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États non-liés

§ Saut de potentiel : énergies inférieures à la hauteur

§ Saut de potentiel : énergies supérieures à la hauteur

§ Barrière de potentiel : régime de transmission et effet tunnel



x

Saut de potentiel

Classiquement

§ E > V0 (par exemple pour E1) la particule continue à se déplacer vers la droite, 
                 mais avec une énergie cinétique plus faible.

§ E < V0 (par exemple pour E2) la particule arrive jusqu’à x2 où V(x2) = E2, mais
                 n’arrive pas à pénétrer la zone où V(x) > E2 (zone classiquement interdite)

zone classiquement accessible zone classiquement interdite

V0

E E1

E2

x2



Saut de potentiel en mécanique quantique

Par simplicité, considérons un saut de potentiel carré :

V0

x0

Cherchons les solutions stationnaires E < V0 . 

E

zone I zone II

On définit deux zones, la zone I et la zone II,  où le potentiel est plat.



Forme de la function d’onde

V0

x0

E

zone I zone II

-                            =   E  f I ( x ) 
   

ℏ2

2m
𝜕2f I ( x )
𝜕x2

> 0

f I  =   C exp ( i k x )  +  D exp ( - i k x )     

k =  2 m E / ℏ 

-                            =  ( E  - V0 ) f II ( x ) 
   

ℏ2

2m
𝜕2f II ( x )
𝜕x2

< 0

f II  =   A exp ( - q x )  +  B exp ( q x )     

q =  2 m (V0 – E ) / ℏ 



Nature des états propres

§ Les états sont non-liés (particule non-confinée).

§ Pour  x → - ∞, les états propres se comportent comme des ondes planes.
    Ces états propres ne sont pas carré-sommables.

§ Les états propres ne peuvent pas décrire une particule. Il faudra faire recours 
    à un paquet d’onde.  



Conditions de normalisation

§ On impose que la densité de probabilité reste bornée, c’est-à-dire qu’elle 
     ne diverge pas pour  x → ± ∞.

§ Les solutions qui diffèrent par un facteur multiplicatif sont équivalentes. 
     Afin de distinguer ces solutions, on fixera de manière arbitraire une condition
     pour la function d’onde dans la limite x → + ∞	 (ou x → - ∞	). 
     Ceci fera office de “normalisation” des états propres non-liés.



États propres : fonctions d’ondes

zone I zone II

Pour déterminer A, B, C et D, on doit utiliser les conditions aux bords : 

1.  à  x → + ∞  

2.  à  x = 0 

3.  à  x → - ∞	

la densité de probabilité doit rester bornée ( B = 0 )

“normalisation” de l’état non-lié (choix d’un coefficient) 

continuité de la function et de sa dérivée 

f I  =   C exp ( i k x )  +  D exp ( - i k x )     f II  =   A exp ( - q x )  +  B exp ( q x )     



Conditions de continuité à x = 0

Continuité de f (x)  : 

Continuité de ∂f(x)/∂x : 

Inconnus :       3 coefficients (A, C, D) + énergie E 

Contraintes :   2 conditions de continuité + “normalisation” 

4
3

Si on fixe E arbitrairement, il y 3 contraintes pour 3 coefficients,
ce qui admet solution. Il y a donc une solution pour chaque énergie.

spectre 
continu !

f I ( x = 0 ) = f II ( x = 0 ) 

C + D  =  A 

𝜕f I ( x )
𝜕x

𝜕f II ( x )
𝜕x x = 0x = 0

=

i k ( C – D ) =  - q A



Solution explicite

zone I zone II

Conditions de continuité :

Normalisation (choix d’un coefficient) : C = 1

Solution :

f I( x )  =  C exp ( i k x )  +  D exp ( - i k x )     f II( x )  =  A exp ( - q x ) 

C + D  =  A 

i k ( C – D ) =  - q A

A  = D = 
2

1 + i
 
q / k

1 − i
 
q / k

1 + i
 
q / k



État propre non-lié

§ k(E) et q(E) sont des fonctions de l’énergie E :  

§ Il y a une solution pour chaque E → spectre continu

§ Fonction d’onde :  

k =  2 m E / ℏ q =  2 m (V0 – E ) / ℏ 

f I ( x )   =    exp ( i k(E) x )  +                                 exp ( - i k(E) x )     
1 − i

 
q(E) / k(E)

1 + i
 
q(E) / k(E)

f II ( x )   =   exp ( - q(E) x ) 
2

1 + i
 
q(E) / k(E)



Analyse de la forme de la solution

p = ℏ k p = - ℏ k
onde incidente onde réfléchie

zone I

Amplitude de l’onde réfléchie : 

L’onde incidente et l’onde réfléchie ont la même amplitude !

Coefficient de réflexion R : 

L’onde incidente est complètement réfléchie !

NB Cette analyse concerne les états propres délocalisés. La comparaison avec la 
      physique classique doit se faire avec un paquet d’onde, qui localise la particule.

f I( x ) =         exp ( i k x )       +                            exp ( - i k x )     
1 − i

 
q / k

1 + i
 
q / k

1 − i
 
q / k

1 + i
 
q / k

=  1

R  =             =                       
|D |2

|C |2
1 − i

 
q / k

1 + i
 
q / k =  1

2



Densité de probabilité d’un état propre

V0

V

Interférence entre deux ondes 
avec la même amplitude

Décroissance exponentielle dans 
la zone classiquement interdite

|f(x)|2



Densité de probabilité pour V0 → ∞

Cas de barrière infinie

|f(x)|2
fII(x) = 0 

zone classiquement interdite

Seulement dans le cas de barrière infinie, on retrouve le comportement 
classique, dans le sens que il n’y a plus de pénétration dans la barrière. 

V0 → ∞
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Saut de potential : cas  E > V0

V0

x0

E

zone I zone II

f I ( x )   =   A exp ( i k1 x )  +  B exp ( - i k1 x )     

f II ( x )   =   C exp ( i k2 x )  +  D exp ( - i k2 x )     

k1 =  2 m E / ℏ 

k2 =  2 m ( E –V0 ) / ℏ 



Inconnus et contraintes

Inconnus :       4 coefficients (A, B, C, D) + énergie E 

Contraintes :   2 conditions de continuité + “normalisation” 

5
3

§ L’energie E peut se fixer librement : spectre continu.

§ Le fait d’avoir un coefficient inconnu résiduel implique que la solution 
    est une combinaison linéaire de deux fonctions avec un coefficient libre. 

La solution est dégénérée : il y a deux solutions pour chaque E !

f I ( x )   =   A exp ( i k1 x )  +  B exp ( - i k1 x )     

f II ( x )   =   C exp ( i k2 x )  +  D exp ( - i k2 x )     



Cas de la particule libre

E

V = 0

Inconnus :       2 coefficients (A, B) + énergie E 

Contraintes :   “normalisation” 

3
1

On a un spectre continu avec dégénérescence : deux solutions propres pour tout E !

f ( x )   =   A exp ( i k x )  +  B exp ( - i k x )     k =  2 m E / ℏ 



Conditions initiales précises

Pour lever la dégénérescence, nous nous mettons dans des conditions
initiales précises, c’est-à-dire on va se mettre dans le cas d’une particule 
arrivant depuis la gauche.

V0

x0zone I zone II

D = 0 

f I (x) = A exp (i k1x) + B exp (- i k1x)     f II (x) = C exp (i k2x) + D exp (- i k2x)     



Réflexion et transmission

Inconnus :       4 coefficients (A, B, C, D) + énergie E 

Contraintes :   2 conditions de continuité + “normalisation”
                       + condition initiale (particule venant de la gauche, D = 0) 

5
4

→ une seule solution pour chaque énergie !

onde incidente

onde réfléchie

onde transmise

Coefficient de réflexion :          R = |B|2
|A|2

Coefficient de transmission :   T = |C|2
|A|2

	

zone I zone II
f I (x) = A exp (i k1x) + B exp (- i k1x)     f II (x) = C exp (i k2x) + D exp (- i k2x)     



Nombre de solutions

V(x)

x

spectre discret
solutions non-dégénérées

spectre continu
solutions non-dégénérées

spectre continu
solutions doublement

 dégénérées



Analogie avec la physique classique
En mécanique classique : perte d’énergie cinétique, pas de réflexion.

Il y a une analogie avec les ondes électromagnétiques

Analogie avec le cas E > V0 Analogie avec le cas E < V0

Réflexion et réfraction à une interface

(air)      nI <  nII    (verre)

Réflexion totale à une interface

(verre)      nI >  nII    (air)

Les équations de Maxwell prévoient
aussi une onde atténuée

inc.

réf. trans. onde atténuée

inc.

réf.

))))
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Barrière de potentiel

V0

x0 a

V(x)

zone 1 zone 2 zone 3

E

Régime de transmission :  E > V0

(particule venant de la gauche)

f I (x) = A exp (i k x) + B exp (- i k x)     k =  2 m E / ℏ 

f II(x) = F exp (i kʹ x) + G exp (- i kʹ x)     kʹ =  2 m (E –V0) / ℏ 

f III(x) = C exp (i k x)



Inconnus et contraintes (E > V0)

Inconnus :       5 coefficients (A, B, F, G, C) + énergie E 
                         (ayant déjà imposé une condition initiale précise)

Contraintes :   2 conditions de continuité en  x = 0 
                       2 conditions de continuité en  x = a 
                       + “normalisation”

6

5

→ une seule solution pour chaque énergie E !

f I (x) = A exp (i k x) + B exp (- i k x)     

f II(x) = F exp (i kʹ x) + G exp (- i kʹ x)     

f III(x) = C exp (i k x)



Réflexion et transmission (régime de transmission)

Solution analytique possible (voir Leonard I. Schiff, “Quantum Mechanics”)

Régime de transmission :  E > V0

§ R + T = 1 

§ kʹa = p   →  T = 1 , R = 0  (transmission parfaite) 

R  =             =      1  +  
| B |2

| A |2
4E (E – V0)
V0

2 sin2 kʹa 

-1

T  =             =      1  +  
| C |2

| A |2
V0

2 sin2 kʹa
4E (E – V0)	

-1



Coefficient de transmission (régime de transmission)

8/ 22
0 =amV

Régime de transmission :  E > V0

T = 



Barrière de potentiel

V0

x0 a

V(x)

Régime d’effet tunnel :  E < V0

E

zone 1 zone 2 zone 3

(particule venant de la gauche)

f I (x) = A exp (i k x) + B exp (- i k x)     k =  2 m E / ℏ 

f II(x) = F exp (q x) + G exp (- q x)     q =  2 m (V0 –E) / ℏ 

f III(x) = C exp (i k x)



Inconnus et contraintes (E < V0) 

Inconnus :       5 coefficients (A, B, F, G, C) + énergie E 
                         (ayant déjà imposé une condition initiale précise)

Contraintes :   2 conditions de continuité en  x = 0 
                       2 conditions de continuité en  x = a 
                       + “normalisation”

6

5

→ une seule solution pour chaque énergie E !

f I (x) = A exp (i k x) + B exp (- i k x)     

f II(x) = F exp (q x) + G exp (- q x)     

f III(x) = C exp (i k x)



Densité de probabilité (régime d’effet tunnel)

V0

a

a

Interférence 
entre deux ondes 

d’amplitude différente.

Densité de probabilité 
constante de traverser 

la barrière

Combinaison  
d’exponentiels  



Analogie avec l’électromagnétisme



Coefficient de transmission (régime d’effet tunnel)

Approximation de grande barrière : q · a ≫ 1

˗ a ↑ : barrière épaisse

˗ q ↑ : grande masse ou énergie E éloignée de V0

q · a ≫ 1

→        T ≅                             e

Dépendence exponentielle à travers la masse (m½), l’épaisseur (a), et (V0 - E)½ !

T  =      1  +  
V0

2 sinh2 qa
4E (V0 – E)	

-1

q =  2 m (V0 –E) / ℏ 

→       sinh2 qa  ≈ 1
2 e qa – e –qa ≈ 1

4 e 2qa 
2

16E (V0 – E)
V0

2	
− 2qa



Coefficient de transmission (régime d’effet tunnel)

Régime d’effet tunnel :  E < V0

T = 

8/ 22
0 =amV



Microscope à effet tunnel

1986
Gerd Binnig
1946 - 

Heinrich Rohrer
1933 - 2013 

Élément 
piézoélectrique

Balayage à courant 
constant – pour profiter 
de la sensibilité
exponentielle de 
l’effet tunnel 

scanning tunneling microscope



Scanning tunneling microscope (STM) : images

Surface de Ni Corail de Fe sur du Cu
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Bonne chance pour l’examen !


