Cours 12

Solutions particulieres de I’équation de Schrodinger
= Puits infini en 3d
» Qscillateur harmonique
= Atome d’hydrogene
» Puits couplés et bandes d’énergie

» Qscillation quantique



Puits infini en 3d

La particule quantique est confinée a
I'intérieur du puits 3d :

= V(x,y,z)=0 pour O<x<L,
O<y<lL,
O0<z<lL,

= V(x,y,2) > ailleurs

Equation de Schrédinger :

_% V2 4(x, v, 2)+ Vo(X, ¥, 2) = E ¢ (X, y, 2)

L S & v “E4(x v 2)
mla2 T 5,2 T 9210y, 2)+ Vo (X y. 2) = E g(X. Y.




Puits infini en 3d : probleme séparable

Le potentiel peut s’écrire :

VX, y,z)= Vi(x) +V,(y) + V,(2)

On cherche alors une solution séparable en x, y, et z :
P(X, ¥, Z) = ¢ (X) - ¢y () - ¢, (2)

Le probléme se transforme en 3 équations :

n? 92 =
= om 32 () + Vi gdx) = Ex 4(x)

2 92
~ 32 H DV, 40 = E, 49) E=E+E, +E,

h?t 02 —
= om 3.2 9:(2) + V2 9A2) = E; $,(2)



Puits infini en 3d : spectre et etats propres

Prisme droit a base rectangulaire

------------------

Spectre

h2Tt?
E=n/z
X 2mL?

Etat propre

n,mx
Ly

¢ = C sin(

2412 2412
5 T 5 WT
Y 2mL/ Z 2mL}?

)sin(QL%y)sin(

n,nz

L,

)

Box cubique

Spectre

E= (nx2+ ny2 + nzz)

Etat propre

$= C sin(™

____________

h%TT?
2mlL?

nxnx)sin(ﬂL&y)sin(

n,nz
L
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Puits infini en 3d : dégénerescence

............

..................

nyn,n, nyn,n,
221
212 122 212 221
122
211
o @121 211
112
111 111

Lorsqu’il y a plusieurs états propres qui ont la méme énergie, on dit que le
niveau énergetique est degénére.
La dégénérescence intervient généralement a cause d’'une propriété de

symetrie du potentiel : L, =L, = L,.
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Oscillateur harmonique

instable V(X)

|
|
|
|
|

o>

14

stable stable

v

Potentiel parabolique

V(x) = V2 k X% = Y2 maPx?



Oscillateur harmonique quantique

Equation de Schrédinger indépendante du temps

V(x)

n: 02 —
- 5 ¢ (x)+ V(x)¢p (x) = E ¢(x)

n: 02 _
5 ¢ (X) + 72 Mmax?¢ (x) = E ¢ (x)

~ 2m 0x?




Spectre de l'oscillateur harmonique quantique

La particule quantique est toujours confinée — spectre completement discret

E.=(n+%)ho

avecn=0,1,2, 3, ...

= On retrouve le spectre de Planck avec un décalage.

= [’état fondamental (pour n = 0) a une énergie finie Ej = hw/ 2,
qui correspond a I'énergie de point zéro (principe d’incertitude).



Oscillateur harmonique : états propres

Etats propres

#n(x) = Hn(x) exp (- ax?2) ot  a=malh

H,.(x) sont des polynébmes de Hermite.

do(X) =(E\ 2

)
Y 5 2

h(X) =| =| 2ye”
)

(o) ]

\JTT } "‘\";2

3 2/
(2)}- _ l)f’ ) /2

Pa(X) =

(o )IM ] 2 22
X) =|— — 2y =3y)e "~
40 =(2) ey -3

y =+vJax



Oscillateur harmonique : états propres

Fonction d'onde Densité de probabilité
b2 ’Q }!/l\[\ ||
¢1 E . ,). \’/ g |¢1|2
"w
Limites

classiques

| ol

TEE



Oscilateur harmonique: état fondamental (n = 0)

Energie

Eo=hol?2 énergie de point zero

Etat propre

m
do= A exp (— Z7 x%)

¢0 Gaussienne

SN
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Atome d’hydrogene

electron
(=)




Lignes spectrales de I'atome H dans le visible

Spectre é.m.
dans le visible

397.0
410.2 486.2 b56.3

434.1 Wavelength in nanometers

Formule empirique de Johann Balmer (1885) :

A =B ouin=2m=3,4.. et B=38.6456x10""m




Séries de lignes spectrales de I'atome H

Wavelength, A

91 nm
122 nm

365 nm

656 nm
820 nm

1875 nm

|

Lyman
series

ultraviolet
T. Lyman
1906-1914

~

il |

\

a
g <

Paschen series

Balmer series
visible infrarouge
J. Balmer F. Paschen
1885 1908

Formule de Rydberg (1888) :

1 1 1
— =Ry | = - —
A n?  na



Questions ouvertes

= Pourquoi y a-t-il des lignes spectrales discretes dans le spectre de
'atome d’hydrogene ?

La physique classique ne permet pas de comprendre la nature discréte
des échanges d’énergie (absorption et émission) avec le rayonnement
électromagneétique.

= Pourquoi les longueurs d’'onde observées obéissent-elles a la formule de
Rydberg ?

Le premier modéle qui a donné une explication de ces lignes est di a
Nils Bohr en 1913, mais nous allons voir comment ces longueurs d’onde
s’expliqguent dans la théorie de la mécanique quantique.



Atome d’hydrogene : equation de Schrodinger

- oweg(ry + V(r)s(r) = E ¢(r)

Radial distance, r/a
0o 2 4 6 8 10

électron

Potentiel de Coulombv

_30 _______ |

Potential energy (eV)

i . 1 e
I V(r)=-
| drg, 1

-50



Solution de I'équation de Schrodinger

symeétrie sphérique — coordonnées polaires

V2 -

[1ar2 10 sing 2 + o il
Par"or T Psingad 20 ' r’sin?gog’

(r, 0, &)
(% y, 2) la solution est séparable enr, 6 et ¢

o(x,y.z)= R(r)-0(6) @(¢)

solution analytique pour tous les états !




Spectre de I'atome d’hydrogene

Energies des états liés

m e*

E. = —
" 8802h2n2

13.6 eV
n2

ou n=1,2,3, ...

Etat fondamental

n=1 E,=-1366V
E1=—1 Ry

0.38 eV\_ ionisation :::
0.54 eV - n=6
0.85 eV n=2
1.51 eV o
3.39 eV s
13.6 eV ground level
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Etat fondamental : function d’onde

= Fonction d’'onde de I'état 1S (état fondamental, n = 1),
de symétrie sphérique car ne dépend que de r = | r |

hl
l ~rlay a,=—=0.0529 nm (rayon de Bohr)

e
/ 2
na, 3 me

= Probabilité P(r,<r<r,)de trouver I'’électron a une distance r du proton

P1s =

se trouvant entre r, et r, du proton :
Iy Iy
Pis(rn<r<ry)= f dr | grs(7) I2 =f dr A4nr? ¢s®(r)
\
ry Iy

|
densité de probabilité radiale

= Densité de probabilité radiale
4
ay’

—2r/a,

pis(r) = 4nr2 g2 (r) = r2e



Etat fondamental de 'atome d’hydrogéne

Etat 1s ¢1S =

NB Cette description ne contient pas d’orbite !



Etat excité 2S

= Fonction d’'onde de I'état 2S (état excité, n = 2),
de symétrie sphérique car ne dépend que de r = | r |

— 2 _ 2| ,ra
h2s 4\/27m‘, [ a, ]

= Cet état est plus étendu que 'état fondamental 1S.

= |a densité de probabilité radiale présente deux maxima.

Pas(r) = 4nr? s (r)



Atome d’hydrogene : état excite 25




Les états excites 2P

= ['état 2P a la méme énergie que I'état 2S ( E, pourn=2).
On dit que ces états sont dégeénérees en énergie.

= Cependant, I'état 2P n’a pas une symétrie sphérique, et dépend donc
également des coordonnées @ et ¢. L'état 2P a un moment angulaire
different par rapport a celui des états S.

l r ri2a
= — e """ cosé
¢ 2P, m=0 4 /271'61.,” a(p

y . 1 r
2P, m=+1 8\/7_ra('3~’2 ao

= || existe trois orbitales spatiales 2P différentes, on les distingue par le

. P
¢"2% gin Ge L Y

moment magnetique m= -1, 0, +1.



Atome d’hydrogene : les trois éetats 2P

P(r) (nm™)

(a) ' (b)




Orbitales radiales de I'atome d’hydrogene

1s

2S

\Ifzrz

Distance from nucleus (r)



Orbitales de I'atome d’hydrogene




Lignes spectrales de I'atome d’hydrogene

4 Lyman  Balmer Paschen Brackett h—g
Q n=>5
> v n=4
i '
‘L vy n=3
1
YYVVY n=1

U.V. visible I.R.



nes spectrales de I'atome d’hydrogene

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Wavelength (nm)
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Deux puits eloignés

I ¢H

7N\

N

=E ¢,

p=ad,t oy Ho=E ¢

fonction propre avec valeur propre E

Hou=E ¢y

E

déegéneéere



Deux puits rapproches : etat fondamental

solution symétrique

¢sym /\

7

7N

Vo

\—‘ E

5l

¢sym = 2

H¢sym= ( E - V) ¢sym
e

Esym

(¢1+¢0u) (approx.)

V=V, [ ¢:1(x)py(x)dx

recouvrement

Esym



Deux puits rapproches : premier etat excité

Vo

solution antisymetrique

¢an i
/t /\\ Eanti

\\// ) Ssym

Panti = %5( ¢1—¢u) (approx.)

H¢anti= ( E + V) ¢anti V= VO f ¢I(x)¢ll (x)dx

\_'_I

recouvrement
Eanti



Deux puits rapproches: solution generale

Equation aux valeurs propres (éq. de Schroédinger indép. du temps)

Hg=¢c¢

Solutions propres

I_|¢sym = ( E - V) ¢sym Eanti

H¢anti = ( E + V) ¢anti Esym

Solution générale

—c Esym t —c Eanti t

W(X’t) = Csyme h ¢sym(x) + Cantie h ¢anti(x)




Deux puits

N
S —— 0 P X
- D4 D1
eloignes = ¢
L~ — sym
=" '&——<\/< ~ Fom— E=Esym= anti
o,
¢anti
} - $=
0 - X
rapprochés —
RE ] :.\ :%?Sym E__—— anti
N—— ' —._Esym
¢anti \

état fondamental
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Bandes d’énergie
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1

Energy —»
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Deux puits couplées

Solution générale

— Esym t —c Eanti t

l//(X,t) = Csyme h ¢sym(x) + Cantie h ¢anti(X)

Situation initiale particuliere : la particule est dans le puits de gauche

- 1 1
At=0 Coym = —= Canii = —=
M2 2
=0 1 1
= = = + — .
l//(X, ) \/5 ¢sym(X) \/§¢antl(x)

= %(¢I+¢II)+%(¢I_%) =@



Evolution de I'état (x,t)

1 — E- Vt 1. —¢ E+Vy
W(X,t) = E e h ¢sym(x) + Ee h ¢anti(x)
E-V
1 —¢ t —¢ 2V¢
w(x,t) = N h [ dym(X) + € 7 dai (X) ]
phase périodique
periode T demi-période T/,
2V 2V
YT =2 — Ty =
- n Pl n
nh nh
r= v Tz =5y



Evolution de I'état y/( x, t ) aprés une période T

Aprés une période T : phase = 1
11—
y(x,t=T) = 7 © h [ dsym (X ) + @anti (X) ]

I
— o
|
N,
m
bl
<<
- ~

une phase n’affecte pas la densité !

La particule se retrouve
dans l'état initial !



Evolution de I'état /( x, t) aprés une demi-période T,

Apres une demi-période T, : phase = -1
1 -—ifil!7qm
w(x,t=Typ) = E e h [¢sym(x)_¢anti(x)]

E-V
—_ T

une phase n’affecte pas la densité !

La particule se retrouve
dans l'autre puits :
oscillation quantique !
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