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Appendice 2 Ladéecomposition en serie de
Fourier

Définition

Fonctions périodiques

Soit une fonction f(0) , telle que:

f(0) = f(6—-2m) (2.1)

On considéreraque f(0) est une “bonne fonction” dansle sensou dansI’intervalle:
0<6<2r

elle possede un nombre fini de discontinuités

elle possede un nombre fini d’ extremum

elle est monotone et continue

elle peut prendre des valeurs infinies pour autant que I’ intégrale:

J.z f(6)do converge absolument
0

Sans entrer dans le détail, les conditions que f(0) doit remplir sont connues sous
le nom de conditions de Dirichlet.

Si ces conditions sont remplies, on peut alors approximer la fonction périodique
f(0) par une série de fonctions trigonométriques, connue sous le nom de série de
Fourier:
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Appendice 2 Les séries de Fourier

convergence

f(0) = %0+ z a, - cos(nb) + 2 b, - sin(nd) (2.2)
n=1 n=1

En multipliant cette derniére relation, par I'unité, cos(m6) et sin(m0) respective-
ment, et en intégrant entre O et 27T, on obtient facilement les relations intégral es per-
mettant de déterminer les coefficients g, &, et by, connus sous |e nom de coefficients
de Fourier:

8 = 1'_[znf(@)(I'@ (2.3)
T Jo
_1
a, = —-f f(0)cos(n6)do (2.4)
T Jo
1 = .
b, = —-f f(0)sin(n6)do (2.5)
T Jo

On remarque que le coefficient ay ne représente rien d' autre que la valeur moyenne
delafonction sur I'intervalle considéré.

On peut démontrer le théoréme suivant:

Lasérie de Fourier d'unefonction f(8) de périodicité 2r remplissant les conditions

de Dirichlet converge pour toutes les valeur de 6 . La somme de la série de Fourier
égale lavaleur de lafonction en tous les points de continuité et est égale ala
moyenne arithmétique des limites a gauche et a droite sur les points de discontinuité.
Si f(0) est continue en tout point, la série de Fourier converge absolument et unifor-
mément.

exemple 1:

Lafonction f(x) est discontinue en xq, dans ce cas la somme de la série de Fourier
prend en X lavaleur:

2 [f(x+0) +f(x-0)] 26)

exemple 2:

calculer le développement en série de Fourier de lafonction définie par:

f(x):g s 2nm<x<(2n+1)-m

f(x) = —% s (2n-Dr<x<2nm
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lafonction est impaire et par conségquent tous les coefficients g, sont nuls.
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Appendice 2 Les séries de Fourier

symétriede f(0)

différentiation

On observe, bien, dans la figure ci-dessus que la série converge vers f(x).

On vérifie aussi que lavaleur de la série aux points de discontinuité est bien égale a
zéro (ce qui est logique, la moyenne arithmétique de 1t/4 et - Tt/4 étant zéro)

fonction paire
si lafonction f(x) est paire (symétrie mirair, d' axe vertical), i.e. si larelation:
f(x) = f(=x) @.7)

est vérifiée, on montre facilement que tous les coefficients b, sont nuls. Dans ce

cas!

2,

rf(e)cos(ne)de (2.8)
T Jo

aﬂ:

fonction impaire

si lafonction est impaire (I’ origine est un centre de symétrie), i.e. si larelation:
f(0) = —f(-06) (2.9)
est vérifiée, tous les coefficient &, sont nuls et |a série de Fourier devient une pure

sériede sinus:

2 .
b, = T—E~jof(9)sm(n9)de (2.10)

La dérivée d’ une série de Fourier ne converge pas nécessairement. C'est entre autre
le cas lorsque la fonction présente des discontinuités.

1. I'intégrale sur une période est égale adeux fois!’intégrale sur une demi-période, parce que
lafonction est paire.
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Fonctions non-périodiques, définies seulement sur
I”intervalle [-Tt,+ 7]

C’est un cas que I’ on retrouve souvent dans les problémes concrets de physique.

On construit dans ce cas une fonction de périodicité 2r qui coincide avec lafonction
étudiée sur I'intervalle [-r, +1]

On peut distinguer deux cas:

a) lafonction possede laméme valeur aux extrémités del’intervalle:
f(-m) = f(m)
Dans ce premier cas, il n'y aaucun probleme, on construit une nouvelle fonction
périodique qui coincide avec lafonction originale sur I'intervalle [-wt, +xt]. Le
théoréme sur la convergence des séries de Fourier assure que la série de Fourier

coincidera bien avec lafonction sur I’ intervalle considéré.

exemple:

développer en série de Fourier lafonction f(x) définie par:

f(x) = x? (-r<x<m)
f(x)
A
| | | ! |
| | | } |
t | | i ’
| | | i !
| | I | |
| | | | |
} + + t } = X
-7 0 7 37 5w Tn

dans ce cas, lavaleur delafonction est laméme aux extrémités del’intervalle, on
peut construire une fonction périodique et calculer les coefficients de Fourier.

Lafonction étant paire, |es coefficients by, sont tous nuls.

On obtient:

T 3
ao:%_([xzdx:’%[%J
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b)

4
2

aﬂ:

am

T

: szcosndx = (-1)"-
0

Par conséquent, dansI’intervalle [-rt, +n], le dével oppement de la fonction est:

2
2 T

= =_4. —
X 3 (COSX

C0S2X + COS3X )
2? 32

lafonction posséde des valeurs différentes aux extrémités del’intervalle

f(—m) = f(m)
on procede de laméme maniére que précédemment, on construit une fonction
périodique, mais dans ce cas, lavaleur delafonction aux extrémités de I’ intervalle
est indéfinie. Le théoréme sur la convergence des séries de Fourier indique ssimple-
ment que la série convergera vers lafonction sur I’ intervalle considéré et qu’ aux

limites de I'intervalle, lavaleur prise par |a série serala moyenne arithmétique de la
fonction & gauche et a droite.

exemple:

développer en série de Fourier lafonction:

f(x) = x (-r<x<m)

N DENEN
gl

On calcule facilement les coefficients de Fourier:

1
~jxsinnxdx = % (-1)
0

n+1
b. =

n

aim

les coefficients a,, sont tous nuls, car lafonction est impaire

On vérifie que la série de Fourier prend une valeurs nulle aux extrémités del’inter-
valle conformément ace qui était prédit.
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représentation spectrale

LasériedeFourier en nota-
tion complexe

Fonctions de périodicité T

On peut généraliser facilement au cas ou lafonction est de périodicité T # 2r, i.e. Si:
- _ 2n
f(t) =f(t-T) = f t—; (2.11)

La série Fourier est alors donnée! par:

f(t) = %O+ z a, - cos(nmt) + z b, sin(nomt) (2.12)
n=1

n=1

On peut représenter graphiquement lasérie de Fourier en reportant les coefficients a,
et/ou b, enfonction de (nw) , ¢’ est ce que |’ on appelle lareprésentation spectrale de

f(t).
En utilisant lesrelations d’ Euler:

jnot
cosnhmt =

+ e—J not

jnot —jnomt jnot —jnot

. e - . € —e
snnot = —— = (—]) - | —————
2j =) [ 2 J

on peut exprimer (2.13) en notation complexe:

f(t) = %0+ Z(an—jbn)-ejn‘”t+ 2{(aﬂ+jbn)-e_jm"t (2.13)
n=1

n=1
les coefficients dans les sommations s’ exprimant aors comme;

T/ 0 .
o, = a tjb, = 2. f(t)- e’ "t 2.14)
T -/ ®
avec ces notations, il est possible de réécrire (2.14) de maniére plus symétrique en

sommant sur des indices qui prennent des valeurs positives et négatives:

n=oc
f(t) = 2 an.einwt (2.15)
n = —oco

210

1. 1l suffit defaire le changement de variable t = - =m-9
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Pratiquement, cette maniéere de formuler les séries de Fourier est utile lorsgu’on
s'intéresse a des fonctions non périodiques. On peut montrer, dans ces circonstances,
gu'il est possible de passer alalimite et remplacer alors la somme intervenant dans
(2.16) par uneintégrale. Cette maniére de procéder permet d'introduire le concept de
transformée de Fourier a partir de la série de Fourier.On peut comprendre intuitive-

ment ce passage alalimite en considérant une fonction f(t), de périodicité T = %n .

On calcule les coefficients de Fourier pour différentesvaleursde T. Le spectre de f(t)
en fonction de T est représenté graphiquement dans la Figure suivante:

'} A%n

MO | ]

=1lcm

[} 1

annanl

T=2cm ;
A 4O
I T=4cm I I
Qp
) A
T=00
t(CIE) nw
0 1 2 3 S8l 0 | g |

-12n -4wn dn  12=n

On observe bien que lorsgue T tend versI’infini, le spectre tend vers une courbe
continue, ceci signifie que lasomme intervenant dans (2,15) s exprime sous laforme
d' uneintégrale. Si le passage alalimite est traité rigoureusement, on obtient pour
(2,15):

oo oo

f(t) = E:LT_EJ‘ Jf(T) & Vrdo (2.16)

—oo
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Résumé

/Soit une fonction f(t), telle que:
f(t) = f(t=T)

qui possede les propriétés suivantes:

¢ ¢lle possede un nombrefini de discontinuités

o dlle possade un nombre fini d’ extremum

¢ elle est monotone et continue

o dlle peut prendre des valeursinfinies pour autant que I’ intégrale:

T
f f(0)do converge absolument
0

La série Fourier est alors donnée par:

f(t) = %°+ Zan~ cos(nmt) + 2 b, - sin(nwt)

n=1 n=1
avec:
T
o
a, = %’ J'f(t) - cos(nmt)dt (fonction impaire: a, = 0 Vn)
T
o
b, = % f(t) - sin(nwt)dt (fonction paire: b, = 0 V¥n)
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