
Cours 12

Solutions particulières de l’équation de Schrödinger

§ Puits infini en 3d

§ Oscillateur harmonique

§ Atome d’hydrogène

§ Puits couplés et bandes d’énergie

§ Oscillation quantique



Puits infini en 3d

Lx Ly

Lz
§ V (x, y, z) = 0 

La particule quantique est confinée à 
l’intérieur du puits 3d :  

0 < x < Lx 
0 < y < Ly 
0 < z < Lz 

pour

§ V (x, y, z) → ∞ ailleurs

Équation de Schrödinger :  

- ℏ!

"#
∇2 f (x, y, z) + Vf (x, y, z) = E f (x, y, z)

− ℏ!

"#
[ ∂2

∂$2 + ∂
2

∂%2 + ∂
2

∂&2 ]f (x, y, z) + Vf (x, y, z) = E f (x, y, z)



Puits infini en 3d : problème séparable

Le potentiel peut s’écrire :  

f (x, y, z) = fx (x) · fy (y) · fz (z)

On cherche alors une solution séparable en x,  y, et  z  :  

V (x, y, z) = Vx (x) + Vy (y) + Vz (z)

Le problème se transforme en 3 équations :

− ℏ!

"#
∂2

∂%2fy (y) + Vy fy(y) = Ey fy(y)

− ℏ!

"#
∂2

∂$2 fx (x) + Vx fx(x) = Ex fx(x)

− ℏ!

"#
∂2

∂&2 fz (z) + Vz fz(z) = Ez fz(z)

E = Ex + Ey + Ez



Puits infini en 3d : spectre et états propres 

Box cubiquePrisme droit à base rectangulaire
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f = C sin nxpx
Lx
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Ly

sin nzpz
Lz

Spectre

État propre État propre

Spectre
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L sin nzpz
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Puits infini en 3d : dégénérescence 

nxnynz
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211
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212
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nxnynz

122 212 221

§ Lorsqu’il y a plusieurs états propres qui ont la même énergie, on dit que le 
     niveau énergétique est dégénéré. 

§ La dégénérescence intervient généralement à cause d’une propriété de 
     symétrie du potentiel : Lx = Ly = Lz. 



Cours 12

Solutions particulières de l’équation de Schrödinger

§ Puits infini en 3d

§ Oscillateur harmonique

§ Atome d’hydrogène

§ Puits couplés et bandes d’énergie

§ Oscillation quantique



Oscillateur harmonique

V(x)

stable stable

instable

V(x)

Potentiel parabolique

V(x) = ½ k x2 = ½ mw2x2



Oscillateur harmonique quantique

Équation de Schrödinger indépendante du temps

− ℏ!

"#
∂2

∂$2 f (x) + V(x)f (x) = E f (x)

V(x)

− ℏ!

"#
∂2

∂$2 f (x) + ½ mw2x2f (x) = E f (x)



Spectre de l’oscillateur harmonique quantique

La particule quantique est toujours confinée → spectre complètement discret 

En = ( n + ½ ) ℏw 

avec n = 0, 1, 2, 3, …

§ On retrouve le spectre de Planck avec un décalage.

§ L’état fondamental (pour n = 0) a une énergie finie E0 = ℏw / 2, 
    qui correspond à l’énergie de point zéro (principe d’incertitude).



Oscillateur harmonique : états propres

États propres 

fn(x) = Hn(x) exp (- a x2/2 )       où      a = mw /ℏ

Hn(x) sont des polynômes de Hermite. 

f0(x)

f1(x)

f2(x)

f3(x)

y =  a x



Oscillateur harmonique : états propres

f0

f1

f2

f3 |f3|2

|f2|2

|f1|2

|f0|2

Fonction d’onde Densité de probabilité

Limites 
classiques



Oscilateur harmonique: état fondamental (n = 0)

Énergie 

E0 = ℏw / 2

État propre 

f0 =  A  exp ( − mw
2ℏ  x2 ) 

f0 Gaussienne

énergie de point zero
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Atome d’hydrogène

électron
proton



Lignes spectrales de l’atome H dans le visible

Formule empirique de Johann Balmer (1885) :

où n = 2, m = 3, 4,…  et BB

Absorption  

Émission

Spectre é.m.
dans le visible  



Séries de lignes spectrales de l’atome H

ultraviolet
T. Lyman

1906-1914

visible
J. Balmer

1885

Formule de Rydberg (1888) :

infrarouge
F. Paschen

1908

l



Questions ouvertes

§ Pourquoi y a-t-il des lignes spectrales discrètes dans le spectre de
     l’atome d’hydrogène ?

§ Pourquoi les longueurs d’onde observées obéissent-elles à la formule de 
    Rydberg ?

La physique classique ne permet pas de comprendre la nature discrète 
des échanges d’énergie (absorption et émission) avec le rayonnement 
électromagnétique. 

Le premier modèle qui a donné une explication de ces lignes est dû à 
Nils Bohr en 1913, mais nous allons voir comment ces longueurs d’onde 
s’expliquent dans la théorie de la mécanique quantique.



Atome d’hydrogène : équation de Schrödinger

r
erV
2

04
1)(
pe

-=

Potentiel de Coulomb

électron
proton

ℏ2

2m
- 𝛻2 f ( r  )    +   V ( r )  f ( r  )   =    E  f ( r  )  



Solution de l’équation de Schrödinger

symétrie sphérique → coordonnées polaires

la solution est séparable en r, q et f

f ( x, y, z ) =  R ( r ) · Q ( q ) · F ( f )  

solution analytique pour tous les états !

𝛻2    → 1
r2

(
(r r2 (

(r + 1
r2sinq

(
(q sinq (

(q + 1
r2sin2q

(2

(f2



Spectre de l’atome d’hydrogène

État fondamental

n = 1 E1 = -13.6 eV
E1 = - 1 Ry

Énergies des états liés
spectre discret

spectre continu

où   n = 1, 2, 3, ...

En  = - m e4

8 e0
2 h2 n2

=  - 
13.6 eV

n2



État fondamental : function d’onde

§ Fonction d’onde de l’état 1S (état fondamental, n = 1), 
    de symétrie sphérique car ne dépend que de r = | r  | 

P1S ( r1 < r < r2 ) = 

densité de probabilité radiale
§ Densité de probabilité radiale 

f1S = nm  (rayon de Bohr)

§ Probabilité  P ( r1 < r < r2 ) de trouver l’électron à une distance r du proton
     se trouvant entre r1 et r2 du proton : 

p1S ( r )  =  4p r 2 f1S
2 ( r )  =         r 2 e

4
a03

- 2r /a0 

)
r1

r2

dt f1S( r ) 2    =                4p r 2 f1S
2 ( r ) )

r1

r2

dr



État fondamental de l’atome d’hydrogène

État 1s f1S =

NB Cette description ne contient pas d’orbite !



État excité 2S

§ Fonction d’onde de l’état 2S (état excité, n = 2), 
    de symétrie sphérique car ne dépend que de r = | r | 

§ Cet état est plus étendu que l’état fondamental 1S. 

§ La densité de probabilité radiale présente deux maxima. 

f 2S =

p2S ( r )  =  4p r 2 f2S
2 ( r )



Atome d’hydrogène : état excite 2S

f 2S =



Les états excités 2P

§ L’état 2P a la même énergie que l’état 2S ( E2 pour n = 2 ). 
     On dit que ces états sont dégénérées en énergie.

§ Cependant, l’état 2P n’a pas une symétrie sphérique, et dépend donc
    également des coordonnées q  et f.  L’état 2P a un moment angulaire 
    different par rapport à celui des états S.

f 2P, m=0 =

f 2P, m=±1 =
± if

§ Il existe trois orbitales spatiales 2P différentes, on les distingue par le 
    moment magnétique m = - 1, 0, +1. 



Atome d’hydrogène : les trois états 2P



Orbitales radiales de l’atome d’hydrogène



Orbitales de l’atome d’hydrogène



Lignes spectrales de l’atome d’hydrogène



Lignes spectrales de l’atome d’hydrogène
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Deux puits éloignés

f I f II

V0

Hf I = E f I Hf II = E f II 

f = a f I + b f II 

fonction propre avec valeur propre E 

Hf = E f

E
dégénéré



Deux puits rapprochés : état fondamental

V0

solution symétrique

fsym = 1
2

 ( f I + f II )      (approx.)

Hfsym = ( E – V ) fsym V = V0 ∫ f I(𝑥)f II (𝑥)𝑑𝑥

recouvrement
Esym

E Esym

fsym



Deux puits rapprochés : premier état excité

V0

solution antisymétrique

fanti = 1
2

 ( f I – f II )      (approx.)

Hfanti = ( E + V ) fanti

Eanti

E Esym
Eanti

V = V0 ∫ f I(𝑥)f II (𝑥)𝑑𝑥

recouvrement

fanti



Deux puits rapprochés: solution générale

Hf = e f

Équation aux valeurs propres (éq. de Schrödinger indép. du temps) 

Hfsym = ( E – V ) fsym

Solutions propres 

Hfanti = ( E + V ) fanti

Solution générale 

E Esym
Eanti

y ( x , t )   =    Csym  e                  fsym ( x )   +   Canti  e                 fanti ( x )   
−i t Esym

ℏ
−i t Eanti

ℏ



Deux puits

rapprochés

éloignés

fsym

fsym
fanti

fanti

f I f II
E = Esym = Eanti

E
Esym

Eanti



Plusieurs puits
1

2

3

5



Bandes d’énergie
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Deux puits couplés

Solution générale

Situation initiale particulière : la particule est dans le puits de gauche

À t = 0 

y ( x , t )   =    Csym  e                  fsym ( x )   +   Canti  e                 fanti ( x )   
−i t Esym

ℏ
−i t Eanti

ℏ

Csym =             Canti =       
1
2

1
2

y ( x , t = 0 )   = fsym ( x )    +          fanti ( x )
1
2

1
2

= 1
2 ( f I + f II ) + 12 ( f I - f II )  = f I 



Évolution de l’état  y ( x , t ) 

phase périodique

période T 

phase = 1

demi-période T1/2

phase = - 1

y ( x , t )   =    e                     fsym ( x )   +             e                   fanti ( x )   
−i t E –V

ℏ
−i t E + V

ℏ
1
2

1
2

y ( x , t )   =    e                     fsym ( x ) + e fanti ( x )
1
2

−i t E –V
ℏ

−i t 2V
ℏ

2V
ℏ

T   =  2p

T  =  
pℏ
V

2V
ℏ

T1/2 =  p

T1/2  =  
pℏ
2V



Évolution de l’état  y ( x , t ) après une période T

Après une période T  : phase = 1

une phase n’affecte pas la densité ! 

La particule se retrouve 
dans l’état initial ! 

y ( x , t = T )   = e [ fsym ( x )  +  fanti ( x ) ]
1
2

−i T E –V
ℏ

=          e                       f I   
−i TE –V

ℏ



Évolution de l’état y ( x , t ) après une demi-période T1/2
Après une demi-période T1/2  : phase = - 1

La particule se retrouve 
dans l’autre puits : 

oscillation quantique ! 

une phase n’affecte pas la densité ! 

y ( x , t = T1/2)   = e [ fsym ( x )  - fanti ( x ) ]
1
2

−i T1/2
E –V
ℏ

=          e f II                          
−i T1/2

E –V
ℏ
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