Cours 13

Etats non-liés
= Saut de potentiel : énergies inférieures a la hauteur
» Saut de potentiel : énergies supérieures a la hauteur

= Barriére de potentiel : régime de transmission et effet tunnel



Saut de potentiel

E , E,

zone classiqguement interdite
Classiquement

= E >V, (par exemple pour E,) la particule continue a se déplacer vers la droite,
mais avec une énergie cinétique plus faible.

= E <V, (par exemple pour E,) la particule arrive jusqu’a x, ou V(x,) = E,, mais
n‘arrive pas a pénétrer la zone ou V(x) > E, (zone classiquement interdite)



Saut de potentiel en mécanique quantique

Par simplicité, considérons un saut de potentiel carré

Cherchons les solutions stationnaires E < V.

On définit deux zones, la et la , ou le potentiel est plat.



Forme de la function d’'onde

Vo
E
0 X
h® 9%¢,(x) _ _ h® 9%, (x) _ 3
om 32 i P (Xx) o 32 \(E | VO);¢”(X)
>0

<0

¢, = Cexp(ckx) + Dexp(—ckx) o, = Aexp(—-gx) + Bexp(gx)

k=v2mE /h g=+y2m(Vo- E) Ik



Nature des états propres

» Les états sont non-liés (particule non-confinée).

Pour x — — oo, les états propres se comportent comme des ondes planes.
Ces états propres ne sont pas carré-sommables.

Les états propres ne peuvent pas décrire une particule. |l faudra faire recours
a un paquet d'onde.



Conditions de normalisation

» Onimpose que la densité de probabilité reste bornée, c’est-a-dire qu’elle
ne diverge pas pour x — * co,

» |es solutions qui different par un facteur multiplicatif sont équivalentes.
Afin de distinguer ces solutions, on fixera de maniere arbitraire une condition
pour la function d'onde dans la limite x — + 0 (ou X — — o).

Ceci fera office de “normalisation” des états propres non-liés.



Etats propres : fonctions d’ondes

¢, = Cexp(ckx) + Dexp(—ckx) o, = Aexp(-gx) + B

W=\

Pour déterminer A, B, C et D, on doit utiliser les conditions aux bords :

(gx)

1. a x—> + o la densité de probabilité doit rester bornée (B=0 )
2. ax=0 continuité de la function et de sa dérivée

3. a Xx— —o “normalisation” de I'état non-lié (choix d’un coefficient)



Conditions de continuité a x=0

Continuité de ¢ (x) : o, (x=0)=¢,(x=0)
C+D =A
g, (x) _ dgy(x)

Continuité de d¢(x)/ox : X |x=o X |x=0

ck(C-D)= —gA

Inconnus : 3 coefficients (A, C, D) + énergie E

Contraintes : 2 conditions de continuité + “normalisation”

Si on fixe E arbitrairement, il y 3 contraintes pour 3 coefficients,

ce qui admet solution. Il y a donc une solution pour chaque énergie.

spectre
continu !




Solution explicite

p(x) = Cexp(ckx) + Dexp(—-¢ckx) gu(x)=Aexp(-gx)

V= Ay

Conditions de continuité :

Normalisation (choix d’un coefficient) : C

Solution ;

1+¢q/k

C+D = A

(k(C=D)= —qA

I
RN

_1—-¢q/k
1+¢q/k




Etat propre non-lié

= Fonction d'onde :

1— ¢q(E)/k(E
41(X) = e (CKE)X) + L h D exp (~CK(E)x)

2
¢|I(X) = 1+6CI(E)/k(E) eXp(—Q(E)X)

» K(E) et q(E) sont des fonctions de I'énergie E :

k=v2mE /h g=+2m(Vo-E) I h

= |l y a une solution pour chaque E — spectre continu



Analyse de la forme de la solution

1—-—¢q/k
X )= ex ; k X + ex _ k X
AT VYA
p=hk =—hk
onde incidente onde réfléchie
Amplitude de I'onde réfléchie : 1-¢q/k _
1+ ¢q/k

L'onde incidente et I'onde réfléchie ont la méme amplitude !

2

|D |2 1—-—¢q/k
Coefficient de réflexion R : R = =

ICI2 |1+ ¢q/k

L'onde incidente est completement réfléchie !

NB Cette analyse concerne les états propres délocalisés. La comparaison avec la
physique classique doit se faire avec un paquet d’'onde, qui localise la particule.



Densité de probabilité d'un état propre

Vo

4(X)I? }Qqqqqqﬁ

< >

Décroissance exponentielle dans
la zone classiquement interdite



Densite de probabilite pour V; — oo

Cas de barriere infinie

VO—>oo

|4(X)|°
du(x) =0

< >

zone classiquement interdite
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Saut de potential : cas E >V

E
Vo
0 X
zone |
g,(x) = Aexp(ckyx) + Bexp(—¢kqyx) ki =vV2mE |h

pu(x) = Cexp(ckyx) + Dexp(-¢ckyx) ko= 2m(E-Vy) |k



Inconnus et contraintes

g,(x) = Aexp(ckyx) + Bexp(—¢kyx)

du(x) = Cexp(ckyx) + Dexp(-ckyx)

Inconnus : 4 coefficients (A, B, C, D) + énergie E )

Contraintes : 2 conditions de continuité + “normalisation” 3

» L'energie E peut se fixer librement : spectre continu.

= Le fait d’avoir un coefficient inconnu résiduel implique que la solution
est une combinaison linéaire de deux fonctions avec un coefficient libre.

La solution est dégénéreée : il y a deux solutions pour chaque E'!



Cas de la particule libre

E
V=0
p(x) = Aexp(ckx) + Bexp(—-ckx) k=~v2mE /|h
Inconnus : 2 coefficients (A, B) + énergie E 3
Contraintes :  “normalisation” 1

On a un spectre continu avec dégénérescence : deux solutions propres pour tout E !



Conditions initiales précises

Pour lever la degénérescence, nous nous mettons dans des conditions

initiales précises, c’est-a-dire on va se mettre dans le cas d’'une particule
arrivant depuis la gauche.

Vo

0

X
hr(X)=Aexp (Chkix)+Bexp (—ckix)  gy(x)= Cexp(ckzxﬁD%
D=0



Réflexion et transmission

zone | zoneII
@, (x) = A exp (¢ kyx) +H\B exp ( ¢ Kix @ (X) -+ D exszx)

Inconnus : 4 coefficients (A, B, C, D) + énergie E

Contraintes : 2 conditions de continuite + “normalisation” 4
+ condition initiale (particule venant de la gauche, D = 0)

— une seule solution pour chaque énergie !

/\/\/\, Wﬂde transmise
onde réfléchrﬂW
4 5 )

Coefficient de réflexion : R = AP

Coefficient de transmission: T = AP

G J




Nombre de solutions

V()

spectre continu
solutions doublement
dégénérees

spectre continu
solutions non-degénérees

spectre discret
solutions non-dégenérees



Analogie avec la physique classique

En mécanique classique : perte d’énergie cinétique, pas de réflexion.

Il y a une analogie avec les ondes électromagnétiques

Analogie avec le cas E >V, Analogie avec le cas E< V,

Réflexion et réfraction a une interface Réflexion totale a une interface

ref.
onde atténuée

W

inc.

Les équations de Maxwell prévoient
aussi une onde atténuée
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Barriere de potentiel

Régime de transmission : E >V,

T

= V(x)

zone 1 zone 2 zone 3
P (x)=Aexp(ckx)+Bexp (-¢kx) k=~v2mE |h
1 ¢ux)=Fexp (€ k'x) + G exp (- ¢ k'x) k'=.J2m(E-Vy) I h
| dulx) = Cexp (¢ kx) (particule venant de la gauche)



Inconnus et contraintes (E > V)

Pu(x) = Cexp (¢ k x)

Inconnus : 5 coefficients (A,

4 (x)=Aexp (€ kx)+Bexp (-¢kx)

d(x)=Fexp (ck'x)+ Gexp (—¢k'x)

B, F, G, C) + énergie E 6

(ayant déja imposé une condition initiale précise)

Contraintes : 2 conditions de continuite en x=0 )
2 conditions de continuité en x=a

+ “normalisation”

— une seule solution pour chaque énergie E!




Réflexion et transmission (regime de transmission)

Solution analytique possible (voir Leonard |. Schiff, “Quantum Mechanics”)

Régime de transmission: E >V,

V2 sin? k'a

L [ 4E(E—Vo)]1
1 +

1
| C |2 V,2 sin2 k'a
T = =11+
4E (E - V)

« R+T=1

» K'a=1m1 — T=1,R=0 (transmission parfaite)



Coefficient de transmission (régime de transmission)

Régime de transmission : E >V,

>

1.0 [\v/a—— ———
!
0.8
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Barriere de potentiel

Régime d’effet tunnel : E<V,

V(x) Vo
E
0O a X
zone 3
5 (0=Aexp (ckx)+Bexp (—¢kx) k= vomE |k
1 #u(x)=Fexp(qgx)+ Gexp(-qx) q=J2m(V,-E) /h
| dux) = Cexp (¢ kx) (particule venant de la gauche)



Inconnus et contraintes (E < V)

4 (x)=Aexp (€ kx)+Bexp (-¢kx)

du(x) = Fexp (g x)+ Gexp (-qx)

Pu(x) = Cexp (¢ k x)

Inconnus : 5 coefficients (A, B, F, G, C) + énergie E 6
(ayant déja imposé une condition initiale précise)

Contraintes : 2 conditions de continuite en x=0 )
2 conditions de continuité en x=a
+ “normalisation”

— une seule solution pour chaque énergie E!




Densité de probabilité (regime d’'effet tunnel)

0 a

—p<

Combinaison Densité de probabilité
d’exponentiels constante de traverser
la barriere



Analogie avec I'électromagnétisme




Coefficient de transmission (regime d’effet tunnel)

—1
V2 sinh? ga . VB h
T=|1+ JEv._B q=+2m(Vy-E)
Approximation de grande barriére : q-a>»1

- a1 : barriére épaisse

q 7 : grande masse ou énergie E éloignée de V,

2

g-a»1 - sinh2ga = |5 (e99-e99) |~ feu

%

Dépendence exponentielle a travers la masse (m*), I'épaisseur (a), et (V,— E)”* |



Coefficient de transmission (régime d’effet tunnel)

Régime d’effet tunnel : E <V,
>

1.0

0.8

mVy,a®/h’ =8

0.2

E
Vo



Microscope a effet tunnel

scanning tunneling microscope

Elément
piézoélectrique

Gerd Binnig Heinrich Rohrer
1946 - 1933 - 2013

Ceramic rods -

scanning
needle tip

Balayage a courant
constant — pour profiter
de la sensibilité
exponentielle de

I'effet tunnel

Surface of sample



Scanning tunneling microscope (STM) : images

Surface de Ni
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