Cours 10

Nature ondulatoire de la matiere

* Fonction d’'onde
= Equation de Schrédinger
= Equation de Schrédinger indépendante du temps



Fonction d'onde

En optique intensité /

En mécanique quantique densité de probabilité p

satisfait une équation d’'onde :

E(X,t) > [instantannée()'(’,t)oclg()'(',tHZ
w(X,t) > (X )]y (X, )]

k» Fonction d’'onde




Interprétation de la fonction d’'onde en MQ

Fonction d’onde : v ( X, t)
Densité de probabilité : p(Xx,t) = |w(x,t)]
Interprétation : dP(;,t) = p(;,t)dr = |w(;,t)|2dr

l\> elément infinitésimal de probabilité de trouver
la particule dans un volume dr

Normalisation : ff | w( 3(’, tY|2dr = 1

La function d’onde est carré sommable.

Signification : La probabilité de trouver la particule est
égale a 1 si l'on considere tout 'espace



Description d’une particule en MQ

Particule en mécanique classique ‘—»

» Son état est entierement déterminé par sa position ;( t) et
sa vitesse _\;( t).

= Son évolution avec le temps, c’est-a-dire sa dynamique, est
- -
determinée par la Loi de Newton: F=m a

Particule en mécanique quantique /\

= Son état est entierement determiné par la function d’onde  ( ; t)
Toutes les propriétés de la particule peuvent étre obtenues a partir
de la function d’'onde.

= Pour déterminer I'évolution de  ( ; t), il nous faut une nouvelle
loi de physique. Il s’agit de I'équation de Schrodinger !
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Equation de Schrddinger (1926)

dy(r,t) _ﬁv2+V(7) w(r,t)

1h

0t 2m
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Noél, 1925, Villa Frisia, Arosa

v o2 St %7

Vacances de

E. Schrodinger
1887 - 1961



Equation de Schrodinger (1926)

= Cette équation n’est pas intuitive parce qu’elle concerne des phénomeénes
gue nous ne rencontrons pas dans la vie de tous les jours. Elle joue un
réle déterminant dans la description du régime atomique.

* |In'y a pas de procedure rigoureuse pour déduire cette équation. Sa validité
est basée sur la comparaison entres ses préedictions et I'expérience.

* On ne sait pas comment Erwin Schrodinger a procédé pour arriver

a ce résultat. Il y a néanmoins un certains nombre de conditions qu'il
faut tenir en compte.

= Dans ce cours, nous allons suivre un parcours de réfléxion qui nous permet

d’apprivoiser I'équation de Schrodinger et de rendre son établissement plus
plausible.



Conditions a satisfaire

= |’équation doit étre linéaire dans la function d'onde v ( ; t).

Les phénomeénes de diffraction et d’'interférence suivent le principe de
superposition :  si y, et iy, sont solutions — i, + 1, est aussi solution.

Les coefficients apparaissant dans I'équation ne doivent dépendre que de
m, h, g mais pas des parametres du mouvement tells que E ou p.

Si on pense a la célérité dans une équation d’onde, on ne voudrait pas
gu’elle dépende de la fréquence ou du vecteur d’onde pour éviter des
phénomeénes de dispersion, qui n'ont pas lieu d’étre dans une description

fondamentale.

L'équation doit étre en accord avec la mécanique

classique dans les régimes ou elle s’applique.
Nous imposerons ainsi les relations de de Broglie.

Principe de correspondence.

N. Bohr
1885 - 1962




Particule libre nonrelativiste (1D)

2
p
Erel = . /m?c* +p%c? = mc?2 + — + ...
‘/ 2m
constante
. : . p?
Donc, pour une particule libre nonrelativiste : E ="

2m

Ansatz pour la function d’'onde d’'une particule avec quantité de mouvement 75:

w(x,t) =Aexp( 1k x-1wt) ou k =plh

onde sinusoidale progressive



Hypothése 1 : Equation d’onde

02 02
—w(x,t)= y — y(x,t)
o2 X2

@ w(x,t) =Aexp( 1k x —-1wt)

—?y(x,t) =y (-k)y(x,t)

2
- -

/ 2m
P _ (hop _ B p p?
0?

4m2p2  Am?

T T (hkp

= v dépend de p quiestun parametre du mouvement.

= L['équation est du 2éme ordre: il faut connaitre la function d’'onde  (t = 0) et
sa dérivée par rapport au temps dy/0t (t = 0) pour déterminer I'évolution.



Hypothése 2 : Equation du 1er ordre

9 wix.t)y= »9% yix.t) '

ot 0x?
@ w(x,t) =Aexp( 1k x —-1wt)

—Ioy(x,t) =y (-K)y(x,t)

<>

. _ 1w - Lh(hw) _ IRE _ 1h y' ne dépend pas des

k2 (hk)2 p2 om parametres du mouvement.

/4

Si y (t = 0) est connue
— W (t ) est complétement determinée.




Extension au cas d'un potentiel constant

Cas de potentiel constant : V( 3(’) =V,

L’énergie change par une constante : E= —"—+ V,

Un potentiel constant ne change pas la physique :

w(x,t) = Aexp( 1k x —-1wt)

Comment tenir compte de V,, dans I'équation de Schrodinger ?

2
mdy = - B v, ?
ot 2m 0x?
(hk)?
(ho)y = o7




Extension au cas d’'un potentiel constant (cont)

hk)?
(ho ) v = ( P
Relations de
de Broglie
\ZT/-F\/OW
2
E = p_ + VO
2m

Equation de Schrédinger dans un potentiel constant Vj:




Généralisation...

Cas de potentiel constant: V (x )= V,(1D)

Cas de potentiel : V(x) (1D)
éa )

2 2
pov - _ h al//’fV(X)',V
ot 2m 0x?
\_ y

Cas de potentiel : V ( X, t) (3D)

Equation de Schrédinger




L'operateur Hamiltonien

2

ot 2m

Hamiltonien H :

Université de Vienne

P2y + V(x,t)y

Equation de Schrodinger : chojwy=Hy



Opérateurs en mecanique quantique

En mécanique quantique, les quantités physiques sont exprimees

par des opérateurs agissant sur la function d’'onde.

AN

Opérateur énergie (Hamiltonien) H-

Opeérateur énergie cinéetique Ecin ;

Operateur énergie potentielle Epot ;

Opeérateur quantité de mouvement P, :

-

Opérateur quantité de mouvement P :

hZ

H=-— P24V
2m
2
Ec:ln__h_ ‘72
2m
Epot=v
_ %,
Px = _‘h_x
5= — RV
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Potentiel indépendant du temps

Lorsque le potentiel ne dépend pas explicitement du temps, nous sommes
confrontés a un cas plus simple a résoudre :

v X

Dans ce cas, le probleme devient separable dans le temps et les coordonnées
spatiales et il est possible de trouver une solution de la forme suivante dans
laquelle la dépendence du temps et de I'espace sont factorisées :

w(X,t) =¢(X) x(t)



Calculs...

Point de départ, 'équation de Schrodinger:

2 -
im0V = Moy b vix)y

t 2m

-

Onyremplace w(x,t) =¢(;)-;((t)

- 0 t 2
Ih ¢(x) Z( . [— h—\72¢(X) + V(X)¢(X)] x(t)

2m

On divise par ¢(;)-Z(t)

1h dy(t) 1 |: h? - - ]
= — P24(x) + V(x X
Z(t) ot gy L 2m T T VOO 200
partie de I'’équation partie de I'équation quivarie
qui varie avec le temps t avec la position x

Chaque partie doit étre égale a une méme constante, qu’on appelle E.



Le probleme se sépare en deux equations

équation qui donne la équation qui donne la
dépendence du temps ¢ dépendence de la position X
ih dy(t) 1 [ h2 - TN ]
= E — = | - 7= V%4(x) + V(x x)| = E
t h2 - -»> ->
—1_ - < 2 + =
() =e 'H 5 V24(x) + V(x)¢(x) = E$(x)

équation homogene :
€q. de Schrodinger indép. du temps

est alors solution de I'équation de Schrodinger



Probleme aux valeurs propres

Equation de Schrodinger indépendente du temps :

h2 -»> -»> -»> -»>
_ — p2 _
5m Vo(x) + V(x)d(x) = E¢(x)
. h?
En utilisant 'expression pour I'Hamiltonien  H = - 5 VZ+V

Ag(X)=Ep(x)

Le probleme est ainsi formulé en termes d’'un probléme aux valeurs propres.
[l y -’ ] [l

Il s’agit de trouver les fonctions d’onde ¢ ( x ) qui sont fonctions propres

correspondant a une valeur propre E.



Etats propres

14 = F en supposant que le nombre de solutions
H ¢n — &~n ¢n _ )
soit dénombrable par n

Evolution temporelle d’'un état propre

-> _‘En ->
¢, est un état propre — w,(x,t)= e Zﬁt ¢, (X)

\ J
|

phase

Densité de probabilité d’'un état propre

o, (X, 1) = |w, (X, t))2 = |d,(X)] état stationnaire

Normalisation d’un état propre

U dr |t//,,,()_(',t)|2 = U dr |¢,7()_(')|2 = 1 #, carré sommable



Exemple d’'etat propre

Pour une particule libre :

- ck-; H h2 -
X = e - _
¢ (x) _

Cette function d’onde est une function propre de I'Hamiltonien :

h2k?

Ag(x)=-"2g(x)= =4 (x)
om 2m

Valeur propre de I'Hamiltonien (énergie) :

h2k?
2m



Solution générale
-E
- -1t N
w(x,t)= Z A, e ‘T Pn( X)

Fonction d'onde du systeme at=0

p(,620) = > Ay go(X)



Continuité des solutions

h? - - > >
~ 50 V(X)) + V(X)¢(x) = E¢(x)

En principe, les solutions ont toutes les dérivees continues.

En pratique, on recherche des solutions avec :
» |a function ¢ continue et
= sa dérivée premiére dg/ dx continue

De cette maniére la dérivée deuxieme admet au plus une discontinuité finie.
Ainsi, on considere “reguliers” les potentiels qui admettent cette méme condition :

h2

~ 5 P(X) = (E=V)$(X)
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