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Principe d'incertitude de Heisenberg (1927)

You cannot measure the position
and momentum of a particle with
absolute certainty.

Werner Heisenberg
1901 - 1976




Fonction d’onde de la particule libre

Pour une particule libre en 1D : ¢ (x) e ékO' X
Opérateur quantité de mouvement : P, = —¢ h%
On applique l'opérateur a la function :

prd)= —ch2g(x) = —cheks

X

= hkye ko X = hkyd(x)

= |’'onde plane est un état propre de 'opérateur quantité de mouvement.
= La valeur propre est fk,.
= (Cette function d’onde est caractérisée par une seule longueur d'onde !



Délocalisation d’'une onde plane

Q(x)= € ¢y x

y A Position indeterminée !
e
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Description par un paquet d'onde

La localisation est acquise par superposition d’ondes planes :

1 r K x
#(x) = o fka(k)e

Amplitude d’'une onde plane (analyse de Fourier) :

—ckx

F(k) = jdx p(x) e



Paquet d’'onde et localisation

Xo= [ x |¢ (0)|* dx

X

(Ax)?= [(x — x0)? |¢ (x)|* dx

ko= [ k |F(Kk)|? dk

k
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Wave number, k

(AKY? = (k= ko)? | F(K)|? dk



Proprieté mathematique

Propriété mathématique associée aux transformées de Fourier :

AX - Ak = 1/2

En utilisant p=h k:

AX - Ap = hl2



Relations d’incertitude

Quantités physiques liées Quantités physique non liées
par transformation de Fourier par transformation de Fourier
AX Ap, = hl2 Ax-Ap, =20
Ay -Ap, = h/2 Ay-Ap, =20
AzZ-Ap, = hl2 Az-Ap, =0
AxX-Ap, =20
Ay-Ap, =2 0

1\
o

Az-Ap,



Relation d’'incertitude entre temps et énergie

Aw-At = 1/2

Aho- At = hl2

AE-At = h/2

N AYAVAYAYATATAYAYAYA

< At >

At long — E précis

< At >
At moyen — E moyennement precis

N

¢—At—>

At court — E imprecis



Et en physique classique ?
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Principe d’'incertitude de Heisenberg et mesure

y Avant la fente :

X quelconque
px =0

Apres la fente :

a 7
Diffracted AX = d
Ap, = p sing
_ A _ A h2zi_h
Pg=hkG o7 d~ d
A B
Donc :
Incident
Ax-Apx=d-Q=h

d

P ? en accord avec le principe d’incertitude !



Mesure et interprétation

La mesure qui correspond a un acte propre a la physique classique
perturbe I'état quantique du systeme sous observation.

Dans l'interpretation de Copenhague, qui est l'interprétation prévalente

de la mécanique quantique, on suppose que |'état quantique correspond a
une superposition d’états sans que le systeme ait pris part pour un état donné.

Xt)— ZA e ¢n(X)

La mesure, c’est-a-dire la perturbation du systéme par un acte macroscopique,

force le systéme quantique a collapser dans un état particulier de la
superposition.



Le chat de Schrodinger (1935)

Il s’agit d’'une critique de l'interprétation de Copenhague, qui met en évidence
ses lacunes supposées ainsi que le probleme de la mesure.

Gedankenexperiment (expérience de pensee).

“E. Schrodinger
1887 - 1961

Un chat est enfermé dans une boite avec un flacon de gaz mortel et une source radioactive.

Si un compteur Geiger détecte un certain seuil de radiations, le flacon est brisé et le chat meurt.

Selon l'interprétation de Copenhague, le chat est dans un état de superposition, a la fois vivant et
mort. L'état du chat collapse dans un état donné lorsqu’on ouvre la boite pour I'observer (mesure).
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> x

Croissance par Molecular Beam Epitaxy (MBE)

Puits de potentiel
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Puits de potentiel avec barrieres infinies

V(x)

Conditions aux bords :
eélectron confiné —

w(x,t)=0 pourx<Ooux>a

— ¢ (X)=0 pourx<Ooux>a



Equation de Schrddinger

Le potentiel est indépendent du temps.

0

L'équation de Schrodinger indépendante du temps s’écrit :

h?  0%¢(x)
2m 0 X2

= E¢(x)

On cherche des solutions stationnaires de la forme ;

cKkX
e



Forme de la function d’onde ¢ (x)

En remplacant dans I'équation, on obtient :

h2 ¢k x ¢k x
— % (‘:k)Z e = E e

h2k?

E = 2m

k= +Vv2mE /|h

La solution générale s’écrit alors :

¢k X —ckx
p(x) = A e + B e ou

k= Vv2mE |h



Imposition des conditions aux bords

¢(x=0) =0 > A+B = -~ A=-_-B
cka —cK a
g(x=a) =20 = e + e =0
cka —¢ck a
A e — Ae =0
sin(ka) =0

Kn = n% n=1,2,3, ...

NBn#0 — ¢(x)=0
[ #,(x)= C, sin (k,x) ] (plus de particule)




Puits avec barrieres infinies : etats propres

Ps(x)
états propres : n=3 | /\ l
0 a
é N

¢ (x)= C, sin (Kkyx)




Remarque

= |es solutions ¢ (x) correspondent
exactement aux ondes stationnaires
sur une corde.

= ['équation de Schrodinger
indépendante du temps pour le puits
avec barriéres infinies est identique
a I'équation de d’Alembert
stationnaire.




Puits avec barrieres infinies :

valeurs propres de I'énergie :

NB Niveaux discrets !

NB E, x n?!
nombre quantique : n

spectre

Energy (eV)

1000
900
800
700
600
500
400
300
200

100

Ri= 3

n=a

=l




Remarque

Quantité de mouvement

p, =hk, =nh % superposition de +p, et —p,
Energie
E, = Py’ = n? h—z (ﬂ)z correspond aux valeurs propres

lien entre p, et E, donné par la relation de de Broglie



Normalisation

¢ (x)= Cp sin (kyx)

a a 0= k.x K,a
de|¢n(X)|2 = fdx C2sinkx = kl f do C,?sin%0
n
0 0
2 0 czr1 1 K
d
= S0 [ do 5(1-c0s20) = OO [ 2o 2 sin20]
n K, 2 4 0
0
_ CP T _ 29 _
= % |zHa] = cig =

P
> G = NB indépendant de n !



Etats propres avec dépendence du temps
2 ./ NT ¢
W (X, t) = j; Sln(7 x) exp (—EEnt)

densité de probabilité de ces états propres :
(x. t)=|w (x. t)[2= 2 in2( 7% x )
pn ’ - Wn X’ ) | - a Si a

etats stationnaires !



Etats propres et leur densité de probabilité

YL\ AV VI
o\/ \/a 5 a

| Po(X)
(%) 2
n=2 ‘ .
0 a 0 a
&1(x) Pi(X)
. f / \’
o 0o

états propres densités de probabilite



Densité de probabilite pour la particule classique

‘—»

particule classique Méc. classique : densite de probabilité
a vitesse constante uniforme de trouver la particule

Méc. quantique : la probabilité de trouver
La particule prés des parois est plus faible



Limite classique pour n — oo

Densité de probabilité pour I'état avec nombre quantique n =15

P15(X)
st NANAAAANAAANANAANS

J vV [UJLUUHUJLUJJLU!
0 a

La particule quantique se rapproche du comportement classique pour grand n'!
Principe de correspondence.



Energy (eV)

Energie de point zero

Principe d’incertitude de Heisenberg : Ax - Ap = hi2
Puisque la particule se trouve dans le puits : Ax=al2
1000
900 F e
] Il en suit : Ap = hla
800 |-
700 |-
e B A comparer avec le p, minimal obtenu pourn=1:
007 p=+nhla — E #0
400 -
300 = 8
200 - Le principe d'incertitude de Heisenberg
n= 2 ,
At est donc respecte !
n=l

0
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Puits de potentiel avec barrieres finies

! V(X) Distance (nm)
0 0.5 1.0 15 20 25
—a/2 +a/2 ~U(ev(% Frttt
0 X —
! - A2
v, s1 U(r) =-e?r

= Ce potentiel présente des caractéristiques similaires a celui du potentiel
Coulombien attractif U(r) auquel un électron prés d’'un noyau est sujet
(par exemple dans I'atome d’hydrogéne).

= A grande distance x — o, le potentiel devient constant (on choisit V — 0).



Difference principale par rapport au cas avec Vy — oo
t V(x)

—a/2 +a/2

Deux régimes d’'énergies
= E <O0: particule confinée, états liés, spectre discret (comme dans le cas

avec barrieres infinies). La particule reste dans le voisinage du puits.

= E>0: particule non-confinée, états non-liés, spectre continu.
La particule ne reste pas dans le voisinage du puits.



Eq. de Schrddinger indépendante du temps

Cas E <0 : états liés

zone 3

P3(X)

1. On choisit des zones ou le potential est constant.
2. On trouve la forme de la solution ¢(x) dans chaque zone: , , Pa3(X) -

3. On impose le conditions de continuité aux limites et la normalisation.



Forme de la solution ¢,(x)
Cas E<O0: états liés

zone 1 (x<aAj/2)
€q. de Schrodinger :

h? 0%p(x) _
2m  0x? ‘_YI::, #(x)

<0

forme générale :

¢ = Ajexp(-gx) + Byexp(gx)

qg=vV-2mE | h



Forme de la solution

Cas E <0 : états liés

€q. de Schrodinger :

R 0%(x) _
5 e = (E Vo) g(x)

Y
>0

forme générale :

¢ = Aexp(ckx) + Byexp(—-ckx)

k=J2m(E+V,y) /h



Forme de la solution ¢;(x)
Cas E<O0: états liés

zone 3 (x> aAl/2)
€q. de Schrodinger :

R %(x) _
2m  0x? l_f, #(x)

<0

forme générale :

g3 = Azexp(-gx) + Bszexp(gx)

gq=+vV-2mE |h (méme q que dans la zone 1)



Conditions aux bords

X — — 00 zone 1
1 V()

—a/2 +a/2

pas carre sommable !
+ Biexp(qgx) s A=0




Conditions aux bords

X — + 00 zone 3

¢3 = Asexp(—-gx) + pas carré sommable !

—> B3=O




Forme de I'etat propre

zone 3

Biexp(qgx) Aexp(ckx) + Brexp(—-¢kx) Asexp(—qgx)

zone 3



Détermination des coefficients restants

Inconnus

= 4 coefficients : B4, Ay, B,, As.

= L’énergie E.

Conditions

= 2 contraintes : continuité de ¢ en x =+ a/2.
= 2 contraintes : continuité de o@/0x en x = + a/2.

= 1 contrainte : normalisation de ¢.

Résultat

= Les conditions peuvent étre satisfaites par certaines
valeurs discrétes de I'énergie (solution numérique).

» |e spectre est discret.



Spectre d'un puits de potential avec barrieres finies

A
Vix) 300
—a/2 +a/2 _ A
0 X — )
5 200 + Eq
)
=
L
-V,
Vo
100 |
E,
= Spectre discret jusqu’a la hauteur du puits.
= Spectre continu a énergie plus élevee. E |
0



Nombre d’états lies

= |Le nombre d’états liés est limité.

= Sil'on veut augmenter le nombre d’états liés
il suffit de penser au puits avec barrieres infinies

1000

H=5
900 +

800
700

500 il 1. Augmenter V|

Energy (eV)

00 V/ 2.A t
ol 0 . Augmenter a

n=3

300 -

200 |+
n=2

100 -

n=1




Probabilité de trouver la particule hors du puits

Densite de probabilité Spectre Probabilité hors du puits
300
P5(x) Quantum Probability of
— Number Being Outside
E n the Well
5 200 £y 5 =
n=2 8
Py(x) . = 2 S
- 3 30%
100 -
E, 2 10%
n=1 1 2%
Py(x) F E,
~100  -50 0 50 100 0

x (pm)
= (Cette probabilité est nulle en mécanique classique (zone classiquement
interdite), mais elle est finie en mécanique quantique.

» (Cette probabilité augmente lorsque I'énergie se rapproche de la limite
du continu.



Comparaison entre les niveaux d'énergies

dans les puits avec barrieres finies et infinies

l~—1—

Infinite well

4 AVO—-Poo

Vj infini Vj fini

Quantum
Number Energy Energy

n eV) (eV)

J 940 —

4 602 -

3 338 200

2 150 94

1 37.6 24

Pour états correspondants I'énergie
est plus basse dans le puits fini que
dans le puits infini.

Ao> Ao = Po <P = Eg<E.

p=h/x E = p?/(2m)

/N

) #
Finite well

Ao

P, (x)A

L
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