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Principe d’incertitude de Heisenberg (1927)

Werner Heisenberg
1901 - 1976

1932



Fonction d’onde de la particule libre

Pour une particule libre en 1D : f ( x ) =  e i 𝑘0· x

Opérateur quantité de mouvement : px =  - i ℏ ∂
∂!

On applique l’opérateur à la function : 

px f ( x ) =   - i ℏ ∂
∂! f ( x ) = − i ℏ ∂

∂! e i 𝑘0· x

= ℏ𝑘0 e i 𝑘0· x =   ℏ𝑘0 f ( x )

§ L’onde plane est un état propre de l’opérateur quantité de mouvement.
§ La valeur propre est ℏ𝑘0. 
§ Cette function d’onde est caractérisée par une seule longueur d’onde !



Délocalisation d’une onde plane

f ( x ) =  e i 𝑘0 · x

Position indéterminée !

Quantité de mouvement
bien déterminée !



Description par un paquet d’onde

Amplitude d’une onde plane (analyse de Fourier) : 

La localisation est acquise par superposition d’ondes planes :  

f ( x )  =                     F ( k )  e                   1
2p

"
−∞

#

dk i k x

F ( k )  = f ( x )  e "
−∞

#

dx
- i k x



Paquet d’onde et localisation

x0
x0 = ∫𝑥 |f 𝑥 |2 𝑑𝑥

(Dx)2
 = ∫ 𝑥 − 𝑥0 2 |f 𝑥 |2 𝑑𝑥

k0 = ∫𝑘 |𝐹 𝑘 |2 𝑑𝑘

(Dk)2
 = ∫ 𝑘 − 𝑘0 2 |F 𝑘 |2 𝑑𝑘

Dx

Dk

k0

f ( x )

F 
( k

 ) 



Propriété mathématique

Dx · Dk  ≳  1/2

Propriété mathématique associée aux transformées de Fourier : 

En utilisant  p = ℏ k : 

Dx · Dp  ≳  ℏ/2



Relations d’incertitude

Quantités physiques liées 
par transformation de Fourier

Quantités physique non liées 
par transformation de Fourier

D x · D px ≧  ℏ/2 

D y · D py  ≧  ℏ/2 

D z · D pz  ≧  ℏ/2 

D x · D py ≧  0 

D y · D pz  ≧  0 

D z · D px  ≧  0 

D x · D pz  ≧  0 

D y · D px  ≧  0 

D z · D py  ≧  0 



Relation d’incertitude entre temps et énergie

Dt  long → E précis

Dt moyen → E moyennement précis

Dt court → E imprécis

D w · D t ≧  1/2

D ℏw · D t ≧  ℏ/2

D E · D t ≧  ℏ/2



Et en physique classique ?

pas de contradiction avec     Dx · Dp  ≧  ℏ/2
D x = 0    

D p = 0    

⇒ D x ~ 0    
⇒	 D p ~ 0    
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Principe d’incertitude de Heisenberg et mesure

Avant la fente : 

x quelconque  
px = 0 

Après la fente : 

Dx = d    
Dpx =  p sinq 

 =  p l
d = ℏk l

d = h
2p

2p
l

l
d =  hd d

p

Donc : 

Dx · Dpx = d · hd = h

en accord avec le principe d’incertitude !



Mesure et interprétation

§ La mesure qui correspond à un acte propre à la physique classique
     perturbe l’état quantique du système sous observation. 

§ Dans l’interprétation de Copenhague, qui est l’interprétation prévalente
     de la mécanique quantique, on suppose que l’état quantique correspond à 
     une superposition d’états sans que le système ait pris part pour un état donné. 

§ La mesure, c’est-à-dire la perturbation du système par un acte macroscopique,
     force le système quantique à collapser dans un état particulier de la 
     superposition.

y ( x , t ) = )
n

An e fn ( x )
−i  t En

ℏ



Le chat de Schrödinger (1935)

Il s’agit d’une critique de l’interprétation de Copenhague, qui met en évidence 
ses lacunes supposées ainsi que le problème de la mesure.

E. Schrödinger
1887 - 1961

Gedankenexperiment (expérience de pensée). 

Un chat est enfermé dans une boîte avec un flacon de gaz mortel et une source radioactive. 
Si un compteur Geiger détecte un certain seuil de radiations, le flacon est brisé et le chat meurt. 
Selon l'interprétation de Copenhague, le chat est dans un état de superposition, à la fois vivant et 
mort.  L’état du chat collapse dans un état donné lorsqu’on ouvre la boîte pour l’observer (mesure).  
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Puits de potentiel
Croissance par Molecular Beam Epitaxy (MBE)



Puits de potentiel avec barrières infinies

a

a0

V(x)

Conditions aux bords : 

électron confiné → 

y (x, t) = 0  pour x < 0 ou x > a 

→ f (x) = 0  pour x < 0 ou x > a 
  

V0 → ∞



Équation de Schrödinger 

Le potentiel est indépendent du temps.

On cherche des solutions stationnaires de la forme : 

L’équation de Schrödinger indépendante du temps s’écrit : 

0 a

V ( x ) 

i k x
e

-                            =   E f ( x ) 
   

ℏ2

2m
𝜕2f ( x )
𝜕x2



Forme de la function d’onde f (x)

En remplaçant dans l’équation, on obtient : 

La solution générale s’écrit alors : 

où

-            ( i k )2                 =   E 
   

ℏ2

2m
i k x

e
i k x

e

E  =  
ℏ2k2

2m

k  =   ± 2 m E / ℏ 

f ( x )  =   A  +    B 
i k x

e
– i k x

e k  =  2 m E / ℏ 



Imposition des conditions aux bords

NB n ≠ 0 →  f (x) = 0 
      (plus de particule)fn ( x ) =  Cn  sin ( kn x )

f ( x )  =   A  +    B 
i k x

e
– i k x

e

f ( x = 0 )  =  0

f ( x = a )  =  0

⇒     A +  B   =  0 ⇒     A =  - B  

⇒             A  +    B                      =   0 
i k a 

e
– i k a 

e

A  e –    A  e                =   0 
i k a – i k a 

sin ( k a )   =  0

kn =   n pa      n = 1, 2, 3, …



Puits avec barrières infinies : états propres

états propres : 

n = 1

n = 2

n = 3

v
f3(x) 

f2(x) 

f1(x) 

0

0

0

a

a

a

fn ( x ) =  Cn  sin ( kn x )



Remarque

§ Les solutions f (x)  correspondent 
exactement aux ondes stationnaires 
sur une corde. 

§ L’équation de Schrödinger 
indépendante du temps pour le puits 
avec barrières infinies est identique 
à l’équation de d’Alembert 
stationnaire.



Puits avec barrières infinies : spectre

valeurs propres de l’énergie : 

NB   En ∝ n2 !
        nombre quantique : n 

NB   Niveaux discrets !

En =             =   n2ℏ2kn
2

2m
ℏ2

2m
p
a 

2



Remarque

Quantité de mouvement

superposition de +pn et -pn

Énergie

correspond aux valeurs propres

lien entre pn et En donné par la relation de de Broglie 

pn  = ℏ kn  = n ℏ p
a  

En =             =   n2pn
2

2m
ℏ2

2m
p
a 

2



Normalisation

NB indépendant de n !⇒     Cn  =   2
a

"
0 

a
dx fn ( x ) 2   =                Cn

2 sin2 knx      =   "
0 

a
dx 

1
kn

 Cn
2 sin2q 

=                      12 ( 1 - cos 2q  )  =   Cn
2

kn
"
0 

kna
dq Cn

2

kn

1
2 q -

1
4 sin 2q 

0

kna

"
0 

kna
dq 

q = knx 

=            1
2 kna =  Cn

2       =  1 
Cn

2

kn

a
2

fn ( x ) =  Cn  sin ( kn x )



États propres avec dépendence du temps

densité de probabilité de ces états propres : 

rn ( x , t ) = | yn ( x , t ) |2 =  2a sin2   

états stationnaires !

2
ayn ( x , t )  =             sin   npa x exp   –

i
ℏ

En 𝑡

np
a x



États propres et leur densité de probabilité

n = 1

n = 2

n = 3

v
f3(x) 

f2(x) 

f1(x) 

0

0

0

a

a

a

v

v v

vv

v v

v

v

r3(x) 

r2(x) 

r1(x) 

0 a

0 a

0 a
états propres densités de probabilité

vv



Densité de probabilité pour la particule classique

particule classique 
à vitesse constante

Méc. classique : densité de probabilité 
uniforme de trouver la particule

Méc. quantique : la probabilité de trouver
La particule près des parois est plus faible



Limite classique pour n → ∞
Densité de probabilité pour l’état avec nombre quantique n = 15

0 a

r15(x) 

n = 15

La particule quantique se rapproche du comportement classique pour grand n !
Principe de correspondence. 



Énergie de point zero

Principe d’incertitude de Heisenberg : Dx · Dp  ≳  ℏ/2

Puisque la particule se trouve dans le puits : Dx = a / 2

Il en suit : Dp  ≳  ℏ / a

À comparer avec le pn minimal obtenu pour n = 1 :   

                      p1 = ± p ℏ / a  →  E1 ≠ 0

Le principe d’incertitude de Heisenberg 
est donc respecté ! 
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Puits de potentiel avec barrières finies

§ Ce potentiel présente des caractéristiques similaires à celui du potentiel
     Coulombien attractif U(r) auquel un électron près d’un noyau est sujet 
     (par exemple dans l’atome d’hydrogène).  

§ À grande distance x → ∞, le potentiel devient constant (on choisit V → 0).

-a/2 +a/2

V(x)

x →

-V0

0



0

Différence principale par rapport au cas avec V0 → ∞

§ E < 0 :  particule confinée, états liés, spectre discret (comme dans le cas 
                 avec barrières infinies). La particule reste dans le voisinage du puits.   

Deux régimes d’énergies

§ E > 0 :  particule non-confinée, états non-liés, spectre continu.
                 La particule ne reste pas dans le voisinage du puits. 

E < 0 

-a/2 +a/2

V(x)

x →

-V0

E > 0 



Éq. de Schrödinger indépendante du temps

-a/2 +a/2

V(x)

x →

-V0

0

Cas E < 0 : états liés 

zone 1 zone 2 zone 3

1. On choisit des zones où le potential est constant.

2. On trouve la forme de la solution f(x) dans chaque zone: f1(x) , f2(x) , f3(x) .

3. On impose le conditions de continuité aux limites et la normalisation.

f1(x) f2(x) f3(x)



Forme de la solution f1(x)

Cas E < 0 : états liés 

zone 1  ( x < a/2 )

forme générale : 

éq. de Schrödinger : 

-                            =   E  f ( x ) 
   

ℏ2

2m
𝜕2f ( x )
𝜕x2

< 0

f1  =   A1 exp ( - q x )    +    B1 exp ( q x )     

q =  − 2 m E / ℏ 



Forme de la solution f2(x) 

Cas E < 0 : états liés 

zone 2  ( - a/2 < x < a/2 )

forme générale : 

éq. de Schrödinger : 

-                            =  ( E  + V0 ) f ( x ) 
   

ℏ2

2m
𝜕2f ( x )
𝜕x2

> 0

f2  =   A2 exp ( i k x )    +    B2 exp ( - i k x )     

k =  2 m ( E + V0 ) / ℏ 



Forme de la solution f3(x) 

Cas E < 0 : états liés 

zone 3  ( x > a/2 )

forme générale : 

éq. de Schrödinger : 

(même q  que dans la zone 1)

-                            =   E  f ( x ) 
   

ℏ2

2m
𝜕2f ( x )
𝜕x2

< 0

f3  =   A3 exp ( - q x )    +    B3 exp ( q x )     

q =  − 2 m E / ℏ 



Conditions aux bords

-a/2 +a/2

V(x)

x →

-V0

0

zone 1

f1(x)

x → - ∞

pas carré sommable !
→  A1 = 0f1  =   A1 exp ( - q x )    +    B1 exp ( q x )     



Conditions aux bords

-a/2 +a/2

V(x)

x →

-V0

0

x → + ∞

pas carré sommable !
→  B3 = 0

zone 3

f3(x)

f3  =   A3 exp ( - q x )    +    B3 exp ( q x )     



Forme de l’état propre

-a/2 +a/2

V(x)

x →

-V0

0

E

zone 1 zone 2 zone 3

zone 1 zone 2 zone 3

A2 exp ( i k x )  +   B2 exp ( - i k x )     B1 exp ( q x )     A3 exp ( - q x )    



Détermination des coefficients restants

Inconnus 

§ 4 coefficients : B1, A2, B2, A3. 

§ L’énergie E.

Conditions 

§ 2 contraintes : continuité de f en x = ± a/2. 

§ 2 contraintes : continuité de ∂f/∂x en x = ± a/2. 

§ 1 contrainte : normalisation de f. 

Résultat 

§ Les conditions peuvent être satisfaites par certaines
     valeurs discrètes de l’énergie (solution numérique).

§ Le spectre est discret.



Spectre d’un puits de potential avec barrières finies

-a/2 +a/2

V(x)

x →

-V0

0

V0

§ Spectre discret jusqu’à la hauteur du puits.
§ Spectre continu à énergie plus élevée.



Nombre d’états liés

§ Le nombre d’états liés est limité. 

§ Si l’on veut augmenter le nombre d’états liés
      il suffit de penser au puits avec barrières infinies  

1. Augmenter V0 

2. Augmenter a V0 En =   n2 ℏ2

2m
p
a 

2



Probabilité de trouver la particule hors du puits

§ Cette probabilité est nulle en mécanique classique (zone classiquement 
     interdite), mais elle est finie en mécanique quantique.

§ Cette probabilité augmente lorsque l’énergie se rapproche de la limite
    du continu. 

Densité de probabilité Spectre Probabilité hors du puits



V0 infini V0 finiV0

Comparaison entre les niveaux d’énergies
dans les puits avec barrières finies et infinies

V0

Pour états correspondants l’énergie
est plus basse dans le puits fini que 
dans le puits infini. l0

l∞

l0 > l∞ →  p0 < p∞ →  E0 < E∞ 
p = h / l E = p2 /(2m)
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