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Fonction d’onde
En optique

E ( x , t )

intensité I  

I instantannée ( x , t ) ∝ | E ( x , t ) |2

En mécanique quantique densité de probabilité p   

y ( x , t ) p ( x , t ) ∝ | y ( x , t ) |2
   

satisfait une équation d’onde :  

Fonction d’onde



Interprétation de la fonction d’onde en MQ

Normalisation :  

La function d’onde est carré sommable.

Fonction d’onde : 

Densité de probabilité : 

Interprétation : 

élément infinitésimal de probabilité de trouver 
la particule dans un volume dt 

Signification : La probabilité de trouver la particule est 
                       égale à 1 si l’on considère tout l’espace

y ( x , t )

p ( x , t )   =   | y ( x , t ) |2

dP ( x , t )   =   p ( x , t ) dt =    | y ( x , t ) |2 dt 

" | y ( x , t ) |2 dt =   1



Description d’une particule en MQ

Particule en mécanique classique

§ Son état est entièrement déterminé par sa position x ( t ) et 
     sa vitesse v ( t ).  

§ Son évolution avec le temps, c’est-à-dire sa dynamique, est 
     determinée par la Loi de Newton:  F = m a

Particule en mécanique quantique

§ Son état est entièrement determiné par la function d’onde y ( x , t ) 
     Toutes les propriétés de la particule peuvent être obtenues à partir
     de la function d’onde.

§ Pour déterminer l’évolution de y ( x , t ),  il nous faut une nouvelle
     loi de physique. Il s’agit de l’équation de Schrödinger !
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Équation de Schrödinger (1926)

E. Schrödinger
1887 - 1961

1933

Vacances de Noël, 1925, Villa Frisia, Arosa

iℏ =       -        ∇2  +  V ( r )      y ( r , t ) ℏ2 

2m
𝜕y ( r , t )

𝜕 t



Équation de Schrödinger (1926)

§ Cette équation n’est pas intuitive parce qu’elle concerne des phénomènes
     que nous ne rencontrons pas dans la vie de tous les jours. Elle joue un 
     rôle déterminant dans la description du régime atomique.  

§ Il n’y a pas de procédure rigoureuse pour déduire cette équation. Sa validité
     est basée sur la comparaison entres ses prédictions et l’expérience.

§ On ne sait pas comment Erwin Schrödinger a procédé pour arriver 
     à ce résultat. Il y a néanmoins un certains nombre de conditions qu’il 
     faut tenir en compte. 

§ Dans ce cours, nous allons suivre un parcours de réfléxion qui nous permet
     d’apprivoiser l’équation de Schrödinger et de rendre son établissement plus
     plausible.



Conditions à satisfaire

§ L’équation doit être linéaire dans la function d’onde y ( x , t ).
     Les phénomènes de diffraction et d’interférence suivent le principe de
     superposition :    si y1 et y2 sont solutions → y1 + y2 est aussi solution.

§ Les coefficients apparaissant dans l’équation ne doivent dépendre que de 
m, h, q mais pas des paramètres du mouvement tells que E ou p.

     Si on pense à la célérité dans une équation d’onde, on ne voudrait pas 
     qu’elle dépende de la fréquence ou du vecteur d’onde pour éviter des
     phénomènes de dispersion, qui n’ont pas lieu d’être dans une description
     fondamentale.

§ L’équation doit être en accord avec la mécanique 
    classique dans les régimes où elle s’applique. 
    Nous imposerons ainsi les relations de de Broglie.

Principe de correspondence.
N. Bohr

1885 - 1962
1922



Particule libre nonrelativiste (1D)

Donc, pour une particule libre nonrelativiste :  

constante

Ansatz pour la function d’onde d’une particule avec quantité de mouvement p : 

onde sinusoidale progressive

E  = p2

2m

y ( x , t )  =  A  exp (  i k · x  - i w t  ) où          k  =  p / ℏ 

E rel =                            =   mc2  +           +  …m2c4 + p2c2 p2

2m



Hypothèse 1 : Équation d’onde

§ g  dépend de  p  qui est un paramètre du mouvement.

§ L’équation est du 2ème ordre: il faut connaître la function d’onde y (t = 0) et 
    sa dérivée par rapport au temps ∂y/∂t (t = 0) pour déterminer l’évolution. 

y ( x , t )  =  A  exp (  i k · x  - i w t  )

𝜕2

𝜕t2
𝜕2

𝜕x2
y ( x , t )  =    g         y ( x , t ) 

- w2 y ( x , t )  = g  ( - k2 ) y ( x , t )  

g  =         =              =           =               =   w2

k2
(ℏw)2

(ℏk)2
E2

p2

p4

4m2p2

p2

4m2

E  = p2

2m



Hypothèse 2 : Équation du 1er ordre

Si y (t = 0) est connue 
→ y (t ) est complètement determinée.

g ʹ ne dépend pas des 
paramètres du mouvement.

𝜕
𝜕t

𝜕2

𝜕x2
y ( x , t )  =    g ʹ        y ( x , t ) 

y ( x , t )  =  A  exp (  i k · x  - i w t  )

- iw y ( x , t )  = g ʹ ( - k2 ) y ( x , t )  

g ʹ  =         =                =            =    iw
k2

iℏ(ℏw)
(ℏk)2

iℏE
p2

iℏ
2m

𝜕y
𝜕t

iℏ	 =  -     𝜕2y
𝜕x2

ℏ2

2m



Extension au cas d’un potentiel constant

Cas de potentiel constant :      V ( x ) = V0

Un potentiel constant ne change pas la physique :  

Comment tenir compte de V0 dans l’équation de Schrödinger ?

L’énergie change par une constante : E  =          +  V0   
p2

2m

y ( x , t )  =  A  exp (  i k · x  - i w t  )

𝜕y
𝜕t

iℏ	 =  -                   +     … ? ….𝜕2y
𝜕x2

ℏ2

2m

(	ℏw ) y =              y   +    … ? …. 
(ℏk)2

2m



Extension au cas d’un potentiel constant (cont)

Relations de 
de Broglie

Équation de Schrödinger dans un potentiel constant V0 :

(	ℏw ) y =              y   +    … ? ...  
(ℏk)2

2m

E y =              y   +   … ? ...  p2

2m
V0 y 

E  =          +  V0   
p2

2m

𝜕y
𝜕t

iℏ	 =  -                    +  V0 y 
   

𝜕2y
𝜕x2

ℏ2

2m



Généralisation…

Cas de potentiel : V ( x )  (1D)

Équation de Schrödinger

Cas de potentiel constant : V ( x ) = V0 (1D)

Cas de potentiel : V ( x , t )  (3D)

𝜕y
𝜕t

iℏ	 =  -                    +  V0 y 
   

𝜕2y
𝜕x2

ℏ2

2m

𝜕y
𝜕t

iℏ	 =  -                    +  V ( x ) y 
   

𝜕2y
𝜕x2

ℏ2

2m

𝜕y
𝜕t

iℏ	 =  -         𝛻2y   +  V ( x , t  ) y 
   

ℏ2

2m



L’opérateur Hamiltonien

Ĥ =  -          𝛻2 + V Hamiltonien Ĥ : 

Équation de Schrödinger : i ℏ ∂t y = Ĥ y 

Université de Vienne

𝜕y
𝜕t

i ℏ	 =  -         𝛻2y   +  V ( x , t  ) y 
   

ℏ2

2m

ℏ2

2m



Opérateurs en mécanique quantique

Opérateur énergie (Hamiltonien) Ĥ : 

En mécanique quantique, les quantités physiques sont exprimées 
par des opérateurs agissant sur la function d’onde.

Ĥ = - ℏ!

"#
𝛻2 + V

Opérateur énergie cinétique Ecin : Ecin = - ℏ!

"#
𝛻2

Opérateur énergie potentielle Epot : Epot = V

Opérateur quantité de mouvement px : px =  - i ℏ ∂
∂'

Opérateur quantité de mouvement p : p =  - i ℏ𝛻
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Potentiel indépendant du temps

Lorsque le potentiel ne dépend pas explicitement du temps, nous sommes 
confrontés à un cas plus simple à résoudre :

V ( x , t ) 

Dans ce cas, le problème devient séparable dans le temps et les coordonnées
spatiales et il est possible de trouver une solution de la forme suivante dans 
laquelle la dépendence du temps et de l’espace sont factorisées :

y ( x , t )  = f ( x ) · c ( t )  



Calculs…
Point de départ, l’équation de Schrödinger: 

y ( x , t )  = f ( x ) · c ( t )  On y remplace 

On divise par  f ( x ) · c ( t )  

partie de l’équation qui varie 
avec la position x 

partie de l’équation 
qui varie avec le temps t 

Chaque partie doit être égale à une même constante, qu’on appelle E.

𝜕y
𝜕t

iℏ	 =  -         𝛻2y   +  V ( x ) y ℏ2

2m

iℏ	f ( x )               =     -         𝛻2f ( x )   +  V ( x ) f ( x ) c ( t ) 
𝜕c ( t )
𝜕t

ℏ2

2m

iℏ
c ( t )

𝜕c ( t )
𝜕t

=                -         𝛻2f ( x )   +  V ( x ) f ( x ) 
ℏ2

2m
1

f ( x )



Le problème se sépare en deux équations

équation qui donne la 
dépendence du temps t 

équation qui donne la 
dépendence de la position x 

équation homogène : 
éq. de Schrödinger indép. du temps

est alors solution de l’équation de Schrödinger

iℏ
c ( t )

𝜕c ( t )
𝜕t

=  E

c ( t )  =  e 
−i t E

ℏ

-         𝛻2f ( x )   +  V ( x ) f ( x ) =  E 
ℏ2

2m
1

f ( x )

-         𝛻2f ( x )   +  V ( x ) f ( x ) =  E f ( x ) 
ℏ2

2m

y ( x , t )   =   e               f ( x )         
−i t E

ℏ



Problème aux valeurs propres

Équation de Schrödinger indépendente du temps : 

Ĥ = -        𝛻2 + VEn utilisant l’expression pour l’Hamiltonien

Le problème est ainsi formulé en termes d’un problème aux valeurs propres.
Il s’agit de trouver les fonctions d’onde f ( x ) qui sont fonctions propres 
correspondant à une valeur propre E.

-         𝛻2f ( x )   +  V ( x ) f ( x ) =  E f ( x ) 
ℏ2

2m

ℏ2

2m

Ĥ f ( x )  = E f ( x )



États propres

Ĥ fn = En fn
en supposant que le nombre de solutions 
soit dénombrable par n

fn  est un état propre  → yn ( x , t ) =   e                 fn ( x ) 

phase
Densité de probabilité d’un état propre 

rn ( x , t )  =   | yn ( x , t ) |2  =  | fn ( x ) |2 

Normalisation d’un état propre

état stationnaire

Évolution temporelle d’un état propre 

fn carré sommable

−i t En
ℏ

) dt | yn ( x , t ) |2  =                | fn ( x ) |2   =  1) dt 



Exemple d’état propre

Pour une particule libre : 

f ( x )  =   e

Cette function d’onde est une function propre de l’Hamiltonien : 

Ĥ = -        𝛻2 

Ĥ f ( x ) = -       𝛻2 f ( x ) = f ( x ) 

Valeur propre de l’Hamiltonien (énergie) :

i k · x ℏ2

2m

ℏ2

2m

ℏ2k2

2m

E  = 
ℏ2k2

2m



Solution générale

Fonction d’onde du système à t = 0

y ( x , t = 0 )  =  *
n

An fn ( x )

y ( x , t ) = *
n

An e fn ( x )−i  t En
ℏ



Continuité des solutions

En principe, les solutions ont toutes les dérivées continues.

En pratique, on recherche des solutions avec : 
§ la function f continue et 
§ sa dérivée première ∂f / ∂x continue

De cette manière la dérivée deuxième admet au plus une discontinuité finie.
Ainsi, on considère “reguliers” les potentiels qui admettent cette même condition :

-         𝛻2f ( x )   +  V ( x ) f ( x ) =  E f ( x ) 
ℏ2

2m

-         𝛻2f ( x )  =  ( E – V ) f ( x ) 
ℏ2

2m
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