sur 1 : (pour toute fonction
n(x) a valeur nulle en x, et en x;) en une condition correspondante sur la fonction g. En
effet, la condition sur n implique la condition suivante pour g :

Tp
Vg|/ g(x)dx =0. (3.62)
Pour de telles fonctions, la forme variationnelle, Eq.(3.61)) admet comme solution pour ¢
1
;i = const. (3.63)

La valeur de cette constante n’est pas nécessairement zéro !

Choisissons un maillage de N points x;, ¢ = 1..N, pas forcément équidistants, avec
h; =x;1 —2; >0,7i=1..n,ou n =N — 1 est le nombre d’intervalles. On utilise ensuite
I’approximation numérique des éléments finis, Eqs. , avec des fonctions de base
linéaires, FIG. On obtient, sur le modele de I’Eq. :

dA dAj B b p
SEa([ o ga([ 200) 0 o

On obtient donc le systeme algébrique linéaire A® = b, avec

™ dA; dA,

A — SN .
“ /x dr dz (3.65)
b = / LN (3.66)

Ta €0

On a deux méthodes algorithmiques de construire la matrice et le membre de droite. La
premieére méthode consiste a effectuer une boucle sur les intervalles (k = 1..n) et a
ajouter a la matrice A et au membre de droite b la contribution de I'intervalle numéro

k aux intégrales ([3.65}13.66)). Plus spécifiquement,
o dA; dA e dA; dA,
Ay = : = 3.67
/ /xa dz dx Z / dz dz de ( )
Tp p /"Tk-&-l p
b = —A;dx = —A;d 3.68
| L= Z v (3.68)
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Dans les intégrales ci-dessus, seuls les termes (4, j) = (k, k), (k, k+1), (k+1,k), (k+1, k+1)
pour la matrice et les termes ¢ = k et ¢ = k + 1 pour le membre de droite sont non nuls.
L’algorithme de cette premiere méthode de construction de A et b consiste en une boucle
sur les intervalles £k = 1..n

(k) (k+1)
A = A+ k) - 1/h;,C —1/hk (3.69)
(k+1) —1/hi, 1/hy
P(xk) P(Ik+1/2)
by = b h 1—p)————== 3.70
k K+ hy (p 9% + (1 —p) 9%, (3.70)
x x

b1 = bgy1+he (p ACES) +(1 —p)M : (3.71)

280 250

Les contributions au membre de droite, b et by ci-dessus, ont été écrites en utilisant la
formule d’intégration (3.56]).

Une deuxieme méthode de construction de la matrice et du membre de droite consiste a
calculer dans une boucle sur les équations du systeme algébrique linéaire, donc
sur les lignes de la matrice, I'indice i dénotant le numéro de la ligne, (qui représente
aussi le numéro de I’élément fini de la fonction test). Il est facile de calculer les éléments
de matrice exactement, notant que

dAz/d.f = —1/h1, Vx E]Ihxi—l—l[ ; 1/h2‘_1, Vx G]mi_l,xi[ ; 0 ailleurs. (372)
On obtient
1 1 1 1
’ hi—s * h; ! o ha v o,
1
Aiipn = _h_i ;1= 1.m;
A L = 2..N
i1 — — , 1= 2..IN;
ot hi—1
A = 0,Vi¢{i—1,ii+1}. (3.73)
p(x;) p(@i-12) p(z;) p(@ivip2)] .
b; = h;_ 1 —p)————= h; l—p)————=| ,i=2..n.
L, T T e p o (L) i=2.n
(3.74)
Les lignes ¢ = 1 et i« = N doivent étre traités séparément : l'intégrale de la forme

variationnelle va de x, a x;, et pour le premier et le dernier point de maillage, il n'y a
que la moitié de la fonction de base correspondante qui contribue. On obtient

by = {p% + (1 - p),0(5U21—;1/2)} (3'75)
by = hn {p%f;)Jr (1 —p)p(xg—;/?)} . (3.76)
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L’avantage de la premiere méthode (raisonner par intervalles) par rapport a la deuxieme
(raisonner par ligne du systeéme linéaire) est que toutes les contributions a A et b de
I'intervalle k, Eqs., ne font intervenir que hg, et non un mélange de h; et h;_;
de la deuxieme méthode, Eqs.. De plus, la premiere méthode ne nécessite pas
de traitement spécial des points du bord du domaine, alors que c’est le cas de la deuxieme,
Eqs.. [Mais, dans tous les cas, les conditions aux bords doivent étre appliquées,

voir ci-dessous ]

La matrice A est tridiagonale, et il n’est pas nécessaire de la stocker sous la forme
d’une matrice carrée pleine. On ne stocke que la diagonale principale (d), la diagonale
inférieure(a) et la diagonale supérieure (c) :

di o
a; dy ¢

A — : : : ) 3.77
ag—1 dp ¢ (3:77)

Ap—1 dn Cn
Qp, dN

La correspondance entre les éléments de matrice A;; et les composantes de d, a et c est
A = di, Apgyr = ks Appie = 0k s Appippr = digr (3.78)

Il faut imposer les conditions aux bords, Eq.(3.57)), explicitement sur I’équation matricielle.
La premiere équation doit étre remplacée par ¢; = V, et la derniere équation par ¢ = V.
On le fait en posant :

di=1;,¢=0,0=V,;; et dy=1,0a,=0;by=1V,. (3.79)

La résolution du systeme algébrique linéaire AP = b se fait par méthode directe (élimination
de Gauss, ici en Matlab®)) :

for k=2:N
piv=a(k-1)/d(k-1);
d(k)=d (k) -piv*xc(k-1);
b(k)=b(k)-piv*b(k-1);

end
phi=b./d;
for k=n:-1:1
phi (k)=(b(k)-c(k)*phi(k+1))/d(k);
end
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Elements finis — Poisson

1000

500¢

ple, [V/im?]
o

-500¢
-1000 ‘ ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1
x[m]
5 X 10  Elements finis — Poisson
n=100 pack
E (0} r
<
-5 . . . .
0 0.02 0.04 0.06 0.08 0.1
x [m]
Elements finis — Poisson
2.5 ‘ ; ‘ :
2f n=100 pack
n=15 pac
15¢
E o1
2,
w> 0.5 n=15 unifo\rme
O,
-0.5
-1 . . . .
0 0.02 0.04 0.06 0.08 0.1

x [m]

FIGURE 3.11 — Résolution de l’équation de Poisson avec la méthode des éléments finis
linéaires 1-D sur un maillage non-uniforme. Densité (haut), potentiel (milieu) et champ
électrique (bas). Champ électrique obtenu avec un maillage uniforme n = 15 (traitillés
rouge), avec un maillage non uniforme n =15 (bleu avec 'o’) et n = 100 (noir +’).
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L’avantage de pouvoir définir un maillage non équidistant peut s’avérer crucial lorsque
la physique que l'on veut étudier présente des structures tres localisées dans 1’espace.
Prenons le cas d'une distribution de charge

(z=zq)?

p(x) = egpag sin(k,x) exp™ 202 (3.80)

représentée a la FIG. pour ag = 1000V/m?, k, = 187/xym~!, 2o = 0.05m, o =
0.004m. On résout Poisson entre x, = Om et x;, = 0.1m, ou les deux électrodes sont mises
a la terre, V, =V, = 0V. On utilise I'intégration Eq. pour le membre de droite, avec
le parametre p = 1/3. Le maillage est choisi uniforme par morceaux dans les intervalles
[0,0.035], [0.035,0.065] et [0.065, 1]. On répartit 80% des points dans I'intervalle central
et 10% dans chacun des autres intervalles. La solution, FIG. | montre clairement
comment la haute densité de points du maillage dans les régions ou la solution exhibe
une structure localisée est appropriée : pour comparaison, on a représenté le champ
électrique obtenu avec un maillage uniforme partout.

3.4 Magnétostatique - Biot-Savart

Les équations pour le potentiel électrostatique ¢ et pour le potentiel vecteur ff, Eqgs.
et , sont toutes deux de la forme d’une équation de Poisson. On peut donc
utiliser les méthodes présentées aux sections précédentes, différences finies et éléments
finis, pour résoudre aussi les problemes de magnétostatique.

On mentionnera quand méme deux autres approches. La premiere est utilisee dans le
vide (cas j= 0), ou V X B = 0 implique l'existence d’un potentiel scalalrel T) tel que
B =VU. Avec V- B—O on a

VA =0 (3.81)
et les méthodes pour résoudre ’équation de Laplace peuvent étre utilisées.
La deuxieme approche utilise la formule de Biot-Savart. Si on a une distribution de
courant ]( ') donnée, on peut trouver la solutlon explicite de 'Eq.(3.27)). En se rappelant
que la solution de I’équation de Poisson pour un element de charge p(7') 32’ est

o(T) = p(z') &z’ [Amegr, avec 1 = |7 — a:’| la solution de s’obtient en substituant
formellement p/ey par po j et en intégrant sur tout lespace :

_’ '—*/d3/
r) .82
A@) 47r/// |7 — 2| (3.82)

En effectuant B = V x A (attention, 'opérateur V opere sur Z mais pas sur '), et en

4. 11 ne s’agit évidemment PAS du potentiel électrostatique.
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Biot—-Savart
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FIGURE 3.12 — Champ magnétique créé par une bobine inclinée, dont la position est

symbolisée par les deux traits noirs obliques. Les fleches sont proportionnelles au champ

B.

posant €, = (£ — 2’)/r, on obtient la formule de Biot-Savart :

B(@) :i‘—i / / / j(f/i—;ad% . (3.83)

Dans le cas d’une boucle de courant (fil mince), courbe I, courant I, jd3 = 1dl = Iedl

et on a, de (3.82)(3.83) :

)
A@) = 1ot —,B(f):’ij[etxedz'
47T r T’ 47T r 7"2

: (3.84)

ol €; est le vecteur unité tangent au fil en tout point.

L’utilisation de la formule de Biot-Savart implique donc d’effectuer des intégrales.
Quelques méthodes d’intégration numérique sont présentées a I’Annexe [B].
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Lorqu'il y a plusieurs circuits (“boucles de courant”), on applique le principe de super-
position.

Un exemple est illustré a la FIG. . On a calculé le champ B créé par une bobine
constituée de 40 boucles de fil de forme circulaire de rayon R = 0.24m parcourues par un
courant I = 1A, et empilées les unes sur les autres avec un décalage. A la FIG. 3.12] on
a représenté le champ magnétique dans un plan (y, z) par des fleches proportionnelles au
champ B. La position de la bobine est symbolisée par les deux traits obliques. Chaque
boucle de la bobine est discrétisée avec N = 128 points pour l'intégration de Biot-Savart.
Pour cette figure, la regle des trapezes a été utilisée. Des tests numériques standards de
convergence de la solution avec le nombre de points de discrétisation montrent que la
méthode a une erreur en h? (donc en 1/N?), comme prévu par la théorie (Annexe [B).

On peut encore effectuer des vérifications sur la qualité de la physique du résultat. On
vérifiera la précision avec laquelle la loi d’Ampere, fr B-dl = 1ol , et la loi de Gauss pour
le champ magnétique, ﬂz B-do = 0, sont vérifiées pour tout parcours fermé I' et pour
toute surface fermée ¥, respectivement.
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Chapitre 4

Intégration Spatio-Temporelle

4.1 Advection-diffusion

4.1.1 Advection

L’advection désigne le transport d’une quantité physique, décrite par un champ scalaire
f(Z,t), dans un écoulement décrit par un champ de vitesses (&, t). Il peut s’agir, par
exemple, de la concentration d'un polluant, ou de I'humidité dans l'air, etc. Le flux de
cette quantité physique est j: fu. De I’équation de continuité
af -

—+V-5=0 4.1
5 J (4.1)
et en supposant, de plus, un ¢oulement incompressible, V - ¢ = 0, on obtient ’équation
décrivant 1’évolution spatio-temporelle de f, appelée équation d’advection :

of(xt . -

L—i—v-Vf(x,t)zo (4.2)

ot

On se restreindra dans ce chapitre au cas a une dimension d’espace. La solution de cette
équation, pour v constant, est triviale :

fz,t) = folz —vt) (4.3)

ou fo est la condition initiale, fo(x) = f(z,0). La solution est donc une simple translation
dans 'espace, a la vitesse v, de la condition initiale. Etant donné une solution exacte si
simple, on peut se demander pourquoi développer des méthodes numériques pour résoudre
le prbobleme de ’advection. En fait, la solution n’est pas triviale si la vitesse v n’est pas
uniforme ou non constante. De plus, le phénomene d’advection est souvent combiné a
celui de la diffusion, sujet traité dans la section suivante.
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La résolution numérique d'une équation apparamment si simple n’est cependant pas si
triviale.

Définissons les quantités suivantes :

- le nombre de particules
N(t) = /f(a:,t)dac (4.4)
- la position moyenne
1
<z>(t) = N /xf(a:,t)dx (4.5)
- la variance o2 et I’écart quadratique moyen, ou écart-type, o

<2?>(t) = %/m%f(x,t)dw , ot =< 2® > (t) — (< x> (t))? (4.6)

Les intégrales dans les expressions ci-dessus sont a effectuer sur tout le domaine spatial
de définition de f.

Advection en différences finies

La méthode est de discrétiser 'espace et le temps sur un maillage équidistant (x;,¢;) et
d’utiliser les approximations en différences finies des opérateurs 9/0t et 9/0x.

a Z'7 _] 1 - 74'7 ]
O (a1y) = Wi 2T 1) | (g (4.7)

Le lecteur attentif aura remarqué que 1’on fait des différences finies “forward”, Eq.,
pour la premiere dérivée temporelle, alors que 'on fait des différences finies “backward”
pour la premiere dérivée spatiale. En fait, le schéma ci-dessus va étre stable si v > 0,
mais il est instable si v < 0/ Pour v < 0, on utilise

of  f@igas ty) = fi, ty)
%(xi’tj) N Ax

+O(Ax) (4.9)

On remarque que dans les 2 cas, cela revient a prendre la premiere dérivée spatiale “dans
la direction d’out vient ’écoulement v”, d’ou le nom upwind scheme (up-the-wind) pour
ce schéma.

Pour simplifier les notations, on notera dans la suite f; ; = f(x;,t;).
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On définit le parametre CFL (Courant-Friedrichs-Lewy)[]

A
8= UA—i . (4.10)

On aboutit ainsi au schéma suivant :

figr1 = fig—B(fiy— firy) st B>0,

fijer = fig—B(fiyry— fiy) st B<0. (4.11)
Ce schéma est dit explicite : on obtient la solution au temps j+ 1 en fonction des valeurs
de f aux points de maillage spatial au temps précédent j. Il est dit “a 2 niveaux”, car il

fait intervenir deux temps consécutifs. En résumé, il s’agit du schéma différences finies
explicite upwind a 2 niveaux pour l’équation d’advection.

On montre un exemple aux FIGS{.1H4.2| avec une distribution initiale de densité gaus-

sienne (ou “normale”)
(x — x0)?
—_— 4.12
exp < 57 (4.12)

N

f ('T ’ 0) - . \/%
centrée en xy = 0, écart-type o = 0.2m. Les parametres sont les suivants : v = 1m/s, 64
points de maillage pour x € [—2,2], At = 0.01s, donnant un parametre CFL 5 = 0.16.
On voit clairement que la solution initiale se propage a la bonne vitesse (en moyenne),
mais que le profil de densité s’étale, avec une variance o? proportionnelle au temps
t. Cela n’est pas physique, la solution devrait conserver sa forme. En fait, on assiste a un
phénomene de diffusion numérique, qui ressemble a de la diffusion physique, voir Section
suivante, mais qui est du ici a ['amortissement du schéma numérique.

Il y a pire, si on prend des intervalles spatiaux Az plus petits (dans 'intention d’obte-
nir une solution approximée de meilleure qualité) et/ou des intervalles temporels At
plus grands (dans lintention de faire de plus longues simulations), une instabilité
numérique qui peut se développer. Un exemple est montré & la FIG. [£.3] pour les mémes
parametres que la FIG. sauf que l'on a pris 128 intervalles en z et un At = 0.0375s
donnant un parametre CFL g = 1.2. Apres un temps fini, une instabilité de courte lon-
gueur d’onde se développe, qui est évidemment non physique, de par le fait, notamment,
qu’elle fait apparaitre des valeurs négatives de la densité (!).

On peut montrer qu’en effet le schéma explicite utilisé ici est instable si le nombre
CFL (5 est supérieur a 1. On fera la démonstration de ce critére de stabilité a la section

413l

Puisque le schéma upwind est stable, mais amorti, pour un CFL < 1, et que le schéma
“downwind” est instable pour tout CFL 3, on pourrait choisir le meilleur des deux mondes

1. Courant, R.; Friedrichs, K.; and Lewy, H. ”On the Partial Difference Equations of Mathematical
Physics.” IBM J. 11, 215-234, 1967.
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Advection FD explicite upwind =0.16

05
X [m]

-0.5

Adv-Diff FD expl 1 a=0 =0.16

-2 -15 -1 -05 0 0.5 1 1.5 2
x [m]

FIGURE 4.1 — Advection d’une quantité scalaire f(x,t). Différences finies, schéma ex-
plicite a 2 niweauzx, upwind, Eq.. Parametres : u = 1m/s, CFL = 0.16, N, = 64.
En haut : instantanés de la densité. En bas : contours de f en fonction de x ett. L’amor-
tissement (ici purement numérique!) a pour effet d’étaler la distribution de densité.
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Advection FD explicite B=0.16 Advection FD explicite f=0.16

0.09¢
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0d ‘ ‘ ‘ ‘ 0.04¢ ‘ ‘
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t[s] 0.6 0.8 1

FIGURE 4.2 — Ewvolution temporelle de la position moyenne < x > et de la variance o2,
pour la simulations de la FIG.[{.1]

Advection FD explicite f=1.2

2
t=4.2 t=4.4
1.5F
1,
S
o
X 05
0
-0.5
_1 ! I
-2 -1 0 1 2
x [m]
FIGURE 4.3 — Instabilité du schéma différences finies explicite upwind a 2 niveaux

pour ladvection, mémes paramétres qu’auz FIGS[L. 4.5, mais avec un paramétre CFL
5=12.
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Advection FD explicite centre 3=0.32
3 ; :

_2 I !
-2 -1 0 1 2
x [m]

FIGURE 4.4 — Apparition d’oscillations non physiques dans le schéma différences fi-
nies explicite centré, Eq., a 2 niweaux pour l'advection, mémes parametres qu’aux

FIGS[].1{{.2, sauf le paramétre CFL (3 = 0.32.

en considérant la moyenne de I'upwind et du downwind, autrement dit les différences finies
centrées pour 0f /0z, soit la moyenne de 1'Eq.(4.8)) et de I'Eq.(4.9) :

O (irty) = f(:””"’tjg;;(‘“‘l’tj) +0(Ax?) (4.13)

ceci quel que soit le signe de v. Malheureusement, si ’amortissement numérique disparait,
on a l'apparition d’oscillations (“overshoots”) dans la solution : voir FIG. Ces oscilla-
tions sont évidemment non physiques : elles exhibent des endroits de densité négative! De
plus, la mesure de 02(t) fait apparaitre une décroissance monotone, comme si le schéma
numérique introduisait de “I’anti-diffusion”.

La conclusion de cette section est que les schémas numériques pour résoudre 'advection
peuvent introduire de la diffusion (ou anti-diffusion) numérique, quant ils ne sont
pas carrément instables. Le parametre de stabilité fondamental est le parametre CFL; le
critere de stabilité CFL est

g="="<]. (4.14)

128 Physique Numérique LV SPC EPFL



4.1. ADVECTION-DIFFUSION

4.1.2 Diffusion
Du microscopique au macroscopique

Le processus de diffusion, au niveau microscopique (moléculaire) est du a l'agitation
thermique des particules. C’est un biologiste, Brown, qui a le premier documenté ses
observations au microscope du mouvement de grains de pollen. Ce mouvement apparait
désordonné, aléatoire, et ne s’arréte jamais. On lui donne le nom de mouvement Brownien.

L’interprétation est que ce mouvmement est du aux collisions avec les particules. Ces
collisions ont lieu de facon aléatoire. On décrit donc le phénomene par une approche
probabiliste. Le modele de mouvment Brownien décrit une marche aléatoire, succession
de déplacements dis aux collisions successives. On fait les hypotheses suivantes.

— La direction des déplacements suit une loi de probabilité uniforme (isotropie).

— La succession des déplacements est completement décorrélée : il n’y a pas de

dépendance entre une collision et la suivante.

— La norme des déplacements est une variable aléatoire de moyenne non nulle.

— Chaque déplacement obéit a la méme loi de probabilité.
On verra a la section suivante comment la simulation numérique peut s’inspirer de cette
description probabiliste. Ici, on passe a une description macroscopique, en effectuant
des moyennes statistiques sur un grand nombre de particules soumises a cette marche
aléatoire. On décrit donc, (voir physique des fluides), la densité des particules par un
champ scalaire n(Z,t). Le phénomene de diffusion peut s’observer pour d’autres quantités
physiques que la densité, et on notera ce champ scalaire de fagon générique par f(Z,t).

Le flux de cette quantité physique (par exemple nombre de particules par unité de temps
et par unité de surface) est

N
J—szlvi—f<v>, (4.15)

oll < U > est la vitesse moyenne des particules dans un élément de volume V' et N
est le nombre de particules dans le volume V. Empiriquement, on mesure que ce flux
est proportionnel au gradient de densité, dans la direction opposée a celui-ci, avec une
constante de proportionalité D appelée coefficient de diffusion.

j=—-DVf. (4.16)

C’est la loi de Fick. On invoque ensuite le principe de conservation du nombre de parti-
cules, exprimé par 1'équation de continuité, Eq.(4.1]), pour obtenir 1’équation de diffu-

sion
of
ot
On peut combiner 'advection avec la diffusion. [Image : un polluant dans I’atmosphere ;

(DVf)=0. (4.17)

I’advection est le transport de ce polluant par le vent ; la diffusion est die aux collisions
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au niveau microscopique et a lieu méme en ’absence de vent. Dans la réalité, les deux
phénomenes ont lieu simultanément.] Avec j = f0— DV et Péquation de continuité
(4.1), on obtient ’équation d’advection-diffusion, qui dans le cas d'un ¢oulement
incompressible (V - ¢ = 0) s’écrit :

of | -

E%—%Vf—v'(DVf):O. (4.18)
Dans cette section, on ne considerera que les cas a une dimension d’espace f(x,t), et ou
la vitesse d’advection v et le coefficient de diffusion D sont uniformes et constants. On
obtient :

of  of ’Pf

On peut trouver la solution analytique a cette équation, par la méthode des fonctions
de Green, la transformée de Laplace temporelle et/ou la transformée de Fourier spatiale.
On obtient, voir Annexe [C]:

flz,t) = 2\/% exp (—%) (4.20)

pour une condition initiale f(x,0) = No(z — x¢) (toutes les particules sont initialement
en x = xp). [On peut, en exercice, montrer en substituant dans qu’elle satisfait bien
I'équation d’advection diffusion.] La densité est donc une gaussienne centrée en xq + vt
(mouvment de translation uniforme, effet de ’advection) et dont la largeur ¢ augmente
comme la racine carrée du temps (effet de la diffusion); plus précisément :

<z > (t) =ao +ot|, |o(t)=V2Dt|. (4.21)

Remarque : la diffusion est ici décrite par un modele déterministe et continu. La solution
est unique pour une condition initiale donnée. Elle est représentée par un champ scalaire
continu.

Advection-Diffusion en différences finies

Le schéma numérique consiste a approximer les opérateurs de I'Eq. par leurs expres-
sions en différences finies sur un maillage de I’espace-temps. On procede pour 'advection
comme exposé a la section , en choisissant les différences finies “upwind”, Eq. ,
ou centrées, Eq.. Le terme de diffusion implique la deuxieme dérivée par rapport

ax:
*f fic1g = 2fi5 + firny
gl = T3 LI L O(A?) . (4.22)
On obtient, dans le cas de 'advection centrée,
figrn = fig = B (firng = fimrg) 2+ a(fimrg = 2fig + fivrg) (4.23)
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t[s]

0 A
-2 -15 -1 -05 0 0.5 1 1.5 2
x [m]

Adv-Diff FD expl 1 ¢:=0.256 p=0

0.35

0 0.5 1 15
t[s]

FIGURE 4.5 — Diffusion d’une quantité scalaire f(x,t). Différences finies, schéma ex-
plicite a 2 niveaux, Eq.. Paramétres : uw =0, D = 0.1m?/s, N, = 64, At = 0.01s,
a = 0.256, distribution initiale Gaussienne avec o(0) = 0.1. En haut : contours de f en
fonction de x et t. En bas : écart quadratique o en fonction du temps.
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Adv-Diff FD expl 1 0=0.525 =0 t=1.5

1.5

0.5

f/1(x,.0)
o

__:2 1 1
-2 -1 0 1 2
x [m]

Adv-Diff FD expl 1 0=0.525 =0 x=0

=
a
T
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FIGURE 4.6 — Instabilité du schéma différences finies explicite a 2 niveaur, Eq..
Parameétres : uw = 0, D = 0.20bm?/s, N, = 64, At = 0.01s, a = 0.5248, distribution
initiale gaussienne avec o(0) = 0.1. Une oscillation de courte longueur d’onde (2 points
de maillage spatial par longueur d’onde) et de haute fréquence (2 points de maillage
temporel par période) apparait avec une amplitude qui croit exponentiellement dans le
temps.
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Adv-Diff FD expl 1 0=0.256 3=0.32

t[s]

O ) Z
-2 -1.5 -1 -0.5 0 0.5 1 15 2

Adv-Diff FD expl 2 0=0.256 $=0.32

t[s]

0 %%
-2 -15 -1 -0.5 0 0.5 1 15 2

FIGURE 4.7 — Diffusion et advection d’une quantité scalaire f(x,t). Différences finies,
schéma explicite a 2 niveauz. Paramétres :u = 2m/s, D = 0.1m?/s, N, = 64, At = 0.01s,
a = 0.256, § = 0.32, distribution initiale Gaussienne avec o(0) = 0.1. Contours de f en
fonction de x et t, schéma “upwind” (en haut) et schéma centré (en bas).
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Adv-Diff FD expl 1&2 0=0.256 3=0.32

0.2

0.3 0.4 0.5
t[s]

0 0.1 0.2

FIGURE 4.8 — Diffusion et advection d’une quantité scalaire f(wx,t). Variance o* en

fonction du temps, pour les simulations de la FIG. [{.7], “1” pour “upwind”, “2” pour
centré, “a” pour la solution analytique,.

et, dans le cas de 'upwind,

figrr = fij = B(fig— fimrg) + a(ficry — 2fij + firny) » si 820,
fiinn = fig =B iy — fig) + a(ficry = 2fij + firny) 5 st B <0, (4.24)
ou on a défini le parametre « :
DAt

=5 (4.25)

«

Un exemple est montré a la FIG. , pour un cas sans advection (8 = 0), et pour
a = 0.256. La densité initiale est une gaussienne centrée en x = 0, de largeur o = 0.1m.
Les parametres sont : N, = 64 points de maillage spatial pour z € [-2, 42|, At = 0.01s,
D = 0.1m?/s, v = 0. L’étalement du profil de densité est clairement visible. Une mesure
de la moyenne du 22 donne o2 = 0.01 + 0.2¢, en accord avec la théorie : I'étalement est
proportionnel & la racine carrée du temps, avec une variance o2 égale a o2 + 2Dt.

D’autres tests sont également concluants : la densité est partout strictement positive, et
le nombre de particules, N = f f(z)dz, est conservé a la précision machine pres.

Le schéma n’est pas toujours stable. Si on augmente le coefficient de diffusion a D =
0.205m? /s, gardant tous les autres parametres, il se développe une oscillation de courte
longueur d’onde (2 points de maillage spatial par longueur d’onde) dont I'amplitude
croit exponentiellement dans le temps : un exemple est illustré a la FIG. [£.6] Pour cette
simulation, le parametre @ = 0.5248. On montrera a la section que le schéma

numérique est instable pour .
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Lorsque 'avection et la diffusion sont simultanément présentes, a # 0 et 5 # 0, il faut
étre prudent avec les résultats numériques. En effet, le schéma “upwind” de I'advection
introduit de la diffusion numérique, comme montré a la section précédente, et la diffusion
mesurée sur les simulations est la somme de la diffusion physique et de cette diffusion
numérique. Le schéma centré pour le terme d’advection conduit, quant a lui, a de “I’anti-
diffusion”. On montre a la FIG. un exemple avec v = 2m/s, D = 0.1m?/s, maillage
n, = 64, v € [-2,2], At = 0.01, donnant les parametres o = 0.256 et § = 0.32. On
compare les résultats avec 'advection “upwind” (notée 1) et 'advection centrée (notée
2). La variance obtenue s’écarte de la valeur analytique (notée a). On obtient un coefficient
de diffusion résultant Dy, = 0.1469m? /s pour le schéma upwind et Dy, = 0.08m? /s pour
le schéma centré, au lieu de la valeur exacte D = 0.1m?/s.

4.1.3 Stabilité du schéma numérique : analyse de Von Neumann

L’analyse de la stabilité numérique se fait en examinant comment l'amplitude d’une
perturbation sinusoidale évolue dans le temps par le schéma numérique. On pose donc la

solution au temps ¢t comme
flx,t) = eke=et) (4.26)

La solution au temps ¢ + At sera donc
f(z,t 4 At) = eilke=wtFAD) — £ f)e WAL (4.27)

L’amplitude de la perturbation au temps ¢t + At sera donc celle au temps ¢ multipliée par
le gain
G = e WAl (4.28)

La condition de stabilité est
G| <1. (4.29)

En effet, si |G| > 1, alors 'amplitude est multipliée par un facteur > 1 a chaque pas
temporel, ce qui conduit a une croissance exponentielle de la perturbation. Il faut donc
trouver et résoudre une équation pour GG. On ’obtient en substituant la forme sinusoidale,

Eq.(4.26)), dans le schéma numérique , Eq.(4.24). On obtient

G=1-8(1—e ™) +a (e —24*a) (4.30)
G=1-p(1-e ™) - dasin’ (MTI) : (4.31)
Dans le cas de I'advection pure, @« = 0, on a
IG?<1 & (1-p+fcos(kAx))’ + f%sin®(kAz) <1, Vk

& 1+ B2+ % cos?(kAx) — 28 + 28 cos(kAx) — 28° cos(kAx) + B*sin®(kAz) < 1, Vk
23% — 2 + cos(kAx)(28 — 28%) <0, Vk
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B(B—1)(1—cos(kAx)) <0, Vk

& B(B —1)2sin? (kg—x) <0, Vk &|0<3<1]. (4.32)

Cette condition de stabilité s’appelle le critere CFL. Dans le cas de la diffusion pure,
£ =0,0na

A A
IG*<1 < 1-8asin? (ka) + 16a* sin’ (%) <1, Vk

& 8sin? (MTI) a(l —2a) >0, Vk

sl0<a< (4.33)

N | —

Les résultats numériques présentés aux sections précédentes vérifient bien ces propriétés :
voir notamment les FIGS4.3] et [4.6]

4.1.4 Diffusion et marche aléatoire

On a vu que le processus de diffusion est dii, au niveau microscopique, aux multiples col-
lisions entre particules du systeme. Dans cette section, on présente un schéma numérique
de simulation de la diffusion qui s’inspire directement de ce caractere aléatoire. Soit une
particule du systeme. Soit un intervalle de temps At. Pendant cet intervalle, la particule
va subir un certain nombre de collisions, qui auront pour effet de déplacer la particule. On
décrit ce déplacement par une variable aléatoire, de distribution de probabilité uniforme
en direction, et avec une variance finie pour sa norme. Au cours du temps, on suppose
que les collisions successives sont indépendantes, du point de vue probabiliste.

On considere ensuite un ensemble de particules identiques, et on fait I’hypothese que les
collisions de chaque particule sont décrites par la méme loi de probabilité, et qu’il n’y a
aucune dépendance, au sens des probabilités, entre les collisions subies par ces particules.

Les systemes réels sont constitués d’'un nombre immense de particules, et il est irréaliste
de vouloir les décrire toutes. On considere donc un échantillonnage de taille N. Chaque
“particule numérique”, en quelque sorte “représente” un grand nombre de particules
réelles.

Pour obtenir une mesure de la densité des particules, on subdivise ’espace en Ny,
“casiers”, et on compte le nombre de particules numériques dans chaque casier, np;n ,
1 = 1..Npjn. On obtient ainsi un histogramme, dont les valeurs sont proportionnelles a la
densité.
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L’alogorithme, qui fait partie de ce qu’on appelle la méthode de Monte Carlo a cause
de son caractere aléatoire (tirage au sort, roulette, etc), est le suivant.

1. Initialisation : définition des “casiers”, du nombre de particules numériques N, du
pas de temps At et tirage au sort des positions initiales de chaque particule selon
une distribution de probabilité proportionnelle a la densité initiale.

2. Boucle sur le temps (t;)
Boucle sur les particules, : = 1..N

Tirage d’'un nombre aléatoire R selon une loi de probabilité de moyenne nulle
et de variance unité

5. Déplacer la particule x; — x; + Ax;, avec un déplacement Ax; proportionnel
au nombre aléatoire obtenu R

6. Fin de la boucle sur les particules

7. Compter le nombre de particules dans chaque casier (histogramme)

8. Fin de la boucle sur le temps

Il faut encore déterminer la relation entre la diffusion D et le déplacement Ax des par-
ticules. Plus exactement, on établit une relation entre le coefficient de diffusion D et la
variance du déplacement. Une démonstration est faite & I’Annexe [D] On trouve :

0? =< Ax? >=2DAL . (4.34)

On peut comprende ce résultat en invoquant le théoreme central limite : le déplacement
est le résultat d’'une somme de déplacements indépendants. Donc, sa distribution tend
vers une loi de probabilité gaussienne (normale) de variance proportionnelle au nombre de
termes de la somme. Supposons qu’il y ait ngey collisions durant U'intervalle de temps At.
Le déplacement résultant obéira alors a une loi gaussienne de moyenne nulle et de variance
proportionnelle au nombre de collisions. Ce nombre de collisions est proportionnel au
coeflicient de diffusion D et a la durée de 'intervalle At. Donc la variance du déplacement
est proportionnelle a D et a At.

La position de la particule i au temps j + 1 (étape no.5 de I'algorithme) est donc
Tij+1 = Tij + R\/ 2D AL (435)

avec R la réalisation d’une variable aléatoire de moyenne nulle et de variance unité. Si
on choisit pour R une distribution normale, on a alors un schéma valable pour des At
arbitrairement grands.

Il est facile de combiner la diffusion avec une advection de vitesse v :

Tij+1 = Ty + vAt + Rv 2DALt|. (436)

Un exemple est illustré & la FIG. £.9] avec une distribution initiale gaussienne zq = 0,
o =02m, D = 0.1m?/s, v = 0.1m/s, N = 10000 particules numériques, At = 0.05.
L’étalement de la densité est clairement visible, d’abord tres rapide, puis ralentissant. Il
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Adv-Diff MonteCarlo v=0.1 D=0.1 N=10000
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FIGURE 4.9 — Diffusion et advection d’une densité. Schéma Monte Carlo. Paramétres :
v=0.1m/s, D = 0.1m?/s, Ny, = 64, At = 0.05s. Instantanés de la densité en fonction
de x (en haut). Position moyenne < x > (t) (au milieu) et variance o*(t) (en bas).
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x 10°Adv-Diff MonteCarlo v=0.1 D=0.1 N=10000

t[s]

FIGURE 4.10 — Mesure de l’entropie, pour la simulation de la FIG. [{.10.

s’accompagne d’une translation de la position moyenne. L’analyse des résultats montre
effectivement une variance o2(t) augmentant linéairement avec le temps, et un mouvement
uniforme de la moyenne < x > (t).

Une quantité physique importante est 'entropie S. En physique statistique, une mesure

de S est donnée par
Nbin

S =— Z Nbin,: IOg Nbin,s (437)
i=1

La FIG. montre que, conformément a la théorie, I’entropie est une fonction crois-
sante du temps : le systeme, initialement tres loin de 1’équilibre thermodynamique, car
présentant une densité avec des gradients tres forts, s’approche de 1’équilibre thermody-
namique (qui est caractérisé par une densité uniforme) en augmentant son entropie. On a
en effet un systeme fermé, et les résultats sont donc en accord avec le deuxieme principe
de la thermodynamique.

Le grand avantage de ce type de méthodes est qu’il n’y a pas de limite de stabilité
pour le parametre CFL. On peut donc, en principe, prendre des pas temporels At
tres grands. Il s’agit en effet d’'une méthode Lagrangienne, c’est-a-dire que l'on suit
I’écoulement avec les “particules numériques”, contrairement aux schémas des sections
précédentes, qui sont des méthodes Euleriennes, ou le probleme est discrétisé sur un
maillage fize.

Le grand désavantage est intrinseque a la méthode Monte Carlo : chaque simulation doit
étre considérée comme la réalisation d’un ensemble de variables aléatoires. En termes
plus précis, le nombre de particules numériques dans chaque “casier”, qui est une mesure
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de la densité recherchée, a un écart-type proportionnel a v/ N. Chaque simulation fournit
un résultat différent, ’ensemble des résultats produisant une moyenne, mais aussi une
dispersion statistique non nulle. L’écart-type sur 'estimation de la densité physique est

donc proportionnel a [ 1/v N |. Voir aussi les remarques sur l'intégration Monte Carlo en
Annexe B3
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4.2 Ondes

Rappel. Une onde est une perturbation qui se propage dans l'espace et le temps. Dans ce
cours, nous étudierons les phénomenes ondulatoires dits linéaires, c’est-a-dire ou 'onde
se propage dans un milieu en le perturbant suffisamment peu, pour que cela ne modi-
fie pas les propriétés de propagation de I'onde. Signalons cependant que de nombreux
phénomenes peuvent apparaitre lorsque 'amplitude de la perturbation devient impor-
tante (ondes dites non-linéaires) : ondes de choc, auto-focalisation, désintégration pa-
ramétrique, etc.

4.2.1 Ondes en milieu homogeéne

Dans le cas ou le milieu dans lequel 'onde se propage est homogene et isotrope, la
perturbation, que nous noterons f(Z,t), satisfait ’équation d’Alembert :

o0 f

W == uQVQf s (438)
avec u = const. Dans le cas unidimensionnel dans 1'espace, f(z,t), on a

Pf _ L0f

— =u"=—=. 4.39

oz~ " ou2 (4.39)

Au cours de physique, on aborde divers exemples. L’équation peut modéliser les
vibrations d’une corde, auquel cas f représente le déplacement transversal d’un élément
de la corde. Elle peut modéliser les oscillations longitudinales d’un ressort, auquel cas f
représente la déformation longitudinale d’un élément du ressort. Elle peut modéliser une
onde sonore dans un tuyau, auquel cas f représente la perturbation de pression (ou de
densité ou de vitesse longitudinale).

La solution générale de I’Eq.(4.39)) est la superposition d'une onde dite “progressive”
(perturbation propageant vers la droite) et d’'une onde dite “rétrograde” (propageant

vers la gauche) :
flz,t) = F(x — |u|t) + G(z + |ult), (4.40)

ou F et G sont des fonctions arbitraires (suffisamment régulieres pour que 1'Eq.(4.39)) ait
un sens).

Pour trouver une solution unique a I’équation d’Alembert, il faut préciser des conditions
aux bords et des conditions initiales. Pour les conditions aux bords du domaine
spatial Q = [x;, z,], on distinguera 5 cas :
1. Condition de bord fixe : f(z.,t) = C, Vt, avec C' une constante et x. au bord
du domaine, x, = x; et/ou z, = z, (p.ex. extrémité fixe d’'une corde de guitare).
C’est une condition dite de Dirichlet.
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2. Condition de bord libre : 9f /0x(x,,t) = 0, Vt (p.ex. extrémité ouverte d'un tuyau
d’orgue). C’est une condition dite de Neumann.

3. Conditions aux bords périodiques : f(z;,t) = f(z,,t). On suppose que le systéme
se répete indéfiniment et périodiquement dans ’espace. On ne discrétisera qu'une
seule période spatiale.

4. Condition au bord harmonique : f(x.,t) = Asin(wt), avec A une amplitude et w
une fréquence données. Cela simule I'excitation du systeme par une “antenne” de
fréquence donnée. Condition dite de Dirichlet dépendante du temps.

5. Condition au bord de sortie de 'onde. Les conditions aux bords 1, 2 et4 ci-dessus
conduisent au phénomene de la réflexion. On aimerait trouver une condition per-
mettant la “sortie” de 'onde par les bords, sans provoquer de réflexion ni de re-
tour de I’onde par I’autre bord comme c’est le cas pour des conditions périodiques.
L’onde, au bord droite, (x = z,), sortira du domaine si elle est purement progres-
sive au voisinage de z = x,. Elle sortira du domaine au bord gauche si elle est
purement rétrograde au voisinage de x = ;.

Il faut encore déterminer les conditions initiales. Comme ’équation d’Alembert est du
2e ordre en temps, il faut préciser 2 conditions initiales. La plus simple a imposer est
f(z,t0) = finie(x), avec finis(z) une fonction donnée. Dans I'exemple de la corde vibrante,
elle représente la forme de la corde au moment ou le musicien “pince” la corde juste avant
qu’il ne la lache.

Mais il faut une deuxiéme condition initiale. Dans un premier temps, nous considererons
un systeéme initialement au repos, autrement dit f(z,t) = fiue(x), Vo, Vt < ty. Nous
verrons plus loin comment initialiser le systeme pour générer une onde propageante soit
vers la droite, soit vers la gauche.

Dans cette section, nous allons résoudre numériquement cette équation en utilisant une

discrétisation de Pespace, {x;}17,

et en t équidistants, avec Ax = x4 —x; et At =, —t,. On approximera les opérateurs

et du temps {t,,}£,. On supposera les maillages en x

différentiels par des différences finies d’espace et de temps.

A Dordre le plus bas, les différences finies pour les opérateurs deuxiemes dérivées, Eq.(A.7)),
introduites dans I'Eq. d’Alembert (4.39)), donnent :

f(@iytugr) = 2f (i, t0) + f (@i, tas) ~ o (f(l'matn) —2f(zi, tn) + f(il?ibtn))

(At)? (Az)?
(4.41)
On définit le parameétre CFL (Courant-Friedrichs-Lewy)]
At
=Uu— 4.42
f=ui (1.42)

2. Courant, R.; Friedrichs, K.; and Lewy, H. ”On the Partial Difference Equations of Mathematical
Physics.” IBM J. 11, 215-234, 1967.
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et on peut réécrire I'expression ci-dessus comme

f(xi7tn+1) 2 (1 - 52) f(xza tn) - f(&?z, tnfl) =+ 62 [f(xiJrla tn) + f('ri*btn)] (443>

Cette expression nous donne une approximation pour f, en chaque point du réseau spatial
(x = x;), au temps ultérieur (¢ = t,,1), en fonction de la solution aux instants présent
(t = t,) et antérieur (¢t = t,_1), au méme point spatial (x = x;) et ses plus proches voisins

(x = Tig1).

Ceci est donc la base de ’algorithme. Il est a différences finies “a 3 niveaux”, il y a en
effet besoin de stocker 3 niveaux temporels (précédent, actuel et prochain).

I1 faut encore exprimer la version discrétisée des conditions aux bords du domaine spatial
(voir page précédente).
1. Bord gauche : f(x1,t,11) = f(21,t,). Bord droite : f(xng, tni1) = f(Tnz, tn)-
2. Bord gauche : f(x1,t,41) = f(22,tn11). Bord droite : f(znz, ths1) = f(TNz—1,tns1)-
3. Bord gauche : substituer ¢ = 1 et remplacer ¢ — 1 par N, — 1 dans l’Eq..
Bord droite : substituer i = N, et remplacer ¢ 4+ 1 par 2 dans 1’Eq..

4. En exercice.

5. Bord droite : dérivant f au voisinage de x, par rapport a ¢ et par rapport a z, on
obtient

0 0 0
O 1) = - Pl — ult) = F'(a, — ult)(—Jul) = —ul 2

La version discrétisée de cette condition au bord s’obtient en utilisant les différences

(2,1)  (4.44)

finies “backward” d’ordre le plus bas pour la premiere dérivée par rapport a x,
fl =~ (fi — fi—1)/h, exprimée au point de maillage i = NV, et les différences finies
“forward” pour la premiere dérivée par rapport a t, Eq.(A.22)) :

f(:EN:ra thrl) - f(aszatn) o _|u|f<me7tn) - f(xNa:fla tn)
At B Ax

(4.45)

et ainsi
f@Ne, tn1) = f(@ne, tn) = B [f(Tne, tn) — f(@ne—1,t0)] (4.46)
Bord gauche : en exercice.

Pour que I'algorithme explicite & 3 niveaux, Eq.(4.43), puisse démarrer, il faut initialiser
f non seulement au temps tg,

f(@isto) = fiie(:), Vi, (4.47)

mais aussi au temps to — At. On a plusieurs possibilités, selon le probleme que 'on vent
résoudre.

1. Si on suppose le systeme immobile pout t < ¢y, alors on prend

flaitoq) = f(zi,t0) = fime(xi), Vi (4.48)
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Onde corde extremites fixes

0 0.2 0.4 0.6 0.8 1
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FIGURE 4.11 — Propagation d’ondes sur une corde vibrante fizée a ses deux extrémités.
Schéma explicite a 3 niveauz, Eq.. Parametres : u=1, CFL =0.5, N, =65. La
perturbation initiale se décompose en onde progressive et onde rétrograde. Chacune subit
une réflexion auxr extrémités qui change le signe de la perturbation.

2. Si on veut initialiser une onde propageant vers la droite, on utilise le fait que la
solution doit s’écrire comme F'(x — |ult), et donc

3. Si on veut initialiser une onde propageant vers la gauche, on utilise le fait que la
solution doit s’écrire comme G(z + |ult), et donc

Flant) = Glai + |ul(=At) = fiuie (i — [u|AL), Vi, (4.50)

Un exemple est montré a la FIG. , pour le cas de conditions aux bords fixes (no.1),
une perturbation initiale de forme gaussienne, et une condition initiale de type “systeme
immobile” pour ¢ < 0. La déformation initiale se sépare en deux “paquets” se propageant
I'un a droite et l'autre a gauche. On remarque le changement de signe des perturbations
lors de chaque réfléxion. On a utilisé © = 1, le parametre CFL 3 = 0.5 et 64 intervalles
(donc 65 points) en .

On peut vérifier que, si on utilise la condition au bord libre (no.2), les perturbations sont
réfléchies, mais avec le méme signe que la perturbation incidente.

Avec les mémes parametres numériques, on peut vérifier le principe de superposi-
tion linéaire lors d’un croisement d’ondes, FIG. [£.12] Les perturbations propageantes
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Croisement d’'ondes

FIGURE 4.12 — Croisement d’ondes. Schéma explicite a 3 niveaux, Eq.. Pa-
rametres : w =1, CFL g = 0.5, N, = 65. Conditions aux bords périodoques. Les ondes
progressive et rétrograde se traversent en s’ignorant mutuellement, sans se déformer.
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et rétrogrades se traversent mutuellement sans se déformer. C’est parce que 1’équation
fondamentale (d’Alembert) est linéaire que ce principe est vérifié.

Avec la condition au bord no.3 a gauche (excitation sinusoidale) et la condition au bord
droite no.1 (bord fixe), on peut observer le phénomene de résonance. Pour des va-
leurs bien déterminées de la fréquence d’excitation, on voit 'onde progressive et 1'onde
rétrograde (créée par la réflexion au bord) se superposer constructivement a chaque pas-
sage de l'onde, et on observe, pour des temps tres longs, une onde stationnaire dont
Pamplitude croit au cours du temps. Alors que si on choisit une fréquence entre ces
fréquences déterminées, la superposition des ondes progressives et rétrogrades n’arrive
pas a construire une onde stationnaire, et la perturbation reste de petite amplitude. Ces
fréquences bien déterminées sont les fréquences propres du systeme, et les ondes sta-
tionnaires correspondantes sont les modes propres du systeme. On montre un exemple
a la FIG. On fait le calcul analytique de ces fréquences et modes propres en substi-
tuant 1’ Ansatz

fa,t) = fla)e ™ (451)
dans 'Eq. d’Alembert et en y appliquant les conditions aux bords. On trouve comme
modes propres des fonctions sinusoidales f,(z) = sin(nmz/L), n = 1,2,3,... et des
fréquences propres w, = nun/L, ou L = x, — x; est la longueur du systeme. Voir cours
de Physique.

On peut se rendre compte que les fréquences et modes propres dépendent des conditions
aux bords. On simulera (suggestion d’exercice) les fréquences et modes propres obte-
nus avec une condition au bord droite libre. On comparera avec les résultats analytiques.

4.2.2 Stabilité du schéma numérique : analyse de Von Neumann

Le parametre crucial pour la stabilité numérique est le parametre CFL f = uAt/Ax,
Eq.. On montre un exemple a la FIG. d’une simulation avec 8 = 1.01, initialisée
avec une perturbation gaussienne. La simulation se déroule normalement pour des temps
courts, mais soudain une perturbation de courte longueur d’onde (2 points de maillage
par longueur d’onde) apparait, croissant exponentiellement dans le temps et finissant par
“noyer” completement la simulation.

L’analyse de la stabilité numérique se fait en examinant comment ’amplitude d’une per-
turbation sinusoidale dans I’espace-temps évolue dans le temps par le schéma numérique,
Eq.(4.43). On pose donc la solution au temps ¢ comme

f(x,t) = elthe=w) (4.52)
La solution au temps t + At sera donc

flz, t+ At) = gilhz—w(t+At) — f(z, t)e @At (4.53)
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FIGURE 4.13 — Résonance par excitation d’une fréquence propre su systeme. Schéma
explicite a 3 niveaux, Eq.. Parametres : u=1, CFL f =1.0, N, = 65. Conditions
aux bords fize a droite, sin(wt) a gauche. Dans le cas ou w est une fréquence propre
du systeme (en haut), il s’établit un mode propre, onde stationnaire, qui est d’amplitude
croissante. Si w n'est pas une fréquence propre su systéme (en bas), il ne s’établit pas
d’onde stationnaire, et les perturbations restent de faible amplitude (en bas).
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CFL B=1.01

FIGURE 4.14 — Instabilité du schéma explicite a 3 niveaur, Eq.. Parametres : u =
1, CFL g =1.01, N, = 65. Conditions aux bords périodoques. L instabilité se manifeste
par la croissance exponentielle non physique d’une perturbation de courte longueur d’onde
(2 points de maillage par longueur d’onde).

L’amplitude au temps ¢t + At sera donc multipliée par le gain
G = e WAl (4.54)
La condition de stabilité est
G| <1. (4.55)

En effet, si |G| > 1, alors 'amplitude est multipliée par un facteur > 1 a chaque pas
temporel, ce qui conduit a une croissance exponentielle. Il faut donc trouver et résoudre
une équation pour G. On l'obtient en substituant la forme sinusoidale, Eq.(4.52), dans le

schéma numérique , Eq.(4.43)).

ei(kxj—w(tn+At)) - 9 (1 o 62) ei(kxj—wtn) _ ei(kxj—w(tn—At))
+ 62 [6i(k(xj+Ax)—wtn) + ei(k(zj—Az)—wtn)] ) (456)
Simplifiant par e'*#i—«) ot multipliant par G, on obtient
kA
G2 2 {1 — 942 sin? (Tx)} G+1=0. (4.57)
Posant KA
o= Tx , (4.58)
on a les solutions
G=1-23sin*a+ \/(1 —232sin*a)2 - 1. (4.59)
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Si |5] < 1, alors le discriminant est négatif ou nul, et on a

G=1-28sin*a+ i\/l — (1 —28%sin? a)? (4.60)

et donc
G| =(1-28%sin* )’ +1— (1 —2f%sin’a)’=1. (4.61)

Pour CFL |3| < 1 le schéma numérique explicite a 3 niveaux est marginalement
stable pour toute longueur d’onde.

Si |B] > 1, alors on a |G| > 1, au moins pour o = 7/2, ce qui correspond a 2 points de
maillage par longueur d’onde. On comprend ainsi pourquoi ce sont ces perturbations-la
qui deviennent instables en premier lieu, comme le montre 1’exemple de la FIG.

Suggestion d’exercice. Vérifier analytiquement et numériquement que le schéma ex-
plicite & 3 niveaux est toujours instable dans le cas 32 < 0. Ce cas correspond & une onde
évanescente.

4.2.3 Ondes en milieu inhomogene. Vitesse de phase variable

On peut, avec une modification bénigne de 1’algorithme, considérer des cas ou le milieu
est inhomogene. Cela se traduit par une vitesse de phase qui est fonction de z, u(x).
L’équation d’Alembert, Eq., doit étre modifiée pour tenir compte de la variation
de u. L’expression explicite pour u(z) a laquelle on aboutit dépend du systeme physique
considéré. On obtient généralement :

9? %) %)
a—tf =5 (“2(x)a_£) : (4.62)

“Tsunami”. Les ondes de gravitation dans les fluides incompressibles donnent, dans la
limite d’une profondeur hy << A, ou A est la longueur d’onde, une vitesse de phase

u(zx) = +/gho(x) . (4.63)

Cette limite est appelée “ondes en eaux peu profondes”. Ici, ho(z) est la profondeur de
l'océan au repos, c’est-a-dire en Pabsence de vagues. L’annexe [E] montre comment on
aboutit a I’ Eq.7 avec u(x) donné par l’Eq.. Il se trouve qu’elle s’applique, au
moins partiellement, au cas d’une vague de type de celle qui apparait lors d’'un tsunami.
On choisit une profondeur qui varie linéairement de hg g, = 7000m a 1000km des cotes
jusqua une profondeur de hgreer = 200m a 100km des cotes, puis linéairement jusqu’a la
profondeur hgpeach = 20m au bord. (On ne peut pas prendre une profondeur nulle : les
équations deviennent singulieres et, de plus, des phénomenes non-linéaires apparaissent,
dont nous ne tiendrons pas compte dans le cadre de ce cours). On note que pour 7000m
de profondeur, la vitesse de propagation de la vague est de plus de 900 km /h!
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FIGURE 4.15 — Simulation d’une onde dans l’océan se rapprochant des cotes. En haut :
instantanés de la perturbation. Au milieu : vitesse de phase. En bas : lignes de niveau de
la perturbation dans l’espace-temps (z,t).
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On integre numériquement 1’équation avec le schéma de différences finies présenté
a la section précédente, Eq., modifié pour y ajouter le terme (Ou?/dz)(0f/0x)
(Suggestion d’exercice). On considére une excitation au bord gauche de type sinusoidal
(no.3) mais avec une seule période, et une condition au bord droite du type “sortie
de l'onde” (no.5). A la FIG. [£.15] on montre deux instantanés de la perturbation. On
remarque que la longueur d’onde raccourcit et que 'amplitude augmente lorsque la vague
se rapproche de la cote. La vitesse de propagation, par contre, diminue a mesure que la
vague se rapproche de la cote. Cela est tres clair sur 'image des lignes de niveau de la
perturbation en fonction de z et de t.

4.2.4 Approximation analytique : la méthode WKB

La méthode WKB (Wentzel-Kramers-Brillouin) a été développée en 1926 pour décrire
le comportement d'une particule dans un potentiel par la mécanique quantique. Jeffreys
avait déja en 1923 développé une méthode générale pour approximer les solutions des
équations différentielles linéaires du deuxieme ordre, ainsi la méthode est parfois appelée
“WKBJ” ou “JWKB”. On en esquisse ici les grandes lignes, pour notre probleme ondu-
latoire classique.

1) On considére des solutions sinusoidales du temps, f(x,t) = f(z)e ™" En substituant

dans 'Eq.(4.62), on a
~ d df
— 2 —_ — 2 —_—
wf e (u (m)dx) . (4.64)

2) On fait I’Ansatz
flx) = A(z)e™@ (4.65)

La substitution de I’Ansatz dans I'Eq.(4.65) donne, en notant d/dz avec le symbole /,
—w?A = —(S)VuPA+i (25" AW + S" A + S'A(u?)) + A" + A'(WP) . (4.66)

3) On suppose que 'amplitude A(z) est une fonction “lentement” variable, alors que la
phase S(z) est “rapidement” variable. (Les termes “lentement” et “rapidement” quali-
fient ici une variation selon z, et non temporelle). On fait 'hypothese que la “lente”
variation de 'amplitude A(x) est libe au fait que le terme u?(z) varie, lui aussi, “len-
tement”. On résout l’Eq. par approximations successives, en supposant 1’existence
d’un parametre d’ordre, suffisamment “petit”, que nous noterons €. Nous classons ensuite
les différents termes apparaissant dans 1’équation selon leur ordre en e. Ainsi, S(z) varie
“rapidement” ce qui signifie que sa variation selon x est grande. On aura donc

S ~ €0 (4.67)
De méme, u? et A ne sont pas “petits”’, donc

u~ e A~ é, (4.68)
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FIGURE 4.16 — Simulation d’une onde dans l’océan se rapprochant des cotes. Amplitude
de la perturbation en fonction de x, obtenue avec le schéma explicite a 3 niveaux (courbe
noire “NUM?”) et comparée avec la solution analytique approchée par la méthode WKB
(courbe rouge “WKB”). Les deuz approches mettent en évidence l'augmentation de I’am-
plitude avec la diminution de la vitesse de propagation.

mais leur variation, i.e. leur dérivée selon z, est “petite”, et nous allons la supposer du

meéme ordre, d’ordre 1, donc
(u?) ~ €, A~ € (4.69)

La variation d’un terme, i.e. la dérivé selon  d’un terme, s’accompagne de I’augmentation
de l'ordre d’une unité. Ainsi,

S"~e (W)~ A~ (4.70)
La multiplication de deux termes additionne leur ordre, ainsi par exemple,
(YA ~ e, uPA'S ~ €. ete (4.71)

Revenant a I’ Eq., on a donc que le membre de gauche et le premier terme du
membre de droite sont d’ordre le plus bas (~ €°), le deuxi¢me terme est du premier ordre
(~ €1), alors que les deux derniers termes sont du deuxiéme ordre (~ €2), que nous allons
négliger.

La méthode consiste ensuite a résoudre I'Eq. (4.66)) ordre par ordre. On a donc, a l'ordre 0 :

g =2 472
- (172
On définit le “nombre d’onde local”
ds
k = 4.
(=% (.73
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et ainsi on a la “relation de dispersion locale”

k(z) = —— (4.74)

avec A(z) = 27 /k(x) définissant une “longueur d’onde locale”. Dans I'approximation
WKB, on suppose que la longueur d’onde locale varie “lentement”, autrement dit varie
peu a Déchelle d’une longueur d’onde : N'/A ~ k' /k = 5"k ~ €.

A Tordre 1, annullant le deuxieme terme du membre de droite de 1'Eq.(4.66), et en y
substituant la solution a l'ordre 0, Eq.(4.72)), on obtient

A" +uA=0. (4.75)

En supposant que u et A ne s’annullent jamais, on a A’/A = —(1/2)(v//u), donc (log A)" =
—(1/2)(logu)’, et on obtient

(4.76)

L’amplitude augmente donc lorsque la vitesse de phase dimunue. Pour le cas des vagues
en eaux peu profondes, on a u(z) = \/gho(x) et A(z) = Ay/(ho(z))"* : lorsque la
vague se rapproche des cotes, hg diminue et donc la vitesse de propagation u diminue,
mais hélas 'amplitude de la vague augmente. On montre a la FIG. la comparaison
entre la méthode numérique (courbe “NUM”) et la solution Eq. obtenue par la
méthode WKB (courbe “WKB”). L’accord est excellent. Il est intéressant de réaliser ce
que représente cette figure : il s’agit de la comparaison entre une solution numérique
approximative et une solution analytique approximative. Les approximations
faites numériquement et analytiquement étant de natures completement différentes, ce
type de comparaison est tres utile pour vérifier a la fois le schéma numérique et 'approxi-
mation analytique.

Il est absolument crucial que I’équation soit du type de I'Eq.(4.62)) pour que le compor-
tement ci-dessus soit correctement décrit. Si I’équation était

02 f 02 f

Y — 2 PR,
oz = U (x)8$2 , (4.77)

I'analyse WKB (en exercice) montre qu’alors on obtiendrait non pas une amplitude
A(z) o< 1/\/u(z) o< 1/(ho(z))**, mais A(z) o< Ju(z) o< (ho(z))** : la vague dimi-
nuerait d’amplitude en se rapprochant des cotes au lieu d’augmenter ! Si I’équation était

02 02
= o (@) | (1.78)

I'analyse WKB (en exercice) montre qu’alors on obtiendrait une amplitude A(z) o
1/(w(x))*? o 1/(ho(x))?*, ce qui, dans I'exemple du tsunami, impliquerait quune va-
guelette de 10cm de haut au large (profondeur 7000m) aurait une amplitude de 8m (!)
pres des cotes (profondeur 20m).
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4.3 Schrodinger

La mécanique quantique ne décrit pas les particules comme des “points matériels”, comme
en mécanique classique. Les particules ont en fait un comportement
— probabiliste : on ne peut prédire qu'une probabilité de détecter une particule a un
endroit donné;
— corpusculaire : au moment ou on la détecte, une particule est indivisible ;
— ondulatoire : la probabilité de présence d’une particule est généralement le résultat
d’une interférence.
Voir le cours de Physique IV, puis le cours de Physique Quantique I, pour plus de détails.

On décrit une particule par une fonction d’onde (%, t), a valeurs complexes. Une particule
de masse m soumise au potentiel V() obéit a I’équation de Schroédinger :

G )

Définissant [’hamiltonien du systeme

h2
H=_——"vV? 4.
VIV (4.80)

I’équation de Schrodinger s’écrit

U
ihgy = Hi. (4.81)

On interpréte [1(Z,t)|? comme la densité de probabilité de trouver la particule au voisi-
nage de T au temps t. Définissant le produit scalaire

(n,v) = / nyd’r (4.82)
ou l'intégrale est sur tout I’espace, on doit avoir

(v, 9)=1, Vvt (4.83)

La probabilité que la particule existe “quelque part” est toujours 1 (pas de “disparition”
de la particule).

Nous nous limiterons dans la suite au cas unidimensionnel dans ’espace : ¢ (x,t).

4.3.1 Schéma semi-implicite de Crank-Nicolson

Etant donné une fonction d’onde, supposée connue a t = 0, 1)(x, 0), on peut formellement
intégrer ’équation de Schrodinger :

O, 1) = exp (—%tH) O(,0) (4.84)
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ou on a défini I’Hamiltonien

h? 02

ainsi que I'opérateur exponentiel d’un opérateur A :
1 =\ An
(exp A) () = + A@W) + SA(A@) +.. =Y —(¥ (4.86)
n=0

L’opérateur exponentiel a certaines propriétés qui rappellent celles de la fonction expo-
nentielle, par exemple exp ((A\; + Ag)A) = (exp(A1A)) (exp(A2A4)) pour tous A, Ay € C.
Attention toutefois, en général les opérateurs ne commutent pas, [A, Bl = AB— BA # 0,
et en général exp(A + B) # exp(A)exp(B). Une autre propriété est que exp(iA) est
unitaire si et seulement si A est hermitien. Ainsi, 'opérateur d’évolution temporelle ap-
paraissant dans 'Eq.(4.84) ci-dessus, T' = exp(—itH/h), est unitaire, car H est hermitien
(on dit aussi “auto-adjoint”). Il conserve la probabilité totale :

(Y(z,1),9(x,1)) = (T(,0), Tep(x,0)) = (¢(2,0), T*TY(z,0))
= (¢Y(x,0),exp(+itH/h) exp(—it H/h),¥(x,0)) (4.87)
= (¢($a O)vﬂj(l’? 0)) .

La fonction d’onde est de norme 1, et cette norme reste constante au cours du temps.
L’approximation numérique de cet opérateur doit aussi avoir cette propriété. Ceci suggere

le schéma suivant. On définit un maillage du temps, avec des intervalles équidistants At.

On a:
Y(z, t+ At)

exp (—(i/h)(t + At)H) ¢ (x, 0)
exp (—(i/h)A tH)eXp( (i/n)t H) 1 (x, 0) (4.88)
= exp (= (i/h)At H) ¢(x,1) .

Appliquant I'opérateur exp ((i/h)(At/2) H) a gauche et a droite, on obtient

exp (%% H) Wz, t+ At) = exp <—%% H) b(z,1) . (4.89)

Jusqu’ici, tout est exact. C’est a ce stade que nous faisons une approximation : nous
ne retenons que les termes jusqu’au premier ordre dans le développement définissant
I'opérateur exponentiel. On obtient ainsi :

7 At 7 At

(1 tr5 H) Yz, t+ At) = (1 5 H) Y(x,t) [+ O(A) (4.90)

Le schéma a été développé par Crank et Nicolson en 1947, originellement pour
résoudre ’équation de la chaleur dépendante du temps. Il est dit semi-implicite : la
solution en t + At dépend en partie ezplicitement de la solution en ¢ (membre de droite
de (4.90), et en partie implicitement (membre de gauche). La partie implicite est un
opérateur qu’il faut inverser pour trouver la solution en ¢ + At :

P(x,t+ At) = <1 + %% H) B (1 — i%% H) Y(z,t) + O(AL?) (4.91)
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L’opérateur d’évolution temporelle discrétisé ci-dessus conserve la probabilité totale. Po-
sons o = (At/2h)H. Soit 'opérateur d’évolution temporelle discrétisé

Tar = (1 +ia) 11 —ia) . (4.92)

Examinons la réversibilité de I'algorithme. Changer ¢t — —t implique At — —At et
donc a« — —a. De l’Eq., Iopérateur d’évolution temporelle “en marche arriere”
est
T ae = (1 —ia) (1 +ia) . (4.93)
Premiere propriété :
T ar=Th,, (4.94)

ou on a noté par * I'adjoint de l'opérateur. [Rappel : Ax est opérateur adjoint de A &
(n, A*p) = (An, p), Vn, Vp.] La preuve de cette propriété est la suivante : 'opérateur « est
hermitien puisque H l'est : (Hn, @) = (n, Hp), donc (1+ia)* = (1—ia). Soit A = 1+ia.
On a T, = (A7'A*)* = A(A*)~!. Or, A(A*)™! = (A*)'A : en effet, multipliant cette
derniere relation a gauche et a droite par A*, on a A*A = AA*, qui est bien toujours
vérifié, puisque égal a 1+ 2. Donc T, = (A*) 1A =T .

La deuxieme propriété est la réversibilité :

T ar=Tx!. (4.95)

En d’autres termes, faire un pas temporel en avant, puis un pas temporel en arriere,
conduit exactement a la condition initiale. La preuve de cette propriété s’exprime come
suit :

T aiTar = (1 —ia) (1 +ia)(1 +ia) ' (1 —ia) = (1 —ia) '1(1 —ia) = 1. (4.96)

Les deux propriétés ci-dessus conduisent au fait que 'opérateur T, est unitaire :

T =Tx, | (4.97)

Ainsi, 'opérateur d’évolution temporelle discrétisé conserve la probabilité :

(W(x, t+ At),(z,t + At)) = (Tagh(z,t), Tagh(x,t)) = (V(x,t), TA,Tard(z, 1))
= (¥(z,1),¢(x,1)) . (4.98)

Pour la discrétisation spatiale de , nous avons le choix de plusieurs méthodes :
par exemple les éléments finis, voir Section [3.3, ou les différences finies. Cette derniere
méthode, avec I’Eq. pour 'opérateur 9?/0x?, donne le systeme algébrique linéaire
suivant, écrit sous forme matricielle : (suggestion d’exercice)

. T . . T .
—a Yj-1 a Vi1

—a ¢j+1 a ¢j+1
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avec

_in A i
a_4mA:U2’ K2

C’est un systeme matriciel tridiagonal du type | AU o, = BU, |, ot ¥, est le vecteur des

V(z;) . (4.100)

(x,,t), valeurs de ¢ aux points du maillage spatial x,, au temps t.

Selon les conditions aux bords, il faudra les imposer explicitement sur le systeme matriciel.
On utilise ensuite une des méthodes standard pour la résolution du systeme matriciel.
Par exemple I’élimination de Gauss, comme a la section [3.3

4.3.2 Particule libre

Une particule dite “libre” n’est soumise a aucune force. Elle se déplace dans un potentiel
V(z) constant, que I'on peut prendre nul. Les relations entre les quantités corpuscu-
laires (quantité de mouvement et énergie) et ondulatoires (nombre d’onde et fréquence)
décrivant la particule ont été données par de Broglie :

— hk

.y (4.101)

=y
|

Ces relations sont écrites pour une particule ayant une quantité de mouvement p et
une énergie E bien définies. La fonction d’onde correspondante est du type onde plane
(sinusoidale), qui en 1-D s’écrit

W(x,t) ~ exp(i(kzr — wt)) , (4.102)
ol k et w sont liés par la relation de dispersion suivante, obtenue en substituant 1’Ansatz
onde plane ci-dessus, Eq. (4.102), dans I’équation de Schrodinger, Eq.(4.79), avec V =0 :
_ hk?
2m
Par les relations de de Broglie (4.101)), cette relation de dispersion entre quantités ondu-
latoires w et k, n’est autre que la relation entre les quantités corpusculaires £ et p pour

w = w(k) (4.103)

la particule libre :
2
p
E=—. 4.104
Sy (4.104)
L’équation de Schrodinger étant linéaire, toute superposition de solutions est aussi solu-
tion. Ainsi, on construit la solution de Schrodinger comme une somme d’ondes planes :

V(s t) = \/LQ_W / " (k) explilka — w(k))dk (4.105)

Du point de vue quantique, la particule libre se comporte donc comme une superposition

d’ondes. La vitesse de groupe,

Oow  hk
_ &M 41
Vg ok m’ (4.106)
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correspond a la vitesse de la particule dans la représentation classique de la particule, via
la relation de quantification de de Broglie, Eq.(4.101]). La vitesse de phase,

w  hk
n’a pas d’équivalent dans la représentation classique. On notera que la vitesse de phase
dépend de la longueur d’onde, comme pour un milieu dispersif. Les ondes qui se propagent
dans de tels milieux sont déformables : la forme spatiale de I'onde change au cours du

temps. C’est une des propriétés que nous allons examiner plus en détail par la suite.

L’expression de la fonction d’onde a t = 0

~

1 Foo
2,0) = — k) exp(tkx)dk 4.108
0(w.0) = <= [ i explik) (4.108)
indique que z/?(k) est la transformée de Fourier de 1’état initial. On a :

. 1 +oo ,
Y(k) = E/ Y(z,0) exp(—ikx)dx (4.109)

On peut former un “paquet d’onde” initial en superposant des ondes planes avec des poids
zﬁ(k) L’extension spatiale Az de ce paquet d’onde est liée a 'extension dans I’espace de
Fourier Ak par le théoreme de Fourier. En définissant précisément Az comme ’écart-type
de la distribution de probabilité pour la position,

Az =/ (22) — ((z))° (4.110)
avec
+oo
(™) :/ "o (x, ) Pde, (4.111)
et Ak comme ’écart-type de la distribution de probabilité pour le nombre d’onde k,
Ak =/ (k2) — ((k))? (4.112)
avec .
o)y = [ kP, (4.113)
le théoreme de Fourier s’écrit :
(Az)(Ak) > 1/2 (4.114)

ce qui, via la relation de Broglie, p = hk, correspond au principe d’incertitude de
Heisenberg :

(Az)(Ap) > /2] (4.115)

Dans la suite, on choisira un systeme d’unités tel que h = 1, et une particule de masse
m=1/2.
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FIGURE 4.17 — Particule libre avec une incertitude initiale Ax = 6.4 et un nombre
d’onde moyenn = 16. Haut : Re(y) et Im(v) en traits continus, || en traitillés. Milieu :

yszque e ue) 1 Peppcpplaprs de Re(y(x,t)). Le centre du paquet d’onde (max de
WY|) se déplace a la vitesse hko/m. L’incertitude sur la position augmente (étalement du
paquet d’onde). La vitesse de phase est différente de la vitesse de groupe.
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Les propriétés de la particule libre sont illustrées par la simulation de la FIG. [£.17] On
donne le paquet d’onde initial de forme gaussienne

Y(z,0) = Cexp(ikor) exp[—(z — 20)%/(20%)] , ko = n27/L , (4.116)

ou n = 16 est le nombre d’onde moyen, L = 256 est la longueur du domaine de simulation,
xo = 0 est la position initiale du maximum de [1|, 0 = 6.4 la largeur de la gaussienne et
C est une constante de normalisation telle que

“+o0
/ [ (x,0)|*de =1, (4.117)
ce qui donne
oo 1
10\2/ eVody=1= [C|= : (4.118)
—00 O'\/%

On a appliqué le schéma semi-implicite, Eq.(4.99), avec Az = 1, At = 0.5. Le maxi-
mum de |¢(z,t)|, autrement dit la position la plus probable de la particule, se déplace

a la vitesse vgum

= 0.775, en bon accord avec la solution analytique v, = hk/m =
(2mn/L)/(1/2) = 0.785. L’effet dispersif se manifeste par un étalement du paquet
d’onde au cours du temps : l'incertitude sur la position augmente au cours du temps.
On remarque aussi que les composantes de courte longueur d’onde du paquet d’onde se
propagent plus rapidement que les composantes de longue longueur d’onde, ce qui est
également conforme a 'analyse. L’image de la partie réelle de ¢ (x,t) (bas de la FIG.
montre bien que la vitesse de phase est inférieure a la vitesse de groupe, en accord

avec la théorie.

Finalement, on vérifie que la probabilité est conservée : la mesure de [ [1)(x,t;)|*dx aux
temps ¢; donne un résultat constant a la précision machine pres (10714).

Etalement du paquet d’onde : de la différence entre diffusion et dispersion

On peut montrer (voir cours de Physique 4 et de Mécanique Quantique I) E| que la solution
exacte de I’équation de Schrédinger pour une particule libre dans 1’état initial donné par

le paquet d’onde Gaussien (4.116)) est telle que

11 1 (z — Mhag)?
2 I _ m
|,¢}($7t)| - \/;O' 22 eXp ( 0_2 (1 + h2¢2 ) . (4119)

2,4
1+ 25 mZo

Cette quantité, rappelons-le, est la densité de probabilité de trouver la particule en x
au temps t. La fonction d’onde a donc a tous les temps une forme gaussienne, mais son
écart-type varie au cours du temps, ce qui donne une incertitude sur la position, < Az >
donnée par

h2t?

< Az > (t) =< Az > (0) 1+W'

(4.120)
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Libre n=0 A x=1At=0.5
100

80

60

40

20

-50 0 50 100 150

Libre n=0 A x=1At=0.5
25 , , , ,

analytique - _ _

201

15¢ ,
numerique

<A X>

10

0 20 40 ¢ 60 80 100
FIGURE 4.18 — Particule libre avec une fonction d’onde initiale gaussienne de largeur
o = 6.4 et un nombre d’onde moyen n = 0. En haut : contours de |(x,t)|. En bas :

incertitude sur la position < Ax > (t); en traitillés, la solution analytique, Eq.(4.120).
L’incertitude sur la position augmente (étalement du paquet d’onde).
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L’incertitude sur la position augmente donc au cours du temps, d’autant plus rapidement
que le paquet d’onde initial a une incertitude petite. (N.B. : < Az > (0) = 0//2). Cette
augmentation, pour des temps longs, est linéaire avec le temps. On illustre ceci avec une
simulation numérique de mémes parametres que pour la FIG. [£.17] sauf que l'on considére
une particule initialement “immobile”, avec kg = 0. On montre a la FIG. le module
de la fonction d’onde dans l'espace et le temps, ainsi que l'incertitude < Az > ().
L’étalement est bien visible. On a reporté aussi la solution analytique en traitillés. Le
petit écart entre la solution analytique et la solution numérique est du a l'effet de la
discrétisation spatiale (Ax) et temporelle (At).

L’étalement de la fonction d’onde de la particule libre pourrait, & premiere vue, ressembler
a de la diffusion. On pourrait imaginer qu'une particule est constituée d’un grand nombre
de points matériels, distribués selon une certaine densité, et qui, a cause de multiples
collisions aléatoires entre eux, donnerait lieu a un processus diffusif, résultant en un
étalement. Or, cette image est totalement fausse. Dans un processus de diffusion classique,
nous avons montré a la section que la largeur de la fonction augmentait comme la
racine carrée du temps, alors qu’en mécanique quantique 1’étalement est proportionnel au
temps (pour des temps suffisaments longs). On peut comparer la FIG. de la diffusion
au résultat quantique de la FIG. [£.18]

L’étalement de la fonction d’onde d’une particule libre en mécanique quantique n’est pas
di a de la diffusion, mais a la dispersion. L’origine en est la relation de dispersion (4.103)),
qui indique que la vitesse de phase dépend du nombre d’onde k. Or, un paquet d’onde
de largeur finie consiste en une somme d’ondes planes ayant des k£ différents. Dans notre
cas du paquet d’onde gaussien initial, on a un ensemble de valeurs de k centrées autour
de kg. Les composantes ayant un k élevé vont se propager plus vite que les composantes
ayant un k plus petit. Traduisons : les longueurs d’onde les plus courtes vont se propager
plus vite que les longues longueur d’onde, ce qui est visible sur I'image du haut de la FIG.
[4.17 C’est ce phénomene qui, au cours du temps, contribue a “étaler” le paquet d’onde.

4.3.3 Barriere de potentiel : résonances et effet tunnel

On considere une particule incidente sur un potentiel de forme carrée, de hauteur V
et d’épaisseur 9. L’état initial est un paquet d’onde de forme gaussienne, Eq., de
nombre d’onde moyen n = 32 et de largeur ¢ = 0.075. Le domaine de simulation a une
longueur L = 256. Les parametres numériques sont n, = 512, Az = 0.5, At = 0.5. Le
schéma semi-implicite, Eq., est utilisé. Les unités sont choisies avec h = 1, et la
masse de la particule est m = 1/2.

La relation (4.103) entre w et k, d'une part, et la relation de de Broglie (4.101)) entre E

3. Ref. C. Cohen-Tannoudji, Mécanique Quantique I, complément G, p.64-67
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et w, d’autre part, donnent une énergie moyenne Fy = h*k?/2m = 0.6169. Remarque :
comme on a un paquet d’onde dont la largeur dans I'espace de Fourier Ak est non nulle,
la particule n’a pas une énergie bien définie : il y a incertitude non nulle AF.

Nous allons étudier le comportement de la particule pour différentes hauteurs V; et
épaisseurs 0 de la barriere de potentiel.

Cas V) < Ej

On rappelle que la solution analytique de Schrodinger, pour le cas d’ondes planes “mono-
chromatiques”, c¢’est-a-dire ayant une énergie bien déterminée (donc un k de la particule
incidente unique), prédit une probabilité généralement non nulle que la particule soit
réfléchie par la barriere. Ceci est contraire a la prédiction de la physique classique, pour
laquelle la particule passerait avec certitude par dessus la barriere si Vy < E.

D’autre part, la mécanique quantique prédit aussi que la probabilité de réflexion de la
particule n’augmente pas de facon monnotone avec I’épaisseur ¢ de la barriere. Notam-
ment, pour des épaisseurs de barriere 6 multiples de 7 /k;, la probabilité de transmission
est 1, donc celle de réflexion est nulle. k; est le nombre d’onde de la solution ¢ dans la

ke = \/2m(Eo — Vo) /h . (4.121)

Remarque : comme Ey > V;, la solution est propageante a l'intérieur de la barriere.

barriere,

Nous allons illustrer ces propriétés avec des simulations numériques. Soit Vy = 0.8FEj.
Pour ces parametres, 7/k; = 8.94. Pour une épaisseur 6 = 4.5, la figure montre que
la particule a une probabilité non nulle d’étre réfiéchie.

Pour une épaisseur plus élevée, 6 = 18, la probabilité de réflexion est bien plus petite.
Ceci est en accord avec la théorie, on remarque en effet que § est proche de 27 /k;,
qui est une condition de résonance prédite par la théorie dans le cas d’une particule
“monochromatique” d’énergie bien définie. Dans notre cas, la particule n’a pas une énergie
Ejy, son état ayant une incertitude non nulle.

Cas V) > Ej

Avec les mémes parametres pour la particule incidente, mais cette fois Vy = 1.2F), les
résultats de la FIG. [£.20] en haut, pour une épaisseur de barriere § = 2.5, montrent que
la particule a une probabilité non nulle de traverser la barriere. Ce comportement, ap-
pelé effet tunnel, est completement différent de la prédiction de la physique classique,
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FIGURE 4.19 — FEn haut : particule incidente sur une barriére de potentiel de hauteur
Vo = 0.8Ey et de largeur 6 = 4.5 (lignes traitillées). La particule a une probabilité non
nulle d’étre réfiéchie. En bas, pour 6 = 18, correspondant a peu pres a une condition
de résonance prédite par la théorie, la probabilité de réflexion est bien plus petite. La
quantité représentée est la partie réelle de V(z,t).
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FIGURE 4.20 — FEn haut : particule incidente sur une barriere de potentiel de hauteur
Vo = 1.2Ey, de largeur 6 = 2.5 (lignes traitillées). La particule a une probabilité non nulle
de traverser la barriére (effet tunnel). En bas, pour une largeur plus importante, 6 = 18,
cette probabilité devient exponentiellement petite, et la réflexion est pratiquement totale.
La fonction d’onde est évanescente dans la barriere. La quantité représentée est la partie

réelle de ¥ (x,t).
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ou la particule serait réfléchie a coup str. En bas, pour une largeur plus importante,
0 = 18, cette probabilité devient exponentiellement petite, et la réflexion est pratique-
ment totale. La fonction d’onde est évanescente dans la barriere : elle a une amplitude
exponentiellement décroissante en fonction de x

4.3.4 Oscillateur harmonique

Soit une particule de masse m dans un potentiel quadratique

1
V(z) = §mw§x2 : (4.122)

avec wy une constante donnée. (N.B. : dans le cas classique d’une masse attachée a un
ressort de constante K, on a wy = /K /m.) Nous allons calculer le comportement de cette
particule tel que la mécanique quantique le prédit, et nous allons essayer de trouver quelles
analogies il est possible de faire avec le mouvement prédit par la mécanique classique.

Classiquement, on sait que le mouvement est sinusoidal, de fréquence angulaire w = wy =
 K/m. Si I'énergie mécanique de la particule est E, alors son mouvement est confiné
entre Ty €t Tyax donnés par les solutions de V(x) = E. On a donc la trajectoire classique

2F 1
mclass(t) = Ew_g Sin(wot + QD) . (4123)

Quantiquement, on verra dans la section suivante qu'une particule ayant une énergie F
bien déterminée ne peut généralement pas exister sauf pour des valeurs bien spécifiques
de I'énergie E. Dans cette section, nous considérerons une particule dans un état initial
décrit par un “paquet d’onde”, comme aux sections précédentes, Eq.(4.116) avec une
extension spatiale o, une position moyenne xy et un nombre d’onde moyen ky donnés.

Ainsi, la particule n’a pas une position, une quantité de mouvement, une vitesse, et
une énergie. Mais on peut montrer (théoreme d’Ehrenfest) que la valeur moyenne de la
position, définie par

<x>(t)= (Y, x)) = /¢*($,t)x1/z(x,t)dm , (4.124)
et la valeur moyenne de la quantité de mouvement, définie par
<p> (0= Wpd) = [ () (=ih)(0/0x)(z, ds (4.125)
satisfont les équations du mouvement classique
d<d—f> = < —i—‘; > (4.126)
d<d—f> = < % > (4.127)
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Nous n’allons pas démontrer ce théoreme (ce sera fait dans le cours de Quantique),
mais nous allons vérifier cette propriété sur des solutions numériques de 1’équation de
Schrodinger, c’est a dire vérifier que

< 2> (1) = Tens(t) - (4.128)

On choisit un systeme d’unités avec h = 1 et la masse de la particule m = 1/2. On
considere un domaine de simulation = € [—L/2 4+ L/2], avec L = 256, et on choisit un

Viz) =V, (LL/Q)Q (4.129)

avec un Vy donné. V) n’est autre que la valeur du potentiel aux bords du domaine de

potentiel quadratique

simulation. On a

8Vo

mL? "
On place une particule dans un état initial de la forme , avec n = 32, (ko = 0.7854),
zo=0,0 =064, (< Az > (0) = 4.5255). On choisit le coefficient 1, du potentiel de telle
sorte qu’il soit égal & 4 fois D'énergie Ey = h*k%/2m. Ce choix signifie, dans la limite

(4.130)

2 _
Wy =

classique, que 'on place une particule au minimum du potentiel, avec une vitesse initiale
telle que son énergie cinétique initiale est 1/4 du potentiel aux bords du domaine de
simulation. On discrétise avec n, = 512 intervalles (Az = 0.5) et At = 0.5. On utilise le

schéma semi-implicite, Eq.(4.99).

La FIG. montre ’évolution spatio-temporelle du module et de la partie réelle de
la fonction d’onde. Les évolutions temporelles de la position moyenne, < z > (), et de
'incertitude sur la position, < Az > (t), sont affichées a la FIG. . On a représenté, en
traitillés, la solution pour le mouvement classique Zass(t). Le mouvement de la posiiton
moyenne < x > (t) est bien une oscillation sinusoidale. La différence avec la solution
classique est une fréquence un peu plus basse. Cette différence est due aux erreurs de
discrétisation (Ax et At finis). On peut montrer que la solution numérique pour < = > ()
tend bien vers la solution classique Z.,ss(t) dans la limite Az — 0 et At — 0. Ainsi, les
résultats numériques sont en bon accord avec la théorie.

L’évolution de I'incertitude < Az > (t) montre qu’elle ne croit pas indéfiniment au cours
du temps, contrairement au cas de la particule libre. L’incertitude oscille autour dune
valeur moyenne. La théorie, qui sera faite au cours de mécanique quantiqueﬁ, montre qu’il
existe des états de la particule dans un potentiel harmonique tels que leur incertitude est
constante au cours du temps. On appelle ces états quasi-classiques, ou états “cohérents”.
Ils sont constitués de paquets d’ondes de forme gaussienne, avec une incertitude sur la
position donnée par

h

4.131
2muwyg ( )

< Az > quasi—class—

4. voir p.ex. Cohen-Tannoudji, Mécanique Quantique I, complément Gy, p.560-575.

Physique Numérique LV SPC EPFL 167



CHAPITRE 4. INTEGRATION SPATIO-TEMPORELLE
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FIGURE 4.21 — Particule dans un potentiel harmonique. En haut, |(z,t)|. En bas,

Re(y(x,t)).
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Harmo V0=4E0 n=32 Harmo V0=‘4E0 nf32
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FIGURE 4.22 — Particule dans un potentiel harmonique (méme simulation que la FIG.
. A gauche : position moyenne < x > (t), avec en traitillés la solution de la physique
classique. A droite, incertitude sur la position < Ax > (t).
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FIGURE 4.23 — Particule dans un potentiel harmonique dans un état dit quasi-classique,
simulée avec diverses résolutions spatiales et temporelles. L’incertitude sur la position
< Az > (t), qui devrait selon la théorie étre constante, présente des oscillations. L’am-
plitude de ces oscillations diminue avec des Ax et/ou des At plus petits.
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Les simulations numériques utilisant le schéma semi-implicite (4.99) montrent que si
on choisit une largeur de la gaussienne initiale conformément a ’expression ci-dessus,
I'incertitude sur la position < Az > (t) reste approximativement constante. Il subsiste
néanmoins une oscillation de < Az > (t), qui n’est pas physique, mais d’origine purement
numérique. On montre un exemple a la FIG.[4.23] avec les parametres : n = 16, L = 256,
Vo = 4F,. Quatre simulations sont effectuées, avec Ax = 0.5, 0.25 et At = 0.5, 0.25.
L’amplitude des oscillations de < Az > (t) décroit lorsque I'on diminue At et/ou Awx.

En conclusion, les résultats numériques basés sur le schéma semi-implicite, Eq.,
permettent de mettre en évidence le comportement parfois inattendu, parfois contraire
a la physique classique, des particules. Nous avons aussi illustré, pour l'oscillateur har-
monique, a quel point les prédictions de la mécanique quantique sont, dans un certain
sens seulement, analogues a celles de la mécanique classique : les valeurs moyennes se
comportent comme des particules classiques. Ces résultats numériques sont en bon ac-
cord avec les calculs analytiques, qui seront faits au cours de Physique et de Mécanique
Quantique, pour lesquels ils peuvent servir d’illsutrations.

4.3.5 Etats stationnaires ou états propres de la particule

Soit une particule dans un potentiel V(Z). On aimerait trouver une solution ¥ (x,t) de
I’équation de Schrodinger, Eq.(4.79), qui donne une énergie bien déterminée de la parti-
cule.

Par la relation de de Broglie, E' = hw, Eq.(4.101), dire que I’énergie E est donnée implique
que la fréquence w est donnée. On cherchera donc des solutions de ’Eq. de Schrodinger
de la forme :

(&, t) = U(Z) exp (—iwt) (4.132)

Ces solutions sont appelées états stationnaires : en effet, la densité de probabilité,
4|2, est une fonction de I'endroit () mais pas du temps. La probabilité est stationnaire,
dans le méme sens que l'intensité (moyennée sur une période) d’une onde stationnaire ne
dépend pas du temps.

Introduisant cet Ansatz dans I'Eq. de Schrodinger (4.79)), on a

h2
—— VXU + V(£)¥ = EV|. (4.133)

2m

C’est I’équation de Schrodinger stationnaire, ou “équation de Schrodinger
indépendante du temps”. Dans la limite classique, elle exprime simplement le principe
de conservation de I’énergie mécanique (p*/2m +V = Ep..).
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Avec la définition de I'opérateur Hamiltonien

h2
H=—-——V? 7 4.134
oV + V(%) (4.134)

I’équation de Schrodinger stationnaire s’écrit

H(V) = Ev]. (4.135)

Cette équation indique que les énergies possibles d’une particule dans un poten-
tiel V(Z) sont les valeurs propres de I’Hamiltonien. Les états d’énergie donnée
correspondants a ces valeurs propres sont les fonctions propres de cet Hamiltonien. On
les appelle donc états propres.

Trouver les états propres et les énergies possibles d’une particule revient donc a “diago-
naliser” ’'Hamiltonien du systeme.

Méthodes numériques

Il existe plusieurs méthodes pour trouver des états et énergies propres. On peut par
exemple utiliser les outils déja développés dans les sections précédentes, a savoir la
méthode des différences finies ou celle des éléments finis, appliquée a la discrétisation
spatiale de l'opérateur Hamiltonien. La nuance est que les fonctions recherchées sont a
valeurs complexes, et non plus réelles.

Cette opération de discrétisation numérique conduit a approximer 'opérateur Hamilto-
nien, qui est différentiel, par un opérateur algébrique. les inconnues étant par exemple
les valeurs de ¥ aux points du réseau z;,j = 1..N. La probléme se réduit donc a un
probleme matriciel :
> AT, = EY, (4.136)
J

ol ¥, est le vecteur des inconnues ¥(z;).

Trouver des approximations numériques des états et des énergies propres d’une particule
revient donc a diagonaliser la matrice A, autrement dit a trouver ses vecteurs
propres et valeurs propres.

Par exemple, le schéma de différences finies (A.7) appliqué a Schrodinger stationnaire
1-D conduit a la matrice

A = tridiag (C —2C+V(z;) C) , (4.137)

avec
—h2 4.138
¢= 2m(Ax)? (4.138)
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FIGURE 4.24 — Spectre des énergies propres (a gauche) et les 4 premiers états propres
(a droite) pour une particule confinée dans un puits de potentiel de profondeur infinie.

Particule dans une boite

La modélisation la plus simple d'une particule confinée dans une boite est de dire que
la particule n’a aucune chance de se trouver en dehors de la boite. A l'intérieur de la
bote, elle ne subit aucune force, ¢’est-a-dire que le potentiel est constant. Le probléme &
résoudre est donc simplement Schrodinger stationnaire avec V(x) = 0 et des conditions
aux bords de type Dirichlet :

h? dv

————=FEV, Y(0)=0, Y(L)=0, 4.139

e (0 (L) (1139)
ou L est la taille de la boite. Il est facile de trouver les solutions analytiques : on trouve
les fonctions propres et valeurs propres

U,(x) = sin @%) (4.140)
h? n?mr?

La FIG. montre les résultats numériques avec les différences finies et n, = 32 inter-
valles, pour une particule de masse m = 1/2, confinée dans une boite de taille L = 2.
Comme précédemment, les unités avec h = 1 ont été utilisées. La différence entre la solu-
tion analytique (croix) et la solution numérique (cercles) est due a la discrétisation. On
peut montrer (exercice) que cette erreur diminue avec le nombre de points de maillage.

Une modélisation un peu plus réaliste considere une particule confinée par un “puits” de
potentiel de profondeur finie. On montre a la FIG. le spectre et les états propres
des états d’énergies les plus basses. On a pris un potentiel fe forme carrée, V(x) = —100
entre r, = —0.5 et x, = +0.5, zéro ailleurs. Le domaine de calcul a été pris entre x = —2
et x = +2. Il est en effet nécessaire de prendre un domaine plus large que la boite :
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FIGURE 4.25 — Spectre des énergies propres (a gauche) et les 4 premiers états propres
(a droite) pour une particule confinée dans un puits de potentiel de profondeur finie,
Vo = —100, entre x = —0.5 et © = +0.5 (lignes traitillées).

les résultats montrent que la particule a une probabilité non nulle de se trouver quelque
peu en dehors de la boite, méme si son énergie est plus petite que zéro! L’autre résultat
important, que I’on aurait pu déja constater sur le cas précédent, est que I’état d’énergie
le plus bas, appelé état fondamental, est d’énergie plus élevée que la valeur minimum du
potentiel.

Particule dans un potentiel périodique : physique du solide

L’état solide est caractérisé, au niveau microscopique, par un arrangement régulier,
périodique, d’atomes. La cohésion du solide est assurée par certains électrons du systeme,
alors que d’autres électrons participent éventuellement a la condution électrique et de
chaleur.

La structure des énergies possibles des électrons dans un solide est étonnante : elle présente
des bandes séparées par des “bandes interdites” (en anglais : gap), ou aucun électron ne
se trouve. Nous allons essayer de comprendre pourquoi grace a l'approche numérique.

On modélise un électron dans un solide par une particule dans un potentiel périodique.
Ce potentiel représente I'effet des noyaux atomiques et des autres électrons. On néglige
I'interaction entre électrons. On prend un potentiel

2
V(x) = Vysin <npot%x> (4.142)

ou L est la taille du solide. Dans la réalité L est beaucoup plus grand que la taille
inter-atomique. Il serait irréaliste (et irréalisable) de simuler tout un solide de taille

Physique Numérique LV SPC EPFL 173



CHAPITRE 4. INTEGRATION SPATIO-TEMPORELLE

Schr.stat. Periodic V0=500 nv=40

2000 -
o
| —
1500} Bande de conduction : ’(“
c lﬂ”
Ll v,
10007 | Bande intedite (gap) //:/
y |
\
//."
L - @0 I
5007 | Bande de valence ) !
. o8 !
_ @8 !
_ og [
|
0 ‘ ‘ ‘ | ‘
0 10 20 30 40 50 60
n
FIGURE 4.26 — Spectre des énergies propres pour une particule dans un potentiel

périodique sinusoidal d’amplitudeVy = 500. Le domaine de simulation est périodique.
Sa taille est de 40 périodes du potentiel (donc une taille de 40 couches interatomiques).
La ligne rouge en traitillés indique le spectre en ['absence de potentiel périodique (parti-
cule libre).

macroscopique. Prenons les parametres suivants : L = 4, nyo = 40 (ce qui veut dire que
I'on simule une tranche de 40 atomes). On prendra, de plus, un systeme périodique de
période L. Cela nécessite une petite modification de l’algorithme (exercice).

Avec Vy = 500 et un maillage de n, = 512 intervalles, on obtient les résultats de la FIG.
[4.26] Par comparaison, on montre en traitillés le spectre d’une particule libre, autrement
dit le cas Vo = 0. Il est clair que l'effet de la perturbation périodique du potentiel est
de créer une bande d’énergie interdite. La taille de cette bande interdite est d’environ
490, soit du méeme ordre que 'amplitude V{ de la perturbation sinusoidale du potentiel.
De plus, c’est pour le mode numéro n = 40 que le saut en énergie a lieu. L’analyse
de la fonction d’onde correspondante montre qu’elle a une longueur d’onde double
de la distance interatomique. On constate que cela correspond a la condition de
Bragg : soit une onde incidente de longueur d’onde A sur un réseau périodique de période
spatiale d; les ondes réfléchies par les couches successives seront en phase (interférence
constructive) si 2dsinf = N, ou N est un nombre entier strictement positif qui est
I'ordre de l'interférence. Ici, # = 0, car nous sommes en 1-D. Pour 'ordre d’interférence
le plus bas (N = 1), on a bien A = 2d. L’onde stationnaire résultante a un module dont
les maxima coincident soit avec les maxima, soit avec les minima du potentiel, résultant
en une énergie soit plus élevée, soit plus basse (£V4/2) que 'énergie de la particule libre
correspondante.
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Paquet d’onde dans un potentiel périodique

Il est intéressant de revenir au probleme dépendant du temps. Pour le méme potentiel
périodique qu’au paragraphe précédent, on résout cette fois I’équation de Schrodinger,
Eq.7 avec la méthodes de différences finies et le schéma semi-implicite, Eq..
On utilise 512 points de discrétisation spatiale et un pas temporel At = (h/Ey)/8, ou Ey
est Pénergie moyenne du paquet d’onde Ey &~ h%k2/2m, ou kg est la valeur centrale du
nombre d’onde. Ceci correspond a 8 x 27 pas temporels par période d’oscillation.

Comme condition initiale, nous prenons un paquet d’onde Gaussien, Eq., avec une
position moyenne xqg = —0.6, et ¢ = 0.4. Le nombre d’onde moyen est choisi pour trois
cas différents, n = 14, n = 20 et n = 26. Le premier cas correspond a une particule
dont 1’énergie moyenne est dans la bande de valence. Le deuxiéme cas a une particule
dont lénergie serait dans la bande interdite. Le troisieme cas correspond a une particule
d’énergie moyenne dans la bande de conduction.

Les résultats de ces trois simulations sont représentés aux FIGS. {.27H4.28 Les particules
dans la bande de valence (n = 14) et dans la bande de conduction (n = 26) se propagent
bien a travers le systeme. Il y a une certaine modulation due au potentiel périodique,
mais la position moyenne est en mouvement (presque) uniforme, (presque) comme si la
particule était libre. Pour la particule dans la bande interdite (n = 20), les choses se
passent tout différemment. La fonction d’onde ne propage plus! La position moyenne
de la particule est pratiquement immobile. On peut montrer que ce comportement est
conforme a la théorie : au voisinage du gap, la vitesse de groupe tend vers zéro.

Pour en savoir plus : Bibliographie, Refs. [17]-]19].
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FIGURE 4.27 — Particule dans un potentiel périodique, dans la bande de conduction
(n = 26, haut), dans la bande interdite (n = 20, milieu) et dans la bande de valence

(n =14, bas). Contours de Re(y(x,t)).
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FIGURE 4.28 — Positions moyennes de trois particules dans un potentiel périodique,

respectivement dans la bande de conduction (n = 26), dans la bande interdite (n = 20) et

dans la bande de valence (n = 14), correspondant auz trois simulations de la FIG.[{.27
La ligne en traitillés représente le mouvement qu’aurait une particule libre avec n = 20.
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Chapitre 5

Méthodes statistiques

Dans ce chapitre, nous étendons notre analyse a des systemes contenant un grand nombre
de particules en interaction. Dans la partie du cours consacrée au phénomene de diffusion,
nous avons mis en évidence le caractere aléatoire, au niveau microscopique, du processus.
La grande simplification que nous avons faite alors est de supposer I'indépendance totale
des collisions individuelles. En d’autres termes, nous avons négligé les interactions.

Nous verrons que ces interactions jouent un role essentiel dans le comportement de ces
systemes, notemment dans les phénomenes de transition de phase, tels la solidification,
la liquéfaction, la condensation et 1’évaporation. Dan les matériaux solides il existe aussi
de nombreuses transitions de phases, par exemple ’apparition du ferromagnétisme.

Dans tous ces phénomenes, le concept de température joue un role central. C’est pour-
quoi les concepts de thermodynamique et de physique statistique sont invoqués pour les
décrire.

L’approche numérique adoptée dans ce chapitre s’inspire du caractere aléatoire de 1’état
microscopique : on parle de méthodes de Monte Carlo, que nous avons déja rencontrées
pour des problemes simples, comme la désintégration ou la diffusion.

5.1 Modele d’Ising

Le ferromagnétisme apparait dans certains matériaux a cause de l'interaction entre les
moments magnétiques des atomes. Dans ces matériaux, 1’énergie d’interaction est mini-
misée si ceux-ci sont alignés dans la méme direction.
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Les atomes ont la propriété fondamentale d’avoir un moment cinétique intrinseque, ap-
pelé le spin, auquel est associé un moment magnétique. L’existence du spin est un effet
purement quantique et ne sera pas discuté ici. Nous ne retiendrons que sa propriété d’etre
quantifié, c’est-a-dire que sa valeur projetée selon un axe donné ne peut donner que des
valeurs discretes. Nous prendrons ces valeurs, pour simplifier, comme

s ==+1 (5.1)

Dans une simplification supplémentaire, nous ne considererons 1’énergie d’interaction
qu’entre les plus proches voisins. De plus, on supposera les atomes disposés régulierement
sur un réseau. L’énergie du systeme s’écrit donc

E=—-J Z SiSj (52)
<ij>
ou < 1j > désigne une paire d’atomes voisins, et J est appelée constante de couplage.
Cette description s’appelle le modéle d’Ising, dans son expression la plus simple.

Si J > 0, cela signifie que I'énergie est minimisée quand tous les spins sont alignés. C’est
la situation pour une substance ferromagnétique a tres basse température. Thermodyna-
miquement parlant, c’est un état d’entropie S minimale.

A plus haute température, I'agitation thermique va contribuer a rompre l’alignement
parfait des spins, et amantation (somme des moments magnétiques) va diminuer. I
existe une température critique 7, au dela de laquelle I'aimantation est nulle (en moyenne
statistique sur un grand nombre N — oo d’atomes). A T' >> T, ’état du systeme alors
maximise son entropie S alors que son énergie interne U est a peu pres nulle (en tous
cas, elle n’est pas minimale)ﬂ Une conséquence du deuxieme principe est que, a toute
température, le systeme a ’équilibre minimise son énergie libre FF =U —T'S.

Si on rajoute un champ magnétisant H au systeme, ’énergie devient :
E=-J Z $iSj — [LHZSi : (5.3)
<ij> i

ol u est le moment magnétique associé a chaque spin. Le champ H tend a aligner les
spins parallélement a H, puisque cela contribue a diminuer 1’énergie.

5.1.1 Statistique de Boltzmann

L’état d'un systeme de IV spins est donc caractérisé par une séquence de + et de —. Un
systéme a 4 spins, par exemple, peut étre dans 'état (++ ——), ou dans I'état (+— —+),

1. Dans la limite thermodynamique, ’énergie interne U est reliée a la moyenne statistique de 1’énergie,
< E >, sur tous les états microscopiques possibles.
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ou dans l'état (— — +—), etc. A chaque état, que nous numéroterons avec la lettre a,
correpond une énergie F,,.

Un résultat fondamental de la physique statistique est que la pour une température
T du systeme, la probabilité P, de trouver le systéeme dans I’état numéro o
est donnée par :

ey | 5.4
olt kg = 1.38066 x 10723J /K est la constante de Boltzmann et C' est une constante de
normalisation telle que

> P=1, (5.5)

la somme portant sur tous les états microscopiques possibles du systeme.

Dans notre cas, on peut ainsi calculer I'aimantation du systéme (macroscopique) en fonc-
tion des aimantations M, de chaque état microscopique et de leurs probabilités respectives
P, par leur moyenne statistique

M= MP,. (5.6)

Si on ne prend pas de précaution pour effectuer cette moyenne, on trouvera toujours
la valeur nulle pour un systeme de taille finie, méme pour un état ferromagnétique ou
tous les spins sont alignés : en effet, la probabilité de trouver tous les spins a +1 est
égale a celle de trouver tous les spins & —1. On doit effectuer la limite en rajoutant un
champ H extérieur au systeme de taille finie L, cacluler une moyenne M (L, H), prendre
la limite d’un systeme de taille infinie, et ensuite faire tendre H vers zéro, soit par valeurs
positives, soit par valeurs négatives :

My = i (Jim M2 1) )
Moo= i (Jim ML) 58

Pour un systéme de N spins, le nombre d’états microscopiques possibles est 2%V, et il
devient vite prohibitif de calculer tous ces états possibles. L’approche passe par une
simplification majeure, expliquée dans la section suivante.

5.1.2 Théorie du champ moyen

Considérons un systeme constitué d’'un seul spin s;, dont les valeurs possibles sont +1,
plongé dant un champ magnétisant extérieur H. La statistique de Boltzmann, Eq., et
I’expression de I’énergie du systeme, Eq., impliquent que les probabilités de trouver
le systeme dans chacun des deux états possibles (1) sont données par

P, = Cetrfl/ksT (5.9)
P. = (Ce#H/ksT (5.10)
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avec la constante de normalisation
C = (eHH/RBT 4 gmuH/ksT) ™1 (5.11)

La moyenne statistique du spin est donc

uwH
<si>= Y sPy=P,— P =tanh (— ) (5.12)
s;=+1 kBT

Considérons maintenant ce spin s; étant I'un parmi un systeme de N spins. L’approxi-
mation de la théorie du champ moyen consiste a faire I’hypothese que 'interaction de ce
spin avec ses voisins est équivalente a la présence d’'un champ magnétisant effectif H.g.
Hg représente donc le champ moyen crée par les autres spins a ’endroit du spin s;. On
a donc

H,
< s; >= tanh (é}ﬁ?) . (5.13)

Nous pouvons écrire ’expression de ’énergie du systeme, Eq. (5.3]), comme

E=— (J Z sj> s; — uHs; . (5.14)

<ij>

Dans cette derniere expression H est un champ magnétisant extérieur au systeme de
. . , ; .

N spins, alors que le terme entre parentheses représente l'effet des autres spins s; j

du systeme. L’approximation du champ moyen consiste a remplacer ce terme entre pa-

(J > sj> ~ pHq (5.15)

<ij>

rentheses par pH.g,

et a supposer que les spins individuels s; peuvent étre remplacés par leur valeur moyenne
< s; >. Comme tous les spins sont des particules identiques, leur valeur moyenne est
identique, et on peut donc omettre l'indice j : < 5; >=< s>, Vj. On a donc :

J
Heff%—z<s> : (5.16)

Dans la somme, < ij > signifie une somme sur tous les plus proches voisins. Si n est le
nombre de plus proches voisins

nJ

Hg~—<s> . (5.17)
i
On a donc, de 'Eq.(5.13]),
J < s>

Cette derniere expression est une équation non triviale, non algébrique pour < s >.
On peut la résoudre numériquement (exercice) par exemple avec la méthode de Newton -
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<s>

0 2 4 kBT/J 6 8

FIGURE 5.1 — Valeur moyenne du spin en fonction de la température prédite par la
théorie du champ moyen appliquée au modele d’Ising 2-D a n = 4 plus proches voisins.

Raphson. Le résultat est illustré & la FIG[5.1], en fonction de la température. On s’apercoit
de I'existence d’une température critique T, au voisinage de laquelle la valeur moyenne
du spin, et donc 'aimantation, varie brutalement. Pour T" > T, il n’y a que la solution
< s >= 0, et 'aimantation est nulle : le systeme est paramagnétique. Pour T' < T, il
y a 3 solutions (< s >= 0, et deux solutions non nulles de méme valeur absolue, I'une
positive et 'autre négative). La solution < s >= 0 est instable car elle correspond a un
maximum local de I’énergie libre du systeme. Les deux solutions symétriques, < s > > 0
et < s > < 0, représentent 'aimantation permanente du systeme, qui est donc dans 1’état
ferromagnétique.

Ce qui se passe au voisinage de T' =T, est un exemple de transition de phase. L’aiman-
tation, proportionnelle a < s >, joue le role de parametre d’ordre. A basse température,
I’aimantation moyenne est non nulle, ce qui signifie une tendance a aligner les spins dans
la méme direction, et on a un systeme dans un état ordonné. A haute température, ’ai-
mantation moyenne est nulle, ce qui signifie que les spins perdent leur alignement mutuel,
et le systeme est dans un état désordonné.

Pour le modele d’Ising 2-D a n plus proches voisins, on peut montrer que la température
de transition est T, = n.J/kp. Au voisinage de T' = T, et pour T' < T, la valeur du spin
moyen est

3 /7\°
== (=) (1. - T)V?. 1
< s> T(TC)( ) (5.19)

L’exposant 1/2 est appelé exposant critique de la transition. En fait, ’approximation du
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champ moyen est incorrecte de ce point de vue : la solution exacte du modele d’Ising
donne un exposant critique 1/8.

5.1.3 Monte Carlo, algorithme de Metropolis

La méthode de Monte Carlo utilise une approche dite stochastique, c’est-a-dire résultant
de processus aléatoires. Dans notre modele d’Ising de IV spins en interaction, a la température
T, I'algorithme dit de Metropolis consiste en :

1. Initialiser un état microscopique quelconque, donc une séquence (++—+——+...).

2. Pour chaque spin s;, calculer I’énergie nécessaire a faire basculer le spin, AE. Dans
notre modele, cette énergie ne dépend que des plus proches voisins, voir Eq.({5.3]).

3. Si AE < 0, basculer le spin

4. Si AE > 0, générer un nombre aléatoire r selon une distribution de probablité
uniforme entre 0 et 1.

5. Sir <exp(—AFE/kgT), basculer le spin. Autrement, le laisser inchangé.

6. Une fois tous les spins du systemes traités de cete maniere, calculer la nouvelle
valeur de I’énergie et la nouvelle valeur du spin moyen.

7. Répéter les étapes 2 — 6 un nombre suffisant de fois.

On peut comprendre qualitativement comment 1’algorithme est capable de représenter
la physique. Si on basculait les spins chaque fois que AE < 0 et jamais si AE > 0,
le systeme évoluerait vers un état d’énergie minimale, ou tous les spins sont alignés.
C’est ce qui se passe dans la limite 7' — 0. La température finie introduit la possibi-
lité pour le systeme d’évoluer vers un état d’énergie plus élevée. A basse T, le facteur
exp(—AFE/kgT) est proche de 0, et la probabilité qu'un spin bascule est petite : le systeme
aura tendance a rester dans une phase ferromagnétique. A mesure que 7' augmente, le
facteur exp(—AF/kgT) augmente, et avec lui la probabilité de basculement : le systeme
a alors de plus en plus tendance a rompre ’alignement des spins, et donc tend vers un
état paramagnétique.

La statistique de Boltzmann (5.4)) implique que le rapport de la probabilité P; d’avoir un
spin basculé par rapport a la probabilité P, d’avoir un spin non basculé est

P1 _AE

— =c kpT 520

= (5:20
L’alorithme de Metropolis conduit ainsi a une situation dans laquelle les probabilités
relatives de trouver des états microscopiques différents sont données correctement selon
la statistique de Boltzmann.
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1 1 I I
0 200 400 600 800 1000
step

FIGURE 5.2 — Spin moyen § = > s;/N au cours des étapes de l'algorithme de Metropolis,
pour différentes valeurs de la température. Modele d’Ising 2-D an = 4 plus proches voisins
sur un réseau périodique de 10 x 10 spins.

On montre a la FIG. les résultats de 3 simulations pour un réseau périodique de
10 x 10 spins, pour 3 valeurs différentes de la température. Apres chaque étape (numéro
k) de T'algorithme de Metropolis (balayage complet de tous les spins du systeme), on
calcule le spin moyen,

1 N
S = 7 D Silk) (5.21)
=1

Pour T' = 2, on observe que les spins sont toujours presque tous alignés. Pour T = 2.2,
le spin moyen fluctue énormément, avec de brusques basculements d’une valeur positive
a une valeur négative. Pour 1" = 5, le spin moyen fluctue autour d’une valeur nulle.

Le spin moyen 5 est une variable aléatoire dont on obtient un échantillon statistique
{§(k)}, kE = 1..Ngweep avec la simulation numérique, Ngyeep désignant le nombre d’étapes
de I'algorithme de Metropolis. On obtient une estimation statistique de sa valeur moyenne
et de sa variance par :

Ngweep
1
<s5> = S(k) (5.22)
Nsweep 1
1 Nsweep
o’ = ¥ Sty — (< 5>)° (5.23)
sweep 3

I1 faut faire attention que la séquence d’étapes de I'algorithme est généralement corrélée :
I’état de I’étape k + 1 dépend de celui de I'étape k. C’est notamment visible au voisinage
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FIGURE 5.3 — En haut : valeur absolue de la moyenne du spin moyen en fonction de la
température, pour une série de simulations Metropolis. Modele d’Ising 2-D a n = 4 plus
proches voisins sur un réseau périodique de 10 x 10 spins. Pour chaque simulation, on
a pris la moyenne du spin moyen sur 901 états microscopiques produits aux différantes
étapes (balayages) de l'algorithme. En bas : idem, sauf que l'on a pris la moyenne de la
valeur absolue du spin moyen.
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du point critique, par exemple T = 2.2 sur la FIG.[5.2], ot le systéme met un nombre élevé
d’étapes pour faire basculer le spin moyen. Pour s’assurer que les moyennes et variances
ont un sens statistiquement correct, on doit faire plusieurs simulations indépendantes
du point de vue des probabilités, c¢’est-a-dire un nombre Ny, de simulations completes
ayant chacune Ngyeep €tapes, a partir de conditions initiales différentes et non corrélées.
On calcule ensuite la moyenne et la variance sur cet ensemble de Ny, simulations, I’écart-
type nous donnant une estimation de la barre d’erreur du résultat. De plus, pour chaque
simulation, on laisse un certain nombre détapes pour que le systeme “oublie” sa condition
initiale. On ne prend les mesures des grandeurs physiques qu’apres cette phase de la
simulation. Dans ce qui suit, on a pris 100 étapes dans cette phase.

En effectuant une moyenne de la valeur absolueﬂ du spin moyen § sur les étapes, < |5| >,
on obtient une quantité proportionnelle a I'aimantation du systeme. En effectuant plu-
sieurs simulations & plusieurs températures, on obtient les résultats de la FIG.[5.3] Autour
de T' =~ 2.3, on remarque la chute abrupte de 'aimantation, indiquant une transition de
phase.

Le modele d’Ising peut étre résolu analytiquement, donnant une température de transition
T, = 2.27, et un comportement au voisinage de cette température < |5| >~ (T'c—T)? avec
un exposant critique f = 1/8. La simulation de Metropolis donne donc des résultats en
bien meilleur accord avec la solution exacte que la solution obtenue avec I’approximation

du champ moyen, qui donne, elle, T, = 4 et § = 1/2, comparer les FIGS. et , et
voir 'Eq.(5.19)).

Une mesure de la fluctuation de 5 est fournie par la variance o2 de cette quantité. Le
théoreme de fluctuation - dissipation de la mécanique statistique donne le résultat que
la susceptibilité magnétique est donnée par x,, = o?u?/kpT. Les résultats d’une série
de simulations avec les mémes parametres qu’a la FIG. sont montrés a la FIG. 5.4
On remarque la brutale augmentation de cette quantité au voisinage de la température
critique. Notre systeme de spins du modele d’Ising présente une susceptibilité magnétique
tres importante au voisinage de la température de transition de phase. En fait, pour un
systéme de taille infinie (nombre infini de spins), il s’avere méme que x tend vers U'infini
lorsque T' — T..

On peut faire une analyse intéressante de 1’énergie du systeme E en fonction de la
température T'. Les résultats numériques montrent que la “pente” dE/dT est maximale
en T =T,. En fait, cette pente est infinie dans la limite d'un systeme de taille infinie. Ce
qui veut dire que la chaleur spécifique du systeme tend vers I'infini lorsqu’on s’approche
de la température critique T,. Le théoreme de fluctuation - dissipation donne une chaleur
spécifique C' = 0(E) /kgT?, ot 0?(E) désigne la variance de I’énergie moyenne par spin.

2. On prend la valeur absolue du spin moyen car, comme noté plus haut, on s’intéresse a ’aimantation
en valeur absolue, et non au fait de savoir si cette moyenne est positive ou négative, états qui sont
symtriquement probables.
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FIGURE 5.4 — Susceptibilité magnétique x,, obtenue & partir de la variance o du spin
pour les simulations de la FIG. (Xm = 0?u*/kgT).

Un tel comportement au voisinage de la température critique est caractéristique des tran-
sitions de phase appelées du 2e ordre, parfois aussi qualifiées de continues : ’'aimantation,
qui est la le dérivée de I'énergie libre par rapport a H, croit de fagon continue a partir
d’une valeur nulle a T' = T, lorsque la température décroit. La susceptibilité magnétique
et la chaleur spécifique, par contre, 2e dérivées de 1’énergie libre, changent de facon dis-
continue et présentent une singularité au point critique. Les transitions de phase dites du
premier ordre présentent des discontinuités de la premiere dérivée de 1’énergie libre. Elles
impliquent I'existence d’une chaleur latente. Par exemple, la solidification / liquéfaction
et I’ évaporation / condensation sont des transitions de phase du premier ordre.

Il est intéressant d’étudier 'effet d’'un champ extérieur H sur le modele d’Ising avec 1’al-
gorithme de Metropolis. Pour une température 7' = 0.25, bien inférieure a la température
critique T, = 2.27, on montre a la FIG. le spin moyen en fonction du champ appliqué
H. 1l y a transition abrupte, mais le fait remarquable est que la valeur du champ H a
laquelle cette transition se produit dépend de I'histoire du systeme : si on augmente le
champ H a partir d’'une valeur négative, il faut plus que juste inverser la direction du
champ magnétique pour faire basculer les spins dans ’autre sens : on remarque que le spin
moyen reste négatif méme pour des valeurs de H positives entre 0 et 2.5. Réciproquement,
si on fait décroitre le champ H a partit d’une valeur positive, on trouve des cas ou le spin
moyen reste positif alors que le champ H est négatif, entre 0 et —2.5. C’est le phénomene
d’hystérese. Le champ nécessaire a faire basculer les spins dans 'autre sens est le champ
de démagnétisation.

En augmentant la température, on verra (suggestion d’exercice) que la valeur du champ
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FIGURE 5.5 — Moyenne du spin en fonction du champ magnétisant appliqué H (nor-
malisé a J/pu) pour une température normalisée kgT/J = 0.25. Modéle d’Ising 2-D a
n = 4 plus proches voisins sur un réseau périodique de 10 x 10 spins, 1000 étapes de
l’algorithme de Metropolis pour chaque simulation. Les simulations avec cercles bleus ont
été effectuées pour des valeurs de H croissantes, celles avec les croix rouges pour des
valeurs de H décroissantes. On remarque le phénomeéne d’hystérese.

de démagnétisation diminue, et que donc le cycle d’hystérese diminue de taille & mesure
que 'on s’approche de la température de transition 7,.. Pour T" > T, la discontinuité de
I’aimantation disparait completement.

Un comportement similaire se produit pour la transition de phase entre liqude et gaz :
il existe une température critique 7, au-dela de laquelle les phases liquide et gazeuse ne
sont plus séparées par une transition de phase : on passe continiment de 'une a 'autre.

Remarque : pour une taille finie du systeme du modele d’Ising 2-D, on peut montrer
que le cycle d’hystérese en fait disparait. Si on effectuait des simulations Metropolis tres
longues, on verrait un basculement des spins au bout d'un certain nombre d’étapes, qui
tend exponentiellement vers 'infini pour 7" — 0. La probabilité de basculement des spins
devient en effet exponentiellement petite, et il faudrait faire des simulations infiniment
longues pour l'observer. Le fait que 'on observe des valeurs de spin moyen ayant la
direction opposée a celle du champ magnétisant signifie qu’en fait la simulation n’a pas
permis encore d’atteindre I’état d’équilibre. Le systeme est dans un état dit métastable
sur la période de la simulation.

Pour en savoir plus : Bibliographie, Refs. [20]-]24]
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Annexe A

From Taylor to Abramowitz to
Pascal

A.1 Even order derivatives

We are going to obtain finite difference expressions for derivatives of order 2 and 4. We
start from Taylor series expansions around grid points z;, with f; = f(x;) :

8 16 32

_ 2 3 ,(3) 4 r(4) 5 p(5) 6

fie = fy=2hfi 202 f] — G f Y — S - 00) (A1)
1 Lz, Lo 15,0 6

fi-1 = fj—hf;+§h fj/',—ah [ +ﬂh f; —1—20h ;7 +0m%)  (A2)
1 1 1 1

fien = fiHhfi 4 Sh ]+ o f;3>+ﬁh4f;4>+mh5 O roms  (A3)

, L8 16 32
five = fi+2nf+ 202 f) + 6h3 £+ o 9+ T O romt)  (A4)

Odd order derivatives will be eliminated by taking sums of pairs of these expressions.

Eq.(A.2) + Eq.(A.3) and Eq.(A.1) + Eq.(A.4) give respectively :
1
fioat fin = 205+ 12+ h Y+ O0) (A.5)
4
fia+ free = 20+ 405+ Sh Y+ OK) (A.6)

To obtain first order accurate second order derivative f', we use Eq. 1' neglecting
O(h*) :

R f) = fis = 2fi + [ + O(Y) = f] = % (fim1 —2f; + fi+1) + O(h?) (A7)

To obtain first order accurate fourth order derivative f;4), we eliminate f}' from 4*Eq.(A.5

- Eq. :

1" = % (fj—2 = 4fjm1 + 65 = Afj1 + fi2) + O(B?) (A-8)

191



ANNEXE A. FROM TAYLOR TO ABRAMOWITZ TO PASCAL

. . . .. 4
To obtaln second order accurate second order derivative f, we eliminate f]( ), from

16*Eq.(A.5) - Eq.(A.6) :

—fia +16f;1 +16f11 — fio = 30f; + 12h° f] + O(R°)

fi= 1282 (=fi—a + 16,1 = 30f; + 16f;41 — fiy2) + O(RY) (A.9)

Remark 1 : For a given order of accuracy in h, increasing the order of the derivative
requires an increasingly large number of grid points : compare Eq. and Eq..
Remark 2 : For a given order of derivative n, increasing the order of accuracy requires
an increasingly large number of grid points : compare Eq. and Eq..

A.2 0Odd order derivatives

Remark that the finite difference expressions for odd order derivatives are centered, i.e.
they are expressed at half-integer grid point numbers, i.e. half way between grid points.
The method is therefore the same as for even order derivatives, except that we make
Taylor series expansions around half-integer grid point z;41/2, With fj11/2 = f(2;41/2).

3 27 3
ficv = fiv2 — §hf]/'+1/2 h2f]+1/2 48h3 ](+)1/2 384h4f(+1/2 + O(h°YA.10)

9
8
1 / 1 2 3 4 5 A
fj = fj+1/2 - §hfj+1/2‘|‘ 8h fj+1/2 h f]+1/2+ @h f+1/2—|—0(h I .11)
1
8
9
8

1

fiv1 = fj+1/2 + §hfj/'+1/2 +3 h2f3+1/2 48h3f]+1/2 + @h4f]+1/2 + O(h5XA 12)
3 27 81

fivz = [irp+ §hf]/'+1/2 + o e+ 8h3fj+1/2 384 h4f]+1/2 + O(h°YA.13)

We eliminate f;i1/2 (which is in principle not known to us : f is sampled on integer
grid points only) and even order derivatives by taking differences of these expressions,

Eq.(A.12)-Eq.(A.11) and Eq.(A.13)-Eq.(A.10) :
fj+1 - fj = hfg/‘+1/2 h3f3+1/2 + O(hs) (A-14)

27
fj+2—fj—1 = Shf]/'+1/2 24

3

e OR) (A.15)

To obtain first order accurate first order derivative f}, we use Eq. 1) neglecting O(h?) :

fivape = (fy+1 i)+ 01 (A.16)

To obtain first order accurate third order derivative f]@), we eliminate f; from Eq.(A.15

- 3*Eq.(A.14) :

£ = < Fie1 +3f5 = 3f5e1 + fir2) + O(h?) (A.17)
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A.3 Pascal triangle

An alternative way to derive first order accurate finite difference formulae for derivatives
is the following. Consider first two neighbouring grid points j and j+1. We have

Frarjs = 7 (Fron = ) +O(?) (A1)

We then consider two adjacent grid points j-1 and j. We have

fira =3 (i = fi0) + O) (A19)

We apply once more the first order derivative finite difference expression, but this time
to the function f’, considering the half integer grid points j-1/2 and j+1/2 :

1
J = (= 5 (= Fap) + O0) (A.20)

Substituting Egs.(A.18}]A.19) into Eq.(A.20) we get
1
1j = 75 i =25+ fi21) + O(17) (A.21)

To obtain the third order derivative, we write down Eq.(A.21)) for f” at grid point j+1,
and use the finite difference expression Eq.(A.18)) for the first derivative of f”.

And so on...

We can obtain the coefficients of the finite difference expressions for derivatives by
constructing Pascal triangle

(0) 1
(1) 11
(2) 121
(3) 1331
(4) 146141
and then putting alternate 4+ and - signs
0 +1
1 -1 +1
+1 -2 +1

~1 +3 -3 +1
+1 —4 46 —4 +1

~—~ —~ ~—~ —~
[\
—_ O D — T
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A.4 Forward finite differences

The idea is to start from Taylor expansions around point no j using expressions at forward

grid points, i.e. j+1, j+2, ..., see Eqs(A.3, |A.4]). From Eq.(A.3), neglecting O(h?), we

obtain the lowest order accurate, first order derivative :
, 1
fi= 7 (fj41 = 1)) (A.22)
Retaining terms up to h? an neglecting O(h?), we obtain from 4* Eq.(A.3)-Eq.(A.4)
4fj+1 - fj+2 = 3f] + thj/ + O<h3>

= )= 5 (5304 Afi = fjea) + O02) (423

Higher order in accuracy and higher order derivative expressions can be obtained by
considering further forward points.
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Annexe B

Intégration numérique

Soit le segment [a, b] et une discrétisation de N intervalles, avec les points de maillage z;,
i = 1..N + 1 équidistants de h. Soit une fonction f € C"(]a,b]), avec n un entier positif
“suffisamment grand”. Pour obtenir une approximation a

b
/ f(x)dz (B.1)

on a les formules suivantes.

B.1 Point milieu, trapezes, Simpson

— (a) Regle du point milieu : soit ;110 = (25 + 2i41)/2;
b N
/ F@)de =S F(in) + O(h?) (B.2)
a i=1
— (b) Regle des trapezes :
b N
[ Ha)dn =3 () + fainn)) /24 O, (B.3)
a i=1
— (c) Regle de Simpson :

b N
[ Hadds =37 G () + 4f (@) + fai) + ORY . (B

Ces formules, ainsi que I'ordre de 'erreur, O(h™), s’obtiennent a partir de développements
limités de la fonction f. Cela présuppose que f est de régularité suffisante. Considérons
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I'intervalle numéro i, [z;, z;41]. Soit ;.1 /2 le point milieu de cet intervalle. Le développement
de Taylor de f au voisinage de ce point donne

1 1
f(@iv1jo +€) = f(Tiyrye) +eflirp+ 562 2 T 663 12 +O(h) . (B.5)

Intégrant sur l'intervalle, on a
Tip1 +h/2 B3 .
"
| rwin= [ St Qe =i+ il t O0F) (B
la contribution des termes de puissance paire en h étant nulle.
La regle du point milieu (a) s’obtient en ne considérant que le premier terme de (B.6)).

Sur chaque intervalle, 'erreur est ainsi d’ordre h3. En sommant sur les N intervalles,
puisque N oc 1/h, erreur sur I'intégrale entre a et b est d’ordre h2.

La regle des trapezes (b) s’obtient en ne considérant que le premier terme de (B.6|) et
en substituant f;;;/o par les développements limités de f autour de ;41,2 en x; et x4,
c’est-a-dire 'Eq.(B.5]) avec e = —h/2 et +h/2, respectivement :

h /
Ji= fiv12 — Efi+1/2 +0(h?), (B.7)

h .,
Jir1 = fig12 + Efiﬂ/g +O(h?) . (B.8)

En faisant la moyenne des deux expressions ci-dessus, on a

fivip = = (fi + fir1) + O(R?) (B.9)

N —

et la formule des trapezes donne une erreur d’ordre h? pour chaque intervalle, donc d’ordre
h? pour l'intégrale entre a et b.

La regle de Simpson (c) s’obtient de et de l'expression aux différences finies (A.7)
pour f\,, [N.B. substituant o — h/2, j =i+ 1/2, j—1 =1, j+1—=i+1]:

1
Fape = gy (i = 2hinpa + fun) + O(2). (B.10)
On obtient ainsi
Tit1 h3 4 )
/, f(z)dr = hfip12 + o1 |12 (fi —2fiy12 + fi+1) +O(h7)| (B.11)
Tit1 h s
/' f(z)dr = G (fifl +4fiy12 + fifl) +O(h°) . (B.12)

L’erreur de la régle de Simpson est ainsi d’ordre h® pour chaque intervalle, et donc d’ordre
h* pour l'intégrale entre a et b.
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B.2 Meéthode de quadrature de Gauss

A la section précédente, on obtenait une estimation de l'intégrale en sommant, avec des
poids différents, la fonction f évaluée aux points milieux z;41/, et/ou aux points de bords
z; des intervalles de discrétisation.

L’idée de la méthode de Gauss est de choisir non seulement les poids, mais aussi les
abcisses, des points ou la fonction f est évaluée. Soit n un entier positif. On écrit la
contribution de l'intervalle numéro i, [z;, z;11], & 'intégrale :

Tit1 h n
[ r@i =5 3w + R (B.13)
z; j=1
avec I
Ty = 5L'1'+1/2 + Efj . <B14)

Les abcisses &; et les poids w; sont donnés dans la table ci-dessous. Le résidu (erreur) R,
est d’ordre p. La méthode de Gauss consiste a choisir judicieusement les poids w; et les
abcisses &; de telle sorte que la formule d’intégration soit ezacte pour un polynome de
degré 2n — 1.

n & w P
1 0 2 2
2 +./1/3 1 4
3 8/9 6

0
+/3/5 5/9
4| £/3/7VI20/35 | 1/2+5/(3VI) | 8
i\/3/7+@/35 1/2 — 5/(3v/120)
0 128/225 10
+4/245 — 14+/70/21 | (322 + 13+/70)/900
+1/245 + 144/70/21 | (322 — 13+/70) /900

B.3 Intégration de Monte Carlo

L’idée est de choisir les abcisses x; non pas selon un maillage régulier, mais “au hasard”,
c’est-a-dire selon une fonction de distribution de probabilité uniforme dans l'intervalle
[a, b]. Obtenir une séquence de N points aléatoires sur un ordinateur n’est pas si trivial :
I'ordinateur ne peut pas “jouer aux dés”, pour paraphraser un célebre physicien. Il faut
un algorithme, qui par définition est une séquence d’instructions déterministes. On ne
peut que simuler le caratere aléatoire : on parle de générateur pseudo-aléatoire.
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On obtient ensuite une approximation a l'intégrale :

/ @)z ~ b]_va L (B.15)

La question des erreurs de cette méthode est cruciale. Elle se base sur le théoreme central
limite. Si les f(z;) sont des variables aléatoires avec une variance non nulle, si elles
sont distribuées selon la méme densité de probabilité, et si elles sont indépendantes,
alors leur somme tend, pour N — oo, vers une variable aléatoire ayant une fonction
de distribution de probabilité normale, dont la variance est proportionnelle & v/N. La
variance de 'intégrale de Monte Carlo a donc une variance o proportionnelle a 1/ V/N.

La méthode de Monte Carlo pour estimer une intégrale est comparativement avantageuse
pour des intégrales a plusieurs dimensions d. Les méthodes des sections précédentes,
basées sur des maillages réguliers, nécessitent de 'ordre de N;,; = 1/h? évaluations de la
fonction f (a tous les points de maillage). Pour la méthode des trapeézes, par exemple,
lerreur est en h?. Comme h = Nt_ot1 / d, lerreur va comme Nt;tz /. Pour la méthode de
Simpson, 'erreur est en h* et donc en Nt;f /® Lerreur dans la méthode de Monte Carlo
est en Nt;tl/2 quel que soit le nombre de dimensions d. Ainsi, la méthode Monte Carlo
devient avantageuse par rapport a la regle des trapezes pour d > 4, et par rapport a la
regle de Simpson pour d > 8.
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Annexe C

Solution analytique de I’équation
d’advection-diffusion

Nous allons obtenir la solution analytique de l’équation d’advection-diffusion en 1D,

B (T19) :

of  of P
8t+U8x_D8x2_O . (C.1)
avec la condition initiale
f(z,0) = Né(x — z9) , (C.2)

avec ro donnée, ce qui correspond a placer, en t = 0, toutes les N particules a la méme
position zy. Soit f(k,t) la transformée de Fourier spatiale de f(z,1),

R 1 +oo ‘
f(k,t) = E/ flx, t)e ™ dg . (C.3)
On a donc la transformée de Fourier inverse :
1 too .

Prendre la dérivée partielle par rapport a x revient, dans ’espace de Fourier,
a appliquer une multiplication par ik. L'Eq.(C.1)) s’écrit donc, dans 'espace de
Fourier : .

Of i api
E—l—zkvfjtk Df=0. (C.5)

La solution pour f s’obtient facilement :
f(k.t) = f(k,0)exp [—(ikv + k*D)t] (C.6)

Pour obtenir n(z,t), il faut revenir dans 'espace réel, autrement dit appliquer une trans-
formée de Fourier inverse. Ici, la fonction f est sous la forme d’un produit de fonctions :
f=f(k,00G(k,t), avec

G(k,t) = exp [—(ikv + k2D)t] . (C.7)
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D’ADVECTION-DIFFUSION

Or, la transformée de Fourier inverse d'un produit de fonctions est une convolution dans

I’espace réel :

1 [
f(l'7t) = TV f('r,v O)G(l’ - xlat) dx' ) (08)
V2T J -
ot G(z,t) est la transformée de Fourier inverse de G(k, 1) :
1 i 2 +ik
G(z,t) = — exp —(tkv + k“D)t e dk ; (C.9)
V 2 /oo
G(x,t) = Y ehle—vt) g =k?Dt g} (C.10)
T V2T J o ' '
On utilise la formule .
/ e P et = ﬁeq2/4p2 (C.11)
—c0 p
avec p = VDt et ¢ = i(x — vt), pour obtenir :
1
G({E, t) == \/ﬁ e—(z—vt)2/4Dt . (012)

Insérant cette expression, et la condition initiale Eq.((C.2)) dans I’expression de convolution

Eq.(C.8]), on obtient :

1 +oo 1

T,t) = — Né(z' —z exp [—(z — &’ — vt)?/4Dt] da’ C.13
f()\/%foo ( 0)\/@1)[( )"/4D1] (C.13)

En utilisant la propriété de la fonction ¢,

+o0
/ 5z’ — o) f(z')da' = f(wo) (C.14)
on obtient
N

xr,t) = exp [—(x — zo — vt)?/4Dt]|. C.15

On obtient bien I'Eq.(4.20)).
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Annexe D

Coeflicient de diffusion et marche
aléatoire

Nous allons établir la relation entre la variance d’une marche aléatoire et le coeflicient de
diffusion.

Soit une marche aléatoire résultant d’une succession de M “pas” &;, variables aléatoires
statistiquement indépendantes, de moyenne nulle < & >= 0 et de variance non nulle
<& >£0.

La position finale x = Zf\il & est une variable aléatoire de moyenne nulle, < = >=
S M <& >=0, mais de variance non nulle :

M M M
<z?>= <<Z§Z> (Z§]>> =) <>+ <&G>=M<g> . (D)
i=1 j=1 i=1 i#j
On peut définir le temps caractéristique 7 par le temps entre deux “pas”, c’est-a-dire
entre deux collisions successives, et le libre parcours moyen A,g, par

)\mfp =13/ < 612 > . (DQ)

Le nombre de “pas” (de collisions) M pendant un intervalle de durée At est donc At/T,
et on a

At
<z’ >= TAfnfp : (D.3)

Considérons maintenant la description continue, soit I’équation de diffusion, Eq.,
que Pon prend ici en 1-D avec un coefficient de diffusion D constant et uniforme , Eq.([4.19)
avec une vitesse d’advection nulle (v = 0). Prenant le 2e moment de cette équation
(multipliant par z? et intégrant sur z), le premier terme donne

T on o [+ -
2y = — 2ndr = N —22 D.4
/_w o= g ) = Ny (D-4)
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ot N = [n(z,t)dx est le nombre total de particules et

1 [t
= N/ v n(x,t)dx . (D.5)

Le 3e terme donne, en intégrant par parties,

oo 9*n 1 A on
i 2 - — R 2 -
/_Oo x Da$2d$ [ D@x} OO—I—/_OO 8x( D)axd:r:
B ) ) +0o0 +oo 52 )
= [8:1:( D) ]_OO—/_OO @(az D)ndx
+oo
= —2D/ ndr =—2DN . (D.6)

On a donc, de (D.4)) et -

Ox?
NE—ZDN—O = 22 =22(0)+ 2Dt . (D.7)
On identifie 22 de la description continue (macroscopique) avec la variance < z% > de la
description de la marche aléatoire (microscopique). Pour une marche aléatoire, la variance

de la position initiale est nulle, et on a, pour l'intervalle de temps At,

< 2% >=2DAt|. (D.8)

Ainsi, on peut exprimer le coefficient de diffusion de la description continue (macrosco-
pique) en termes de grandeurs liées a la marche aléatoire (microscopique), a partir de

D3 et O :

At
D=2, (D.9)
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Annexe E

Equations d’ondes en eaux peu
profondes

Nous allons établir les équations régissant les ondes a la surface de 1'eau, sous certaines
hypotheses simplificatrices, appelés “ondes en eaux peu profondes” (shallow water wave
equations). A une dimension d’espace, nous montrerons que ’on obtient une équation de

la forme de 'Eq.(4.62)), avec une vitesse de propagation donnée par I'Eq.(4.63).

Considérons un fluide incompressible de densité (constante) py. Au repos, la profondeur
est donnée par une fonction ho(z) donnée et la vitesse du fluide est nulle vy = 0. En
présence de perturbation (Fig. [E.1]), la profondeur et la vitesse sont

h(z,t) = ho(z)+ oh(z,t) (E.1)
U(x,t) = 04 6v(x,t) (E.2)

Les équations de base sont obtenues de ’équation du mouvement, ou 2e loi de Newton,
pour une particule fluide de la surface de 'eau, et de ’équation de continuité exprimant
la conservation de la masse au cours du mouvement :

dv S
po— = —VP+pog , (E.3)
dt
oh
— + V- (hv) =0. E.4
v ) (B.4)
Projetant I'Eq.(E.3|) sur 'axe vertical y,
dv, oP
v E.5
Po a By Pog (E.5)
On fait I’hypothese que
dv,
') E.6
| <9 (E.6)
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<
Z|

surface océan perturbée

\
/
/
surface océan au repos /

fond océan

Ficure E.1 — Vague sur ['océan.

qui revient a supposer que le mouvement vertical est suffisamment lent et varie lentement,
de sorte que 'accélération verticale est négligeable par rapport a la pesanteur. Ainsi,

oP
a_y = —Pog - (E.7)

Projetant I'Eq.(E.3) sur I’axe horizontal x,

dv, oP
T 27 E.8
PO Ox (E8)
Ecrivant N = —VP, et sachant que le gradient de pression est normal aux isobares et
que la surface de I'eau est une isobare, et définissant I’angle « par
doh
tana = — (E.9)
x

(voir Fig. , a est l'angle que fait N avec la verticale, tel que N, = —0P/0x =
—|N|sinaw, N, = —0P/0y = |N|cosa. Avec 'Eq.(E.7), |[N|cosa = poyg, et ainsi, il

vient : q 96h
0 (;th = —|N|sina = —ppgtana = —Pog (E.10)

Ainsi,

ov, v, doh
. = — . E.11
ot v ox e ( )
En supposant un probléeme unidimensionnel en x (donc 9/0y = 0/0z = 0), 'Eq.(E.4))
s’écrit

oh 0
E + %(hvx) =0. <E12)
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Séparant 1’équilibre de la perturbation, Egs.(E.1HE.2), on obtient, apres linéarisation :

dév, ~ Odh
" E.1
déh 0
— 4+ — =0]. E.14
5 + o (hodv,) =0 (E.14)
Prenant 0/0t de I'Eq.(E.14) et substituant ddv, /0t de ’'Eq.(E.13), on obtient :
9*6h 0 ddh

Il s’agit bien d’une équation de la méme forme que I'Eq.(4.62)). On identifie ainsi

u(z) =/ gho(x) (E.16)

Equation de balance d’énergie

On peut obtenir une équation de type conservatif pour une quantité que I'on identifiera
avec I'énergie de 'onde. Multipliant 1'Eq.(E.13)) par hodv,,

00U, doh
0 dv2 0 0

De I'Eq.(E.14)), on a d(hgdv,)/0x = —0dh/0t, et il vient

o (1 . L N 0 j
5 (§h0(5vz) + §g(5h) ) + o (ghodv,0h) =0]. (E.19)

C’est une équation de continuité pour la densité d’énergie de ’onde

€= %ho(m)? + %g(éh)2 (E.20)

et on identifie le flux d’énergie de ’onde

S = ghgdvoh|. (E.21)

N.B. : Le probleme 2D que nous avons résolu ici est tel que la coordonnée z est ignorable.
En d’autres termes, on a obtenu une description valable pour une “tranche” d’épaisseur
L, arbitraire. Pour obtenir des quantités en unités physiques habituelles, on notera que
Epo/ L, est une énergie par unité de volume, et Spy/ L, est une énergie par unité de surface
et par unité de temps. Multiplier ces quantités par une constante py/L, ne change pas
leur propriétés de conservation.

Physique Numérique LV SPC EPFL 205



ANNEXE E. EQUATIONS D’ONDES EN EAUX PEU PROFONDES

206 Physique Numérique LV SPC EPFL



Bibliographie

1]
2]

N.J. Giordano and H. Nakanishi, Computational Physics (2nd Edition) Prentice Hall
(2006) ISBN 0-13-146990-8

F.J. Vesely, Computational Physics, An Introduction (2nd Edition), Kluwer Acade-
mic / Plenum Publishers, New York (2001) ISBN 0-306-46631-7

R. Fitzpatrick, Computational Physics : An Introductory Course

http: / /farside.ph.utexas.edu/teaching/329/lectures/lectures.html

Tao Pang, An Introduction to Computational Physics, Cambridge University Press
(1997) ISBN 0-521-48592-4

D. Yevick, A First Course in Computational Physics and Object-Oriented Program-
ming with C++, Cambridge University Press (2005) ISBN 0-521-82778-7

Ce site recense plusieurs liens vers des références librement accessibles online :
http: //www.freebookcentre.net /Physics/Computational-Physics-Books.html

F.-J. Elmer, The Pendulum Lab, Pendule avec effets nonlinéaires. Inclut un “labo-
ratoire virtuel” de simulation

http://www.elmer.unibas.ch /pendulum /index.html

P. Falstad, Math and Physics Applets, Nombreux applets de simulations de physique.
Tres utile pour illuster un cours de physique générale.

http://www.falstad.com /mathphysics.html

J. Boris, in Proceedings of the Fourth Conference on Numerical Simulation of Plas-
mas (Naval Research Laboratory, Washington D.C., 1970), p. 3

O. Buneman, Journal of Computers Physics 1, 517 (1967)

C. Birdsall and A. Langdon, Plasma Physics Via Computer Simulation (McGraw-
Hill, Inc., New York, 1985), p. 356

G.L. Baker and J.P. Gollub, Chaotic Dynamics : An Introduction, Cambridge Uni-
versity Press (1996) ISBN 0521476852

J.N. Reddy, Introduction to the Finite Element Method, McGraw-Hill (1993) ISBN
0070513554

0.C.Zienkiewicz, R.L. Taylor and J.Z. Zhu, The Finite Element Method : Its Basis
and Fundamentals (6th Edition), Elsevier (2005) ISBN 0-7506-6320-0

W.G. Strang and G.J. Fix, An Analysis of the Finite Element Method (2nd Edition),
Wellesley Cambridge (2008) ISBN 0980232708

207


http://farside.ph.utexas.edu/teaching/329/lectures/lectures.html
http://www.freebookcentre.net/Physics/Computational-Physics-Books.html
http://www.elmer.unibas.ch/pendulum/index.html
http://www.falstad.com/mathphysics.html

[16]

[17]

[21]
[22]
[23]
[24]

[25]

BIBLIOGRAPHIE

J.M. Thijssen, Computational Physics, Cambridge University Press (1999) ISBN
0521575885

Claude Cohen-Tannoudji, Bernard Diu, Franck Laloé, Mécanique quantique, Vol.1
et 2, Hermann (1997) ISBN 2705660747, ISBN 270566 1212

Charles Kittel, Solid State Physics, Wiley (1995) ISBN 0471111813

Ashcroft et Mermin, Physique des solides, Brooks Cole (2003, version francaise du
livre paru en 1976) ISBN 2868835775

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equa-
tion of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087
(1953)

D.P. Landau and R. Alben, Monte Carlo Calculations as an Aid in Teaching Statis-
tical Mechanics, Am. J. Phys. 41, 394 (1973)

K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics,
Springer-Verlag, New York (1992)

W. Greiner, L. Neise and H. Stocker, Thermodynamique et mécanique statistique,
Springer-Verlag, Berlin (1999)

A. Pasquarello, Simulation numérique de systemes physiques I - II / Computer si-
mulation of physical systems I - II, cours a option de Master EPFL

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions : with Formu-
las, Graphs and Mathemetical Tables, Dover Publications (1965) ISBN 0486612724

208

Physique Numérique LV SPC EPFL



	Introduction
	Présentation du cours
	Discrétisation
	Erreurs de troncature et d'arrondi
	Différences finies et développements limités
	Convergence numérique
	Stabilité numérique

	Evolution Temporelle - Problèmes à valeurs initiales
	Schéma d'Euler explicite
	Exemple: force de visosité
	Généralisation à un système d'équations couplées

	Désintégration. Modélisation statistique (Monte Carlo). 
	Applications du schéma d'Euler explicite
	Véhicule avec force de traînée aérodynamaique
	Rentrée dans l'atmosphère
	Balistique avec rotation: portance, effet Magnus

	Instabilité numérique - schéma d'Euler explicite - mouvements oscillatoires
	Desciption de l'instabilité numérique - oscillateur harmonique
	Analyse de stabilité du schéma d'Euler explicite: propagation de l'erreur
	Analyse de stabilité du schéma d'Euler explicite: solution analytique des équations discrétisées
	Vérification de la conservation de l'énergie, schéma d'Euler explicite

	Schéma d'Euler implicite
	Schéma d'Euler semi-implicite
	Schémas symplectiques: Euler-Cromer, Verlet et variantes
	Algorithme d'Euler-Cromer
	Algorithme de Verlet et ses variantes
	Analyse de la stabilité du schéma de Verlet
	Extension de Verlet à des forces dépendant explicitement du temps et de la vitesse

	Schémas de Runge-Kutta
	Applications à divers systèmes oscillants
	Pendule amorti
	Pendule avec excitation extérieure. Résonance. Régime chaotique.
	Section de Poincaré. Attracteurs étranges. Divergence des orbites.
	Pendule articulé. Chaos dans un système conservatif.

	Gravitation. Schémas adaptatifs
	Généralités: 1 ou 2 corps - mais pas plus
	Problème à 3 corps
	Schémas adaptatifs: pas d'intégration variable
	Solide en rotation chaotique dans un champ gravitationnel

	Particules dans un champ magnétique
	Dérive des particules dans des champs inhomogènes
	Schéma de Boris-Buneman


	Intégration Spatiale: Problèmes aux limites
	Cas 1-D: méthode de tir
	Modèles fluides d'atmosphère planétaire. Singularité de l'équation
	Distribution de pression, densité et température au coeur du soleil

	Diifférences finies. Equation de Poisson
	Electrodynamique et limite statique
	Equations aux différences finies. Formulation matricielle
	Résolution du système linéaire. Méthodes directes (Gauss) et itératives (Jacobi, Gauss-Seidel, SOR)
	Electrostatique en 2-D, différences finies, GS-SOR. Convergence des itérations
	Optimisation et complexité de l'algorithme
	Géométrie plus complexe

	Forme variationnelle. Eléments finis
	Description de la méthode
	Elements finis - Equation de Poisson 1-D

	Magnétostatique - Biot-Savart

	Intégration Spatio-Temporelle
	Advection-diffusion
	Advection
	Diffusion
	Stabilité du schéma numérique: analyse de Von Neumann
	Diffusion et marche aléatoire

	Ondes
	Ondes en milieu homogène
	Stabilité du schéma numérique: analyse de Von Neumann
	Ondes en milieu inhomogène. Vitesse de phase variable
	Approximation analytique: la méthode WKB

	Schrödinger
	Schéma semi-implicite de Crank-Nicolson
	Particule libre
	Barrière de potentiel: résonances et effet tunnel
	Oscillateur harmonique
	Etats stationnaires ou états propres de la particule


	Méthodes statistiques
	Modèle d'Ising
	Statistique de Boltzmann
	Théorie du champ moyen
	Monte Carlo, algorithme de Metropolis


	From Taylor to Abramowitz to Pascal
	Even order derivatives
	Odd order derivatives
	Pascal triangle
	Forward finite differences

	Intégration numérique
	Point milieu, trapèzes, Simpson
	Méthode de quadrature de Gauss
	Intégration de Monte Carlo

	Solution analytique de l'équation d'advection-diffusion
	Coefficient de diffusion et marche aléatoire
	Equations d'ondes en eaux peu profondes
	Bibliographie

