Complément 1: Formulaire

1.1 Identités trigonométriques

sin(fa + ) = sina-cosf + cosa - sin 3
sin(a — ) = sina-cosf —cosa-sinf
cos(a+ ) = cosa-cosf —sina-sinfj
cos(a —3) = cosa-cosf+sina-sinf
sina-sinf = —3cos(a+ B)+ 3 cos(a — )
cosa-cosB = Scos(a+ B)+ 3 cos(a— )
sina-cos@ = gsin(a+ B)+ 3 sin(a — B)
cosa-sinf@ =  gsin(a+ ) — isin(a —B)
sina+sinfg = ZSina+ﬂcosa_ﬂ
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1.2 Intégration par parties

/udv:uv—/vdu

1.3 Intégration des fonctions trigonométriques et exponentielles

[sinaxdr = —= cosax
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1.4 Notions d’analyse vectorielle utiles en physique
Soit (x,y, z) un repere orthonormé.
Soit @ = ay(z,y, 2) €x + ay(z,y, 2) € + a.(z,y, 2) €; un champ vectoriel.

Soit f(x,y,z) un champ scalaire.

Définitions
gradfzﬁf:giéﬁgzéﬁz@
divdi =V -d= %‘:" %ayy %“ZZ
rotd=VAd= (%C;Z —%‘2’) &+ <%‘? = %‘f) &+ <%‘;y— %?) .
Vif = ﬁ + ﬁ + ﬁ (Laplacien scalaire)

C0x2  Oy? 022
V2d = V3ay, €y + V2ay €y + V2a,é, (Laplacien vecteur)
Identités vectorielles
divgrad f = V2f
graddivd = rotrota + V2@
div(fad) =a-grad f + fdivad
divrotda =0

rotgrad f =0
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rot (@Ab) =ddivb—bdiva+ ), ggbi - Ziaamai

rot (fa) =grad f ANd+ frotd



Théoréme de la divergence
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1.5 Coordonnées cylindriques

coordonnées:

surface fermée

volume délimité par X
élément de surface dirigé
vers extérieur de €

élément de volume

//a‘dﬁz/g// divadr

contour fermé

surface s’appuyant sur I’
élément de surface orienté
selon n

normale d’Ampere
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ds® = dr® + r?d¢? + dz*

Soient f(r, ¢, z) et @ = a,(r, d, z) €, + ay(r, ¢, 2) €y + az(r, ¢, 2) €,.
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position: (r,¢,z) =ré, + z¢,

vitesse: B(r,d,2) =7 +rp ey + 2 &,
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accélération: a(r, ¢, 2) = (i — r¢?) & + (r¢ + 27¢) &, + 2 €,

1.6 Coordonnées sphériques

coordonnées:

ds® = dr® + r*d6”

Soient f(r,0,¢) et @ = a,(r,0,) € + ag(r,0,¢) € + az(r,0, ) €,
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7(r, 0, ) =reé,

position:
vitesse: T(r,0,¢) =i & + rf & + rsinfd ¢ € €4
accélération: ar,0,¢) = (¥ —rf% — r¢*sin®0) é,

+ (rf + 270 — ¢ cosf sinh) &
+ (r¢sind + 2rf¢ cosh + 27 sind) &,

1.6 Les séries de Fourier
Soit f une fonction périodique de période T' = 27 /w avec au maximum un nombre fini de

discontinuités. Elle peut se représenter en série de Fourier:
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Pour une fonction impaire, a, =0 Vn. Pour une fonction paire, b, =0 Vn



