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Appendice 2

 

La décomposition en série de 

 

Fourier

 

Fonctions périodiques

 

Définition

 

Soit une fonction , telle que:

 

(2.1)

 

On considérera que  est une “bonne fonction” dans le sens où dans l’intervalle: 

 

•

 

elle possède un nombre fini de discontinuités 

 

•

 

elle possède un nombre fini d’extremum 

 

•

 

elle est monotone et continue

 

•

 

elle peut prendre des valeurs infinies pour autant que l’intégrale:

 converge absolument

Sans entrer dans le détail, les conditions que   doit remplir sont connues sous   
le nom de 

 

conditions de Dirichlet

 

.

Si ces conditions sont remplies, on peut alors approximer la fonction périodique 
 par une série de fonctions trigonométriques, connue sous le nom de série de 

Fourier:

f θ( )

f θ( ) f θ 2π–( )=

f θ( )
0 θ 2π≤ ≤

f θ( ) θd
0

2π

∫

f θ( )

f θ( )
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(2.2)

 

En multipliant cette dernière relation, par l’unité,  et  respective-
ment, et en intégrant entre 0 et 2

 

π

 

, on obtient facilement

 

 

 

les relations intégrales per-
mettant de déterminer les coefficients a

 

0

 

, a

 

n

 

 et b

 

n

 

, connus sous le nom de coefficients 
de Fourier:

 

(2.3)

(2.4)

(2.5)

 

On remarque que le coefficient a

 

0

 

 ne représente rien d’autre que la valeur moyenne 
de la fonction sur l’intervalle considéré.

 

convergence

 

On peut démontrer le théorème suivant:

La série de Fourier d’une fonction  de périodicité 2

 

π

 

 remplissant les conditions 

de Dirichlet converge pour toutes les valeur de . La somme de la série de Fourier 
égale la valeur de la fonction en tous les points de continuité et est égale à la 
moyenne arithmétique des limites à gauche et à droite sur les points de discontinuité. 
Si  est continue en tout point, la série de Fourier converge absolument et unifor-
mément.

 

exemple 1

 

: 

La fonction f(x) est discontinue en x

 

0

 

, dans ce cas la somme de la série de Fourier 
prend en x

 

0

 

 la valeur:

 

(2.6)

 

exemple 2:

 

  

calculer le développement en série de Fourier de la fonction définie par:

f θ( )
a0

2
---- an nθ( )cos⋅

n 1=

∞

∑ bn nθ( )sin⋅
n 1=

∞

∑+ +=

mθ( )cos mθ( )sin

a0
1
π
--- f θ( ) θd

0

2π

∫⋅=

an
1
π
--- f θ( ) nθ( ) θdcos

0

2π

∫⋅=

bn
1
π
--- f θ( ) nθ( ) θdsin

0

2π

∫⋅=

f θ( )
θ

f θ( )

1
2
--- f x 0+( ) f x 0–( )+[ ]⋅

f x( ) π
4
---         si      2nπ x 2n 1+( ) π⋅< <=

f x( ) π
4
---–          si      (2n-1)π x 2nπ< <=
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la fonction est impaire et par conséquent tous les coefficients a

 

n

 

 sont nuls.

bn
π
4
--- 

  2 nsin x xd
0

π

∫⋅ ⋅ π
4
--- 

  2
πn
------ 

  1 1–( )n–[ ]⋅ ⋅= =

f x( ) xsin 3xsin
3

-------------- 5xsin
5

-------------- ... s1 x( ) s3 x( ) s5 x( ) ...+ + +=+ + +=
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On observe, bien, dans la figure ci-dessus que la série converge vers f(x).

On vérifie aussi que la valeur de la série aux points de discontinuité est bien égale à 
zéro (ce qui est logique, la moyenne arithmétique de 

 

π

 

/4 et - 

 

π

 

/4 étant zéro)

 

symétrie de 

 

fonction paire

si la fonction f(x) est paire (symétrie miroir, d’axe vertical), i.e. si la relation:

 

(2.7)

 

est vérifiée, on montre facilement que tous les coefficients b

 

n

 

 sont nuls. Dans ce 

cas:

 

1

 

 

 

(2.8)

 

fonction impaire

si la fonction est impaire (l’origine est un centre de symétrie), i.e. si la relation:

(2.9)

est vérifiée, tous les coefficient an sont nuls et la série de Fourier devient une pure 
série de sinus:

(2.10)

différentiation La dérivée d’une série de Fourier ne converge pas nécessairement. C’est entre autre 
le cas lorsque la fonction présente des discontinuités.

f θ( )

1. l’intégrale sur une période est  égale à deux fois l’intégrale sur une demi-période, parce que 
la fonction est paire.

f x( ) f x–( )=

an
2
π
--- f θ( ) nθ( ) θdcos

0

π

∫⋅=

f θ( ) f θ–( )–=

bn
2
π
--- f θ( ) nθ( ) θdsin

0

π

∫⋅=
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Fonctions non-périodiques, définies seulement sur 
l’intervalle [-π,+π]

C’est un cas que l’on retrouve souvent dans les problèmes concrets de physique.

On construit dans ce cas une fonction de périodicité 2π qui coincide avec la fonction 
étudiée sur l’intervalle [-π, +π]

On peut distinguer deux cas:

a) la fonction possède la même valeur aux extrémités de l’intervalle:

Dans ce premier cas, il n’y a aucun problème, on construit une nouvelle fonction 
périodique qui coïncide avec la fonction originale sur l’intervalle [-π, +π]. Le 
théorème sur la convergence des séries de Fourier assure que la série de Fourier 
coincidera bien avec la fonction sur l’intervalle considéré.

exemple:

développer en série de Fourier la fonction f(x) définie par:

dans ce cas, la valeur de la fonction est la même aux extrémités de l’intervalle, on 
peut construire une fonction périodique et calculer les coefficients de Fourier.

La fonction étant paire, les coefficients bn sont tous nuls.

On obtient:

f π–( ) f π( )=

f x( ) x2         ( -π x π )≤ ≤=

a0
2
π
--- x2 xd

0

π

∫⋅ 2
π
--- x3

3
-----

x 0=

x π=

⋅ 2π2

3
--------= = =
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Par conséquent, dans l’intervalle [-π, +π], le développement de la fonction est:

b) la fonction possède des valeurs différentes aux extrémités de l’intervalle

on procède de la même  manière  que précédemment, on construit une fonction 
périodique, mais dans ce cas, la valeur de la fonction aux extrémités de l’intervalle 
est indéfinie. Le théorème sur la convergence des séries de Fourier indique simple-
ment que la série convergera vers la fonction sur l’intervalle considéré et qu’aux 
limites de l’intervalle, la valeur prise par la série sera la moyenne arithmétique de la 
fonction à gauche et à droite.

exemple:

développer en série de Fourier la fonction:

On calcule facilement les coefficients de Fourier:

les coefficients an sont tous nuls, car la fonction est impaire 

On vérifie que la série de Fourier prend une valeurs nulle aux extrémités de l’inter-
valle conformément à ce qui était prédit.

an
2
π
--- x2 n xdcos

0

π

∫⋅ 1–( )n 4

n2
-----⋅= =

x2 π2

3
----- 4 xcos 2xcos

22
--------------- 3xcos

32
--------------- ...–+– 

 ⋅–=

f π–( ) f π( )≠

f x( ) x         ( -π x π )≤ ≤=

bn
2
π
--- x nx xdsin

0

π

∫⋅ 2
n
--- 1–( )n 1+⋅= =
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Fonctions de périodicité T

On peut généraliser facilement au cas où la fonction est de périodicité T ≠ 2π, i.e. si:

(2.11)

La série Fourier est alors donnée1 par:

(2.12)

représentation spectrale On peut représenter graphiquement la série de Fourier en reportant les coefficients an 

et/ou bn en fonction de , c’est ce que l’on appelle la représentation spectrale de 
f(t).

La série de Fourier en nota-
tion complexe

En utilisant les relations d’Euler:

on peut exprimer (2.13) en notation complexe:

(2.13)

les coefficients dans les sommations s’exprimant alors comme:

(2.14)

avec ces notations, il est possible de réécrire (2.14) de manière plus symétrique en 
sommant sur des indices qui prennent des valeurs positives et négatives:

(2.15)

1. Il suffit de faire le changement de variable 

f t( ) f t T–( ) f t 2π
ω
------– 

 = =

t 2πθ
T

---------- ω θ⋅= =

f t( )
a0

2
---- an nωt( )cos⋅

n 1=

∞

∑ bn nωt( )sin⋅
n 1=

∞

∑+ +=

nω( )

nωtcos ejnωt e jnωt–+
2

-------------------------------=

nωtsin ejnωt e jnωt––
2 j

------------------------------- j–( ) ejnωt e jnωt––
2

-------------------------------⋅= =

f t( )
a0

2
---- an jbn–( ) ejnωt⋅

n 1=

∞

∑ an jbn+( ) e jnωt–⋅
n 1=

∞

∑+ +=

α n± an jbn± ω
π
---- f t( ) e jnωt±⋅ td

π ω⁄–

π ω⁄

∫⋅= =

f t( ) αn ejnωt⋅
n ∞–=

n ∞=

∑=
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Pratiquement, cette manière de formuler les séries de Fourier est utile lorsqu’on 
s’intéresse à des fonctions non périodiques. On peut montrer, dans ces circonstances, 
qu’il est possible de passer  à la limite et remplacer alors la somme intervenant dans 
(2.16) par une intégrale. Cette manière de procéder permet d’introduire le concept de 
transformée de Fourier à partir de la série de Fourier.On peut comprendre intuitive-

ment ce passage à la limite en considérant une fonction f(t), de périodicité  .

On calcule les coefficients de Fourier pour différentes valeurs de T. Le spectre de f(t) 
en fonction de T est représenté graphiquement dans la Figure suivante:

On observe bien que lorsque  T tend vers l’infini, le spectre tend vers une courbe 
continue, ceci signifie que la somme intervenant dans (2,15) s’exprime sous la forme 
d’une intégrale. Si le passage à la limite est traité rigoureusement, on obtient pour 
(2,15):

(2.16)

T 2π
ω
------=

f t( ) 1
2π
------ f τ( ) ejω t τ–( )⋅ τd ωd

∞–

∞

∫
∞–

∞

∫=
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Résumé Soit une fonction , telle que:

qui possède les propriétés suivantes:

• elle possède un nombre fini de discontinuités 

• elle possède un nombre fini d’extremum 

• elle est monotone et continue

• elle peut prendre des valeurs infinies pour autant que l’intégrale:

 converge absolument

La série Fourier est alors donnée par:

avec:

       (fonction impaire: )

       (fonction paire: )

f t( )

f t( ) f t T–( )=

f θ( ) θd
0

2π

∫

f t( )
a0

2
---- an nωt( )cos⋅

n 1=

∞

∑ bn nωt( )sin⋅
n 1=

∞

∑+ +=

an
ω
π
---- f t( ) nωt( )cos⋅ td

π
ω
----–

π
ω
----

∫⋅= an 0      n∀=

bn
ω
π
---- f t( ) nωt( )sin⋅ td

π
ω
----–

π
ω
----

∫⋅= bn 0      n∀=
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