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A rendre jusqu’au mardi 18 mars 2025 sur le site Moodle

2 Aiguille aimantée dans un champ magnétique oscillant. Mode
propre. Excitation paramétrique. Chaos. Poincaré. Attracteurs
étranges.

Figure 1 – Aiguille aimantée de moment magnétique µ⃗ dans un champ magnétique B⃗(t).

Une aiguille aimantée de moment magnétique µ⃗, considérée comme une tige mince de masse m,
longueur L peut pivoter autour de son centre de masse G dans le plan horizontal (x, y), voir Fig. 1.
Elle est plongée dans un champ magnétique variable :

B⃗(t) = (B0 +B1 sin(Ωt))e⃗x (1)

avec des amplitudes B0 et B1 données et une fréquence angulaire Ω donnée. On rappelle qu’un champ
magnétique exerce un couple de forces M⃗ = µ⃗× B⃗. On rappelle aussi que l’énergie potentielle d’un
moment magnétique dans un champ magnétique constant B⃗0 est Epot = −µ⃗ · B⃗0. En plus, l’aiguille

est soumise à un couple de forces de viscosité M⃗v = −κθ̇e⃗z.
Le but de l’exercice, du point de vue physique, est de vérifier les propriétés des petits mouvements

(mode propre, fréquence propre), avant de se focaliser sur différents phénomènes non-linéaires :
excitation paramétrique, chaos, attracteurs étranges.

Du point de vue numérique, le but est d’introduire, tester et vérifier les propriétés d’ un schéma
symplectique, le schéma de Verlet.

2.1 Calculs analytiques [12 pts]

(a) [5 pts] Etablir les équations différentielles du mouvement de l’aiguille et les écrire sous la forme
dy/dt = f(y, t), avec y = (θ, θ̇).

(b) [4 pts] Ecrire l’expression de l’énergie mécanique Emec de l’aiguille. Est-elle conservée ? Si non,
écrire l’expression de la puissance des forces non-conservatives Pnc.
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(c) [3 pts] Considérer le cas sans excitation, B1 = 0, et sans viscosité, κ = 0. Linéariser les
équations du mouvement au voisinage du point d’équilibre θeq = 0 et calculer la fréquence
angulaire propre ω0 et le mode propre correspondant θ(t).

2.2 Implémentation en C++

Télécharger le fichier Exercice2 student.zip du site Moodle. Dans le code, il faut implémenter le
schéma de Verlet, avec son extension pour des forces dépendant de la vitesse, Eqs.(2.128)(2.129)(2.132)
des Notes de Cours, Section 2.7.4. Il faut aussi implémenter le calcul de l’énergie mécanique et celui
de la puissance des forces non conservatives. En plus des paramètres d’input physiques (m, L, µ, B0,
B1 et Ω) et les conditions initiales (θ0 et θ̇0), les autres paramètres d’input importants sont le nombre
N de périodes d’excitation que l’on simule (i.e. le temps final sera tfin = NT , avecT = 2π/Ω), et le
nombre de pas de temps par période d’excitation nper (i.e. le pas de temps sera ∆t = T/nper).

Important : il vous faut au moins une fois sur les deux sessions d’exercices montrer
votre code à votre assistant.

2.3 Simulations et Analyses [33 pts]

On effectue des simulations avec le programme que l’on vient d’écrire et de compiler. La visualisation
des résultats numériques se fait avec Python (ou Matlab).

On prendra les valeurs suivantes : m = 0.075kg, L = 0.08m, µ = 0.2J/T, B0 = 0.01T.
(a) [4 pts] Petits mouvements. Mode propre.

On considère le cas sans excitation, B1 = 0, et sans viscosité, κ = 0, et une condition initiale
proche du point d’équilibre stable, θ0 = 10−6, θ̇0 = 0. Simuler N = 3 périodes théoriques. On
mesure l’erreur numérique au temps tfin comme

δ =

√
ω2
0(θ(tfin)− θa(tfin))2 + (θ̇(tfin)− θ̇a(tfin))2, (2)

où θa(t) est la solution analytique et ω0 la fréquence angulaire propre. Prendre des nper différents
et effectuer une étude de convergence de l’erreur δ en fonction de ∆t.

(b) [8 pts] Excitation paramétrique.
On considère maintenant une excitation B1 = 0.002T, avec une fréquence Ω = 2ω0, où ω0 est
la fréquence angulaire du mode propre, mais toujours pas de viscosité : κ = 0. On prend une
condition initiale proche du point d’équilibre stable, θ0 = 10−3, θ̇0 = 0. On simule N = 100
périodes d’excitation. Illustrer et décrire qualitativement les solutions obtenues : θ(t), orbite
dans l’espace de phase (θ, θ̇), Emec(t), comparaison de dEmec(t)/dt avec Pnc(t).
Faire un étude de convergence de la position finale θ(tfin) avec ∆t.

(c) [8 pts] Sections de Poincaré. Cas sans amortissement.
Pour les mêmes paramètres physiques qu’au cas précédent, faire des sections de Poincaré pour
diverses conditions initiales, et pour un temps de simulation de plusieurs milliers de périodes
d’excitation, N ∼ 5000 − 10000. Une section de Poincaré est l’ensemble des points de l’espace
de phase (θ, θ̇) collectés à chaque période d’excitation, i.e. aux temps tj = jT , avec j ∈ N. En
pratique, cela revient à prendre tous les nper pas de temps numériques. Indication : ne pas faire
l’output de tous les points de la trajectoire, seulement la section de Poincaré, pour éviter les
fichiers trop volumineux.

(d) [8 pts] Chaos, stabilité des orbites (Lyapunov). Etudes de convergence pour un cas
chaotique et pour un cas non-chaotique. Cas sans amortissement.
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Dans cette section, il suffit de simuler un temps final de N = 100 périodes d’excitation. Toujours
pour les mêmes paramètres physiques qu’au cas précédent, choisir deux conditions initiales, l’une
donnant un comportement chaotique, l’autre non. Pour chacune de ces deux conditions initiales,
faire une paire de simulations ”quasi-jumelles”, θa(t) et θb(t) obtenues avec des conditions
initiales différant d’un angle de 10−6. Calculer la ”distance” entre les simulations de chaque
paire au cours du temps,

δab(t) =

√
ω2
0(θb(t)− θa(t))2 + (θ̇b(t)− θ̇a(t))2, (3)

avec ω0 la fréquence angulaire propre. Illustrer et discuter le résultat, en particulier sur la
différence entre le cas chaotique et le cas non-chaotique.

(e) [5 pts] Chaos, attracteurs étranges. Cas avec amortissement.
On prend cette foisB1 = 0.018T, κ = 2·10−5, en gardantB0 = 0.01T et Ω = 2ω0. On effecture de
très longues simulations, N ∼ 5000− 10000. Indication : ne pas faire l’output de tous les points
de la trajectoire. Obtenir les sections de Poincaré pour des simulations ayant des conditions
initiales très différentes l’une de l’autre (par exemple (θ0, θ̇0) = (2, 12) et (θ0, θ̇0) = (−1,−8)).
Discuter qualitativement les résultats.

(f) [max 5pts] Facultatif. Le but de cette section est de stimuler votre créativité. On donne
ci-dessous quelques pistes possibles pour aller plus loin, mais n’hésitez pas à vous lancer si vous
avez d’autres idées.

(i) Pour le cas (e), faire une analyse de stabilité des orbites avec la procédure indiquée en
(d).

(ii) A partir du cas physique (e), changer l’amplitude d’excitation B1 et déterminer les plages
chaotiques et non-chaotiques.

(iii) Simuler la stabilisation non-linéaire de la position d’équilibre (linéairement) instable
θeq = π.

2.4 Rédaction du rapport en LATEX, soumission du rapport en pdf et du code
source C++

(a) Rédiger un rapport demaximum 10-12 pages dans lequel les résultats sont présentés, analysés
et discutés.

(b) Préparer le fichier du rapport en format pdf portant le nom RapportExercice1_Nom1_Nom2.pdf.

(c) Préparer le fichier source C++ Exercice1_Nom1_Nom2.cpp.

(d) Le lien de soumission est ici.

En plus des points mentionnés ci-dessus, [5 pts] sont attribués pour la qualité générale de votre
travail : qualité rédactionnelle du rapport, mais aussi participation en classe en interaction avec les
assistants.
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