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CHAPITRE XI
 

OPTIQUE PHYSIQUE: PHENOMENES D'INTERFERENCE ET DE
 
DIFFRACTION
 

Introduction 

Nous avons vu au chapitre III que le principe de superposition est à la base de tous les 

phénomènes où deux ou plusieurs ondes se superposent. Il affirme que si 1; l (x, t) et 

1;2 (x, t) notent les vecteurs déplacement de 2 ondes (ils sont solution de l'équation 

d'onde), le vecteur déplacement de l'onde résultante est donné par 

1; (x, t) = 1;1 (x, t) + 1;2 (x, t) 

Dans le cas de la lumière, qui est une onde EM, les composantes Ea (x, t) et Ba (x, t) 

(a = x, y, z) des champs électrique et d'induction magnétique sont solutions de l'équation 

d'onde et jouent le rôle des composantes 1;a (x, t) du vecteur déplacement d'une onde se 

propageant dans un milieu matériel. 

Dans la suite de ce chapitre nous focaliserons notre attention sur le champ électrique, bien 

que E et B soient simultanément présents dans une onde lumineuse. L'intensité est 

donnée par 

1 (x) = c ê o < E2 (x, t) > (11.1) 

où < > signifie que l'on prend la moyenne temporelle. 

Ainsi que nous l'avons mentionné au chapitre IX, une onde lumineuse se propageant selon 

l'axe z possède en général 2 composantes Ex, Ey de E, que l'on peut écrire dans le cas 

général 

Ex (z, t) = Exo sm (k z ­ rot + <1>x (t) ) 

(11.2) 

Ey (z, t) = Eyo sin (k z ­ rot + <1>y (t) ) 
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où les phases <l>x (t) et <l>y (t) fluctuent rapidement et de façon indépendante. Dans le 

plan (x, y). Cela implique que l'orientation de E dans le plan (x, y) et son amplitude 

fluctuent rapidement au cours du temps (voir § 9.2 c). L'onde EM est dite non polarisée. 

Nous montrerons au Chapitre XII comment il est possible, à l'aide d'un polariseur, de 

changer l'état de polarisation de la lumière et en particulier de "transformer" une onde 

non polarisée en une onde polarisée en ne laissant passer que la composante du champ E 

selon un axe bien défini, noté axe de polarisation. Nous omettons cette difficulté dans ce 

chapitre et nous n'introduirons pas explicitement les composantes Ex, Ey du champ E. 

Nous admettrons aussi pour simplifier que lorsque les ondes EM de 2 sources 1 et 2 se 

superposent, tout se passe comme si les vecteurs El et E2 sont parallèles. On a donc 

E (z, t) = El (z, t) + E2 (z, t) 

où 

El (z,t) = E lo sin(kz-rot+<I>1 (t») 

(11.3) 

Si les champs El et E 2 sont émis par 2 sources lumineuses indépendantes, les phases 

<1>1 (t) et <1>2 (t) de chacune des sources fluctuent de façon indépendante. Il en est de même 

de leur différence de phase 

Ll<l> (t) = <1>1 (t) - <1>2 (t) (11.4) 

On dit que 2 sources lumineuses sont cohérentes si leur différence de phase ne dépend 

pas du temps et si elles sont de même fréquence (voir § 3.3). 

Nous avons vu au Chapitre III que la cohérence est essentielle pour observer des 

phénomènes d'interférence. Deux sources lumineuses indépendantes ne sont pas 

cohérentes et ne permettent pas d'observer des phénomènes d'interférence (laser mis à 

part). C'est la raison pour laquelle dans tous les dispositifs optiques dans lequels il est 

possible d'observer des interférences, on crèe 2 sources secondaires à partir d'une source 

initiale unique. La méthode la plus simple est indiquée ci-dessous, c'est le dispositif qui a 

permis à Young (1802) d'observer pour la 1ère fois des franges d'interférence associées à 

une onde lumineuse. 
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c 

De la lumière diffractée par le trou So (source initiale) est incidente sur les trous SI> S2' 

qui jouent le rôle de sources secondaires. Les ondes lumineuses diffractées par les 2 trous 

SI et S2 se superposent sur l'écran C et produisent des franges d'interférence. En effet 

dans ce cas, même si les phases </> 1 (t) et </>2 (t) fluctuent au cours du temps elles 

fluctuent ensemble puisque les 2 ondes lumineuses sont issues de la même source So' on a 

donc, 

</>1 (t) - </>2 (t) = Li</> = cte 

où dans le cas du dessin ci-dessus Li</> = O. Les ondes émises par les sources SI et S2 

sont cohérentes (pour autant qu'elles soient aussi monochromatiques). 

11.1 Interférence de 2 sources lumineuses cohérentes (rappel) 

Nous avons décrit au § 3.3 l'interférence de 2 ondes de pression sphériques. Tout ce que 

nous avons dit dans ce § peut être transféré au cas d'ondes lumineuses (ou électromagné­

tiques), nous rappelons ici les résultats principaux par souci d'être complet. 

Dans le dispositif ci-dessous, les deux fentes SI, S2' de largeur faible par rapport à la 

longueur d'onde, forment 2 sources cohérentes. 
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II-+------D----_H 

B c 

L'amplitude en P de l'onde résultant de la superposition des ondes émises par S) et S2 

sera maximum lorsque les 2 ondes sont en phase (interférence constructive), soit lorsque 

(11.5)
 

où n est un entier positif, négatif ou nul. 

Lorsque la distance d entre les 2 fentes est faible par rapport à la distance D de l'écran, 

les 2 rayons r» r2 sont pratiquement parallèles et la différence de chemin est donnée par, 

r) - r2 = d sin e (11.6) 

Les valeurs de l'angle e correspondant aux maximum de l'intensité sont donc telles 

que, 

À 
sin e =n- (11.7)

d 

Pratiquement on utilise une lentille convergente pour observer les franges d'interférence, et 

l'on place l'écran dans le plan focal de la lentille (voir dessin ci-dessous). Les rayons r) et 

r2 qui convergent au point P sont ainsi parallèles et leur différence de chemin optique est 

toujours donnée par la relation (11.6). 
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Lentille utilisée pour produire des franges d'interférence. Dans la réalité, 
la distance focale f» la distance d entre les 2 fentes. 

a) Calcul de l'intensité 

La variation de l'intensité en fonction de l'angle 8 se calcule comme au § 3.2 b et l'on 

obtient 

Il d sin 8 J
l (r, 8) = 4 10 (r) cos2 À (11.8)

( 

Pour faire apparaître clairement l'importance de la cohérence pour observer des inter­

férences, nous recalculons ci-dessous l'intensité l (r, 8) dans le cas des ondes lumineuses. 

Soit 2 sources SI et S2 émettant des ondes lumineuses de même fréquence, telles que 

leurs champs électriques au point P sont donnés par, 

(11.9)
 

où les phases <1> 1 (t) et <1>2 (t) fluctuent en fonction du temps. Nous avons admis pour 

simplifier (cas où D » d) que les amplitudes Eo (rI) et Eo (r2) sont les mêmes, égales 

à Eo' 

L'intensité 10 que l'on obtient sur l'écran en bouchant la fente S2 est donnée par, 
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où le facteur 1/2 provient de la moyenne temporelle de sin2 ( ). L'intensité 10 (r2) de 

la source 2 est donnée par une expression équivalente. Avec les approximations faites 

(11.10)
 

L'intensité résultant de la superposition des 2 ondes est donnée par, 

soit, 

tenne d'interférence 

Les 2 premiers termes correspondent aux intensités des sources SI et S2 seules, le 3ème 

terme rend compte des phénomènes d'interférence. Evaluons-le explicitement, 

et en remplaçant le produit des sinus par leur somme et différence, 

1 2< El E2 > = 2 Eo < cos [ k (r1 - r2) + <P 1 - <P2 ] > 

(11.11) 

Dans le cas où les 2 sources sont cohérentes, <p 1 (t) = <P2 (t), on obtient 

où l'on a tenu compte du fait que la moyenne sur une fonction sinusoïdale en fonction de t 

est nulle. On obtient donc, 

1 (P) = 2 10 + 2 10 cos [k (rI - r2 ) ] 

soit 

2 k (rI - r2) 2 ( 1t d sin e) 
1 (P) = 4 10 cos 2 = 4 10 cos À 
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où l'on a tenu compte de rI - r2 = d.sin El et de 1+ cos a = 2 cos2 (aI2). On retrouve 

donc bien la relation 11.8 établie au § 3.3. 

Dans le cas où les 2 sources sont non cohérentes, le second terme de (11.11) s'annule 

toujours, le premier terme devient 

J
.1t 

cos 

o 

où </> (t) = </>1 (t) - </>2 (t) fluctue rapidement au cours du temps. Le cos [ ] prend 

alternativement des valeurs positives et négatives et en moyenne il s'annule. Le terme 

d'interférence est nul. L'intensité résultante est simplement donnée par 

elle varie lentement lorsque r}> r2 croissent sans effet d'interférence. 

Lorsqu'on effectue l'expérience décrite dans la figure de la page 326, on obtient des franges
 

d'interférence formées de bandes alternativement claires et foncées.
 

" ( ~ · .1-.' 'f. ':li· ~ ~",:; "\ 1IIIII i ".~ . 
, ',' 'f ' ~, :;' 'i ' ',,' , " 
: " . I~ f ~ fo f ~ : 

La position des bandes claires par rapport à la frange centrale est donnée par (voir Fig. 

p. 327), 

yn = f . tang El == f sin El = n f dÂ. 

où Yn repère la position de la frange d'ordre n. 

Dans le cas où Â. = 546 nm (lampe à vapeur de mercure), d = 0,1 mm, f = 1 m. 

Â. 546 10-9 
sin El = n - = n = n . 5,46 10-3 

d 0.1 10-3 

soit 
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8 (0) _ n . 0,31 

Yn n' 5,46 mm 

On constate que même pour des ordres d'interférence n élevés, les angles 8 correspon­

dants restent faibles. 

b) Interférence à fentes multiples 

Dans le cas d'interférence à 2 fentes, la largeur angulaire d'une frange d'interférence est 

de l'ordre de grandeur de la distance entre le maximum et le 1er minimum, soit de l'ordre de 

1 À À À
{ n+-) ­ - n d (11.12)

2 d 2d 

condition d'interférence condition d'interférence
 
destructive constructive
 

Pour faire diminuer la largeur d'une frange, il faut superposer les ondes cohérentes émises 

par plusieurs fentes équidistantes. On peut montrer dans ce cas que l'intensité résultante 

est donnée par le graphique ci-dessous, 

~f\Jj~
 
---""--'-2 _. 1 0 1 2 d ",,18/>" 

X=8 

d sm 8/>" 

N very 
l:1rge 

-2 -1 o 2 dsin8/>" 

Intensité de la figure d'interférence de 2, 4, 8 et une infinité de fentes équidistantes. La 
distance d entre 2 fentes ne varie pas. 
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La distance entre la position des pics principaux, toujours donnés par la relation 11.7, et le 

1er minimum secondaire est telle que 

1 À 
~e == (11.13)N d 

où N est le nombre de fentes. 

Pour obtenir l'intensité décrite dans la Fig. ci-dessus, il faut sommer les champs électriques 

des N fentes. On peut utiliser la méthode graphique des phaseurs, ou passer en notation 

complexe pour arriver rapidement au résultat (voir exercices). 

Dans la pratique, il faut tenir compte du fait que la largeur des fentes est finie, ce qui
 

introduit une modulation de l'intensité des pics due à la diffraction sur une Îente (voir §
 

Il.4).
 

11.2 Interférences produites par divers dispositifs 

Tous les dispositifs produisant des interférences séparent un faisceau lumineux incident en 

deux ou plusieurs faisceaux qui se recombinent ensuite pour former des interférences. 

a) Interférences produites par des films minces 

Nous avons tous admiré les couleurs qui apparaissent lorsqu'une fine couche d'huile s'étale 

à la surface de l'eau ou les couleurs qui apparaissent dans une bulle de savon. Une couche 

d'oxide transparent, déposée sur la lentille d'un appareil de photo permet de diminuer la 

lumière réfléchie. Tous ces phénomènes sont produits par l'interférence de la lumière sur 

un film mince. 

Pour comprendre ce qui se passe, considérons la lumière de la source S réfléchie par un 

film mince d'épaisseur d et d'indice de réfraction n. 
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L'oeil est placé de telle sorte qu'un rayon incident i "pénètre" dans l'oeil après réflexion 

sur la face avant du film en a. Le rayon incident pénètre dans le film, est réfléchi en b par 

sa face arrière; puis ressort du film en c. Les rayons 1 et 2 interfèrent et les conditions 

d'interférence dépendent de leur différence de phase i1</>. 

Pour calculer i1</> il faut tenir compte des différences de chemin optique entre les 2 rayons, 

mais aussi des changements de phase possibles à la réflexion. Nous avons vu au § 3.2 

que si une onde est incidente d'un milieu d'impédance 2 1 et se réfléchit sur un milieu 

d'impédance 22, l'onde réfléchie est en phase si 22 < 21> elle est déphasée de TI si 

2 2 > 2 1, Dans le cas d'une onde EM, l'impédance est proportionnelle à l'indice de 

réfraction n. L'onde réfléchie sur la face avant du film est ainsi déphasée de TI, par contre, 

l'onde réfléchie sur la face arrière n'est pas déphasée. C'est ce qui explique qu'un film très 

mince (tel que d« À) ne réfléchit pas la lumière. En effet les rayons rI et r2 sont 

déphasés de TI et interfèrent de façon destructive. 

La différence de chemin optique dépend de l'angle d'incidence Si et de l'angle de réfraction. 

Il faut aussi tenir compte du fait que la longueur d'onde de la lumière dans le film mince est 

égale à À/n où À est la longueur d'onde dans le vide. Pour un film d'épaisseur d à 

incidence normale (Si = 0), le déphasage i1</> vaut donc, 

2d 
2TI-TI (11.14)

À/n 

La longueur d'onde À correspondant à un maximum d'intensité réfléchie est ainsi 

donnée par i1</> = m . 2 TI- (m entier), soit 

2 d· n
À = 1 (11.15) 

m+­
2 
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Ainsi lorsque de la lumière blanche est incidente sur un film d'eau d'épaisseur d = 320 nm 

et d'indice de réfraction n = 1.33, une interférence constructive aura lieu pour 

m o 2 

À (nm) 1702 567 340 

seul le maximum m = 1 est dans le visible, la lumière réfléchie est jaune-verte. 

Lorsque l'épaisseur du film varie, les conditions d'interférence destructive ou constructive 

changent, et des plages de couleurs différentes apparaissent. 

On peut, en s'intéressant à la lumière transmise par un film mince, réaliser des filtres 

interférentiels qui ne laissent passer que les composantes de la lumière d'une longueur 

d'onde bien définie. Dans ce cas, il n'y a pas de déphasage, et la condition d'interférence 

constructive est donnée par 

À 
2 d = m­ (11.16)

n 

Les couches antireflet déposées sur les objectifs des appareils optiques ont des carac­

téristiques telles que toute l'énergie lumineuse est transmise, sans réflexion. Un schéma est 

donné ci-dessous. 

:i.

1rl­
Air 

1 t r/ J =1.00T 
,1 n =1.38Coating d 

t 
Glass' n =1.80 
.. ' 

Pour éviter les reflets, il faut qu'il y ait une interférence destructive entre les rayons 

réfléchis rI et r2' soit 6.<1> = TI. Dans ce cas il faut tenir compte d'un déphasage de TI à 

la réflexion pour le rayon rI et pour le rayon r2 (nyerre > nMgF2), Cela implique à 

incidence nonnale que l'épaisseur d de la couche antireflet est telle que 

2d 1
 
6.<1> = ÎJn 2 1t = (m + 2') . 2 1t
 

soit pour m = 0, 
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1 Â 
d = où n' = 1.38 (11.17)4 n 

Dans le cas de la lumière visible à Â = 550 nm, on obtient d = 100 nm. 

Il faut en réalité tenir compte des réflexions multiples dans la couche de MgF2 et dans le 

verre.Le calcul exact montrerait qu'il faut en plus de la condition (11.17) réaliser la condition 

n' = -V na . n (11.18) 

où ici na ~ air, n' ~ MgF2 et n verre.1\ 

b) Lames fonnant un coin 

Soit 2 lames de verre, en contact le long d'une arête, fonnant un angle e très faible (voir 

dessin). 

Incident 
Reflected light ray 

rays. , 
B.A 

~ 

De la lumière monochromatique est réfléchie par les 2 faces internes des lames de verre 

fonnant le "coin", les rayons réfléchis étant notés A, B (en toute rigueur il faudrait tenir 

compte là aussi des réflexions multiples). La condition d'interférence constructive est 

donnée par, 

= 2d 27t + Il = m'27t 
Â 

soit, 

d = (m - 1/2) ')J2 

où l'on a tenu compte du déphasage de Il lors de la réflexion du rayon B (il n'y a pas de 

déphasage pour le rayon A). Si les lames de verre ont des surfaces parfaitement planes, on 

obtient des franges d'interférence, alternativement claires et foncées, équidistantes (voir 

dessin). 
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La distance e entre 2 fentes dépend de l'angle 8, elle est donnée par, 

~d Àe = = (11.19)
8 28 

La planéité d'une surface peut être déterminée en mettant en contact cette surface avec 

une surface de référence optiquement plane (variation épaisseur «À). Des franges 

d'interférence sont ainsi formées entre les 2 surfaces. Une frange sombre apparaît au 

contact des 2 surfaces (à cause du déphasage de 1t). En passant d'une frange sombre à une 

frange claire on sait que le défaut de planéité est de ÎJ4. 

Les franges d'interférence indiquent des défauts de planéité. 3 endroits correspondant à des 
maximas (ou minimas) d'épaisseur sont mis en évidence dans cette expérience. 

Les anneaux de Newton apparaissant lorsqu'on met en contact une surface plane et une 

surface convexe s'expliquent de la même façon (voir exercices). 

c) L'interféromètre de Michelson 

Un in terféromètre est un instrument qui permet de mesurer des longueurs ou des 

variations de longueur en formant des franges d'interférence. La précision obtenue est une 

fraction de la longueur d'onde de la lumière. Le schéma de principe d'un interféromètre est 

donné ci-dessous. 
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Movable.t mirror 
fti;I'"to"~M2 

d2 

M 

De la lumière est issue du point P d'une source étendue S. Elle est incidente sur un miroir 

semi-transparent M, qui possède une couche réfléchissante telle qu'elle transmet la moitié 

de l'intensité incidente et réfléchit l'autre partie. Au point M la lumière est donc divisée en 

2 ondes, l'une se dirigeant vers le miroir M, et l'autres vers M2. Les ondes sont réfléchies 

par les miroirs en direction de l'observateur E, après nouvelle réflexion-transmission sur le 

miroir semi-transparent M. Les ondes, issues du même point P de la source sont 

cohérentes, elles interfèrent. 

Lorsque les 2 miroirs Ml et M2 sont exactement perpendiculaires, l'effet est le 

même que si la lumière d'une source étendue S est incidente sur une couche d'air uniforme 

située entre 2 plaques de verre distantes de d2 - d, (voir dessin). 

Des franges d'interférence apparaissent, à cause des petites variations de l'angle d'incidence 

pour des points différents de la source étendue (pour une distance d2 - dl assez grande, 

de très faibles variations angulaires résultent en des différences de chemin optique de 

l'ordre de À). On obtient dans ce cas des franges d'interférence circulaire comme dans la 

partie a) du dessin ci-dessous. Lorsque le miroir M2 se déplace de 1./2, le 1er anneau 

circulaire foncé prend la place du point central, correspondant à une différence de phase de 

211:. On peut ainsi mesurer avec grande précision des variations de longueur en comptant le 

nombre de franges se déplaçant. 

Dans le cas où les 2 miroirs forment un faible angle, le point central se déplace et l'on 

observe des franges d'interférence telles que reproduites sous b). 
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(a) (b) 

Michelson a utilisé son instrument pour mesurer la longueur du mètre standard conservé 

à Paris, en terme de la longueur d'onde de l'émission dans le rouge d'une source lumineuse 

contenant du cadmium. 

L'interféromètre de Michelson a d'autre part été utilisé pour mesurer la vitesse de la 

lumière dans une direction parallèle au mouvement de la terre et dans la direction perpen­

diculaire, pour déterminer l'influence de la vitesse de la terre par rapport à l'éther dans 

lequel se déplace (croyait-on) une onde lumineuse. L'effet, tel que calculé, aurait dû 

conduire à un déplacement de 0.4 franges d'interférence, aisément mesurable. Ils ne 

trouvèrent aucun déplacement, ce qui a permis d'infirmer les idées de propagation de la 

lumière dans un milieu matériel (l'éther). 

11.3 Les phénomènes de diffraction. Généralités. 

Les effets de la diffraction étaient connus de Newton et de Huygens, ce n'est cependant 

qu'au début du XIXe siècle qu'une explication des phénomènes de diffraction a été 

proposée par 1. Fresnel (1788 - 1827). Ils sont importants, tout particulièrement parce 

qu'ils limitent la résolution maximale que l'on peut obtenir avec un instrument d'optique. 

a) Le phénomène de diffraction 

De façon générale, les phénomènes de diffraction apparaissent lorsqu'une ouverture ou un 

obstacle est placé entre une source lumineuse et un écran (voir dessin ci-dessous). 
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Point 
light 

Screen 

A titre d'exemple nous donnons ci-dessous la variation de l'intensité lumineuse proche 

d'une lame de rasoir qui intercepte un faisceau lumineux. 

a) 

Light 
intensity 

. b) 

+---1r-+-t+~+H+fh-----

Distance 

. S'il n'y avait pas de diffraction on observerait une brusque variation de l'intensité, corres­

pondant au traitillé (Fig. b), d'une région sombre à une région claire. En réalité lorsqu'on 

regarde en détailla variation de l'intensité lumineuse très proche de la lame, on observe des 

bandes alternativement sombres et claires; elles résultent de la diffraction. 
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En plaçant un disque opaque entre une source lumineuse monochromatique et un écran, on 

peut même voir dans certaines situations un point clair, au centre du disque, en observant 

l'ombre du disque sur l'écran. C'est un effet inattendu, mais bien réel, de la diffraction. 

Figure de diffraction d'un disque. Le point clair au centre du disque 
est effectivement observé. 

b) Le principe de Huygens 

Pour calculer la diffraction d'une ouvertue telle que celle représentée à la page 338, il faut 

admettre que chaque élément de surface infinitésimal da de l'ouverture est la source d'une 

onde sphérique dont la phase et l'amplitude dépendent de la phase et de l'amplitude de 

l'onde émise par la source (ponctuelle ici). Les ondes émises par chaque élément de surface 

da se superposent en un point P de l'écran, ce qui permet de calculer l'intensité de l'onde 

diffractée en P en sommant une infinité d'ondes d'amplitude infinitésimale (proportion­

nelle à da). 

La justification profonde d'une telle démarche est fondée sur un théorème mathématique 

qui affirme que si une surface fictive fermée L entoure une source S, l'onde émise par S 

en un point P, peut se calculer en admettant que chaque élément de surface da de L 
émet une onde sphérique. 
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surface fermée L . 

da 

r p 

da 

entourant la source S 

fp ff g (a) r 

où fA (t) est l'onde émise par la source S au point A, g (a) est un facteur directionnel, 

et fp est l'onde émise par la source au point P. 

Ce résultat est connu sous le nom de principe de Huygens, il affinne : 

Tout point A atteint par une onde est la source d'une onde sphérique (de même 

fréquence) dont la phase et l'amplitude dépendent de la phase et de l'amplitude de l'onde 

incidente. Ces ondes sont dites "ondelettes de Huygens". 

Plus concrètement, on observe dans la cuve à onde que si l'ouverture, de largeur a, d'une 

fente dans un écran est beaucoup plus faible que la longueur d'onde (a « Â), l'onde émise 

par la fente est sphérique, elle correspond à une ondelette de Huygens. 

onde plane incidente 
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Nous utiliserons le principe de Huygens pour calculer au § lIA l'onde diffractée par une 

fente. 

c) Diffraction de Fresnel et de Fraunhofer 

La diffraction de l'onde émise par la source S en présence de l'ouverture (voir page 338) 

est difficile à calculer si la source et l'écran sont proches de l'ouverture. Cette situation 

correspond à celle décrite dans la partie a) de la figure ci-dessous. C'est le cas général de la 

diffraction, on parle de diffraction de Fresnel. 

Point ()l) 
b) IightPoint
 

iht
 so~rc~",----~~...source 
1~~-'~~--
L..;..-.j Parallei rays 

--------." 

Plane to a very Parallel rays Screen
Screen wavefront distant screen in these r~gions 

Diffraction de Fresnel Diffraction de Fraunhofer 

La partie b) décrit une situation plus facile à analyser, dans laquelle la source et l'écran 

sont à l'infini. Cette situation correspond à la diffraction de Fraunhofer. Concrètement, 

on peut réaliser ces conditions en plaçant la source S dans le plan focal objet d'une lentille, 

et l'écran dans le plan focal de l'autre lentille (voir partie c). 

Dans la vie quotidienne, les phénomènes de diffraction ne sont en général pas percep­

tibles. D'une part, ils sont très faibles et n'apparaissent que très proches des bords de 

l'image d'un objet. D'autre part, la lumière blanche est une superposition de longueurs 

d'onde, chaque longueur d'onde produit une figure de diffraction qui lui est propre. La 

superposition des figures de diffraction de l'ensemble des longueurs d'onde rend moins net 

l'effet de la diffraction. 
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Il.4 Diffraction par une (ente. 

a) Observation expérimentale 

Lorsqu'une onde sinusoïdale de longueur d'onde À est incidente sur un écran percé d'une 

fente de largeur a, on observe que l'amplitude de l'onde après la fente dépend du rapport 

À/a. Dans le cas de la cuve à onde, on observe en particulier (voir dessin) que si : 

À »a l'onde est circulaire, son intensité est indépendante de e 

À ­ a: il apparaît des maximas et minimas d'amplitude en fonction de l'angle e 

À « a: l'onde est essentiellement plane, son intensité s'annule sauf pour e :::: 0 

e 
TI /2 

I ( e, r =ete) À >> b 

- TI/2 

I ( e, r =ete) À 'V b 

I ( e, r = ete) À << b1 1 1 1 1 1 1 

Lorsqu'on envoie une onde lumineuse de longueur d'onde bien définie sur une fente de 

largeur a percée dans un écran, on observe des bandes alternativement claires et foncées, 

telles que celles données dans la figure ci-dessous. 
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La largeur de la tache claire centrale, ou plus exactement la largeur angulaire .0.8 de la tache 

centrale, dépend du rapport a/À. On constate, pour une longueur d'onde donnée, que .6.8 

croît lorsque la largeur de la fente diminue. Ce résulat, à première vue surprenant, est 

une manifestation caractéristique de la diffraction sur une fente. 

b) Calcul de l'intensité diffractée par une fente 

Soit une onde plane, de longueur d'onde À, incidente sur une fente de largeur a. On désire 

calculer l'intensité de la lumière traversant la fente sur un écran placé dans le plan focal 

image d'une lentille. Le dessin ci-dessous résume la situation choisie. 

DiHractedIncident 
wave wave cB 

Le phénomène de base à la source de la diffraction et de l'interférence est le même. Lors 

de l'interférence de 2 ou plusieurs sources cohérentes, on calcule en un point P le champ 

électrique résultant de la superposition des champs électriques de chaque source. C'est le 

déphasage au point P de l'onde émise par une source par rapport à l'onde émise par une 

autre source qui est responsable de l'apparition de maximas de minimas d'amplitude en 

fonction de 8. 
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Dans le cas de la diffraction, on divise la largeur de la fente en N parties de largeur Ôx. 

Chacun des éléments ôx de la fente émet une onde sphérique (principe de Huygens). En 

particulier les éléments d'onde émis dans la direction e (voir dessin) se superposent en P. 

C'est la phase relative d'une onde par rapport à l'autre qui est responsable de l'amplitude 

résultante en P, et par conséquent du phénomène de diffraction. On remarque sur le dessin 

ci-dessus que la différence de chemin optique entre 2 éléments de fente ôx est égale 

Ôx sin e, il lui correspond un déphasage 

Ôx 
ô<p = -:;: sin e . 2 1t 

De ce point de vue on peut considérer la diffraction comme l'interférence d'un très grand 

nombre de sources. En passant à la limite, soit en faisant tendre Ôx vers dx et N vers 

l'infini, la diffraction apparaît comme l'interférence d'un nombre infini de sources, 

chaque source émettant une onde d'amplitude infinitésimale. 

Pour faire le calcul explicite, notons ôE ( r (x, e), t) le champ électrique de l'onde émise 

par l'élément de largeur ôx de la fente, situé à l'abcisse x, où x est mesuré par rapport au 

centre de la fente (x varie entre - aJ2 et aJ2). r (x, e) mesure le chemin optique d'un 

rayon lumineux issu de l'élément ôx dans la direction e, il est tel que 

r = r (x, e) = r (0, e) - x sin e 

On a donc 

ôE (r, t) = A' ôx cos [k' r (x, e) - Cût ] 

où l'on a tenu compte du fait que l'amplitude ôEa = A . Ôx de l'onde émise par la largeur 

ôx de la fente est proportionnelle à ôx (principe de Huygens). On a donc 

ôE (r, t) = A· ôx cos [k' ra - k x sin e- Cût ] 

Pour calculer le champ E (r, e, t) de la fente dans la direction e (soit au point P du 

dessin), il faut intégrer sur la largeur de la fente en remplaçant ôx par l'élément 

infinitésimal dx. 

aJ2 

E (ro' e, t) A f d x cos [k ra - k x sin e - Cût] 

-aJ2 
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Il est plus simple de passer en notations complexes pour faire le calcul explicite, soit 

-
E (ro' S, t) = Re E (ro' S, t) 

où 
al2 

E (ro, S, t) = A f dx exp [ j (k r0 - k x sin S - wt] 
al2 

que l'on peut récrire en tenant compte du fait que (k ro - wt) ne dépend pas de x, 

al2 

E (ro, S, t) A exp [j (k ro - wt) ] f d x exp [- j (k x sin S ] 

al2 

où la valeur de l'intégrale est égale à, 

sin a k a sin S 
a avec a= (11.20) 

a 2 

En prenant la valeur réelle de E, on obtient finalement 

sin a 
E (ro' S, t) = A cos (k ro - wt) a -­

a 

L'intensité est donnée par la relation 9.20, elle est proportionnelle à < E2 (ro' S, t) >, soit, 

k a sin S 1tsin a)21 = 1 -- a = = a sin S (11.21)
o ( a 2 À 

où 10 représente l'intensité pour l'angle S = 0, en effet lim (sin wa) = 1 pour S (donc 

a) tendant vers zéro. 

Nous représentons dans la figure ci-dessous la variation de l'intensité en fonction de sin S, 

elle s'annule pour les valeurs de sin S telles que 

soit 

À 
sin S = m (11.22)

a 
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l 

! 

- À 
Q 

~-----'>--'------'---"~ -=-- ~ sin 0
À 2À o - ­
a. a. 

On obtient bien, en accord avec la mesure (voir figure de diffraction page 343), des plages 

alternativement claires et sombres. La largeur angulaire de la tache centrale est de l'ordre 

de .6.8 = Â/a, elle croît lorsque a diminue. On peut vérifier par intégration que plus de 

90% de l'énergie lumineuse est contenue dans la tache centrale. 

Pour illustrer l'évolution de la largeur de la tache centrale en fonction de la largeur de la 

fente, nous reportons dans le diagramme ci-dessous l'intensité 1 (8) pour divers rapports 

a/Â. 

1 0 

~ ---­r--...:. 
~ ---­ 0.8 

0.6 

.~ 
'" c:., ~ 
:s ., a=À 

0.4 

0.2 

.~ 
-;;; 
Oi 
C%: 

-20 -15 -10 -5 0 5 10 15 20 
(a) 0 (degrees) 

10 

;: ~ 
/ 0.8 

~ \ a = 5À 
0.6 
·~~x 

1~D.O-~.4 .~ 

/ -;;; 1\
0.2 

Oi 

V 
C%: 

If8. "" 
-20 -15 -10 -5 0 5 

(b) 8 (degrees) 

10 

10 15 20 

J:1\ 
[8 .~\ a = 10À 

/0.6 .~ \ 
/ 0.4 

.~ \ 
L-. -r---. 

V 0.2 
~ \ --­-20 -15 -10 -5 0 5 

(c) 0 (degrees) 
10 15 20 

Distribution de l'intensité de la diffraction par une fente pour 3 valeurs différentes du 
rapport a/Â. .6.8 est une mesure de la largeur du pic central (voir graphique b). 
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On peut remarquer, en comparant cette figure avec le comportement expérimental décrit à 

la page 342 dans le cas de la cuve à onde, la bonne concordance entre la théorie et l'expé­

nence. 

c) Diffraction par une ouverture rectangulaire 

Il faut remarquer que dans le calcul de la diffraction par une fente nous avons omis de 

mentionner une difficulté. En effet nous avons intégré sur la largeur de la fente, sans tenir 

compte de la hauteur de la fente. En réalité il aurait fallu calculer l'onde émise par un 

élément de surface dO" de la fente (principe de Huygens), où dO" se déplace à la fois sur la 

largeur et la hauteur de la fente. Un tel calcul peut se faire sans difficulté majeure en 

calculant la diffraction d'une fente rectangulaire de largeur a et de hauteur b (pour une 

fente infinie, telle que implicitement considérée dans le calcul précédent, b serait infini). 

On obtiendrait la figure de diffraction donnée dans la figure ci-dessous. Le long de l'axe 

horizontal les mimima de diffraction (tels que sin e = m À/a) sont plus distants que le 

long de l'axe vertical (tels que sin e = m À/b), parce que la hauteur b de l'ouverture est 

plus grande que la largeur a. 

Q~~ 

6ID 
Aperture 

orientation 

Dans la limite où b est très grand, les minimas selon l'axe vertical sont très rapprochés. La 

figure de diffraction redonne celle obtenue au § Il.4 b) pour une fente infinie, en faisant un 

calcul plus simple. 
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11.5	 Diffraction par une ouverture circulaire. Le Douvoir de résolution d'un 

instrument d'oDtique. 

a)	 Diffraction par une ouverture circulaire 

Lorsqu'on focalise une image dans un système optique, la lentille ne laisse passer la lumière 

que dans un cercle limité par son diamètre. De ce point de vue une lentille se comporte 

exactement comme une ouverture circulaire dans un écran opaque. Une telle ouverture 

forme une figure de diffraction comme dans le cas d'une fente. A titre d'exemple nous 

donnons dans la figure ci-dessous la figure de diffraction d'une source quasi-ponctuelle très 

éloignée (une étoile) formée sur un film photographique placé dans le plan focal image d'un 

téléscope. 

Figure de diffraction d'une ouverture circulaire, la source est à l'infini 

Du point de vue de l'optique géométrique on devrait obtenir un point sur le film photo­

graphique. La série d'anneaux concentriques est un effet de la diffraction. 

Le calcul de la figure de diffraction pourrait se faire à l'aide 'du principe de Huygens, en 

sommant les champs électriques dE (x, t) émis par les éléments de surface da, où da 

parcourt toute la surface de l'ouverture circulaire. Dans les conditions de Fraunhofer 

(source à l'infini et image à l'infini - ou dans le plan focal image d'une lentille), on montre 

que le 1er minimum de diffraction a lieu pour un angle e mesuré par rapport à l'axe de 

l'ouverture, tel que 

Â 
sin e 1.22 D	 (11.23) 
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où D est la diamètre de l'ouverture. Ce résultat peut être comparé avec celui de la fente où 

la position du 1er minimum est tel que (voir 11.22), 

sin e = 
a 

On montre d'autre part que le disque central contient 84% de la lumière traversant 

l'ouverture, 91 % étant contenue dans le disque central et le 1er anneau de diffraction. 

b) Le pouvoir de résolution 

Le fait que les images obtenues avec une lentille ne soient pas des points, mais des anneaux 

de diffraction, est important lorsqu'on veut distinguer deux objets éloignés (se comportant 

comme des sources quasiponctuel1es) dont la séparation angulaire est faible. Nous donnons 

dans la figure ci-dessous la variation de l'intensité de deux sources ponctuelles (des étoiles) 

dont l'image est formée par une lentille convergente. 

(a) (b) (c) 

En a) les étoiles sont si proches que leurs images ne peuvent pas être séparées. En b) leur 

séparation angulaire est à la limite de la résolution de l'instrument optique utilisé (elle 
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correspond au critère de Rayleigh. En c) les étoiles sont suffisamment éloignées pour être 

bien résolues. 

Plus quantitativement on considère que deux taches images sont encore distinctes si elles 

satisfont le critère de Rayleigh, soit si le maximum central d'une tache correspond au 

premier minimum de l'autre tache. L'angle e minimum que peuvent former deux rayons 

correspondant à des points distincts est donc donné par la relation, 

1.22 À 
sin eroin (11.24)D 

où D = diamètre de la lentille d'entrée. 

La situation correspondant à l'angle eroin est représentée dans la figure ci-dessous, 

6 . 
"'ln 

I---~.::-.::~ 

Ainsi lorsqu'on veut augmenter le pouvoir de résolution d'un instrument, il faut augmenter 

le diamètre de la lentille d'entrée et/ou diminuer la longueur d'onde. C'est une des raisons 

pour laquelle les miroirs des téléscopes sont de grand diamètre, l'autre bien sûr étant qu'il 

est ainsi possible d'augmenter la quantité de lumière captée. 

Pour réduire les effets de diffraction dans un microscope, on utilise de la lumière UV, dont 

la longueur d'onde est plus faible. Dans un microscope électronique, l'image est formée à 

partir d'électrons, auxquels on peut associer une longueur d'onde très faible, typiquement 

10-2 nm (soit env. 105 fois plus faible que la lumière visible). C'est ce qui permet de 

distinguer des objets (atomes par exemple) dont la distance est inférieure à 0.2 nm. 
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Image obtenue par microscopie électronique par transmission, à haute résolution.
 
Particule d'or posée sur un substrat de carbone amorphe.
 
Les points blancs correspondent à des colonnes d'atomes.
 

Nous donnons dans le dessin ci-dessous le schéma d'un microcope optique, l'objectif
 

forme de l'objet AB une image A'B'. L'angle 8 minimum qui permet de distinguer 2 

points est donné par, 

sin 8 = 
1.22 Â. 

I) -
AB 

AB - 0.61 Â. ~;2 (11.25) 

B 

D 
A 

BI 

La distance minimum que l'on peut observer dépend de Â. et' de l'ouverture I)/2so' I)ans 

un microscope on maximise l'ouverture en plaçant l'objet très près de l'objectif, le rapport 

I)/2 So est égal à - 0.65. On obtient dans ce cas, AB - Â. - 0.5 jlm. 

I)ans le cas de l'oeil, où la distance optimale de vision est de 25 cm et le diamètre de la 

pupille I) == 2 mm, on obtient AB == 75 jlm. 

Il faut noter que durant les dernières années, il est devenu possible d'analyser avec la 

lumière visible des objets dont les dimensions sont inférieures à la longueur d'onde. Ce sont 

les techniques dites d'optique à champ proche (near field optics). L'idée est de laisser 
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passer la lumière et de recueillir la lumière à travers une ouverture dont le diamètre et de 

quelques nm. De cette façon des pouvoirs de résolution de quelques nm peuvent être 

obtenus. 

11.6 Les réseaux 

La spectroscopie, c'est-à-dire la détermination des différentes longueurs d'onde émises par 

une source d'onde EM est une technique puissante pour analyser la composition chimique 

de différents corps ou les propriétés optiques d'un dispositif. Ceci est en particulier lié au 

fait que chaque atome émet des ondes E.M. à des longueurs d'onde caractéristiques, liées à 

sa structure électronique. L'analyse du rayonnement solaire ou d'étoiles donne par exemple 

une bonne idée de la composition et de la température des couches externes des corps 

célestes. 

Pour séparer les différentes longueurs d'onde on utilise des réseaux. Un réseau est formé 

d'un grand nombre de fentes fines et très serrées. On peut les fabriquer par exemple en 

gravant des rainures parallèles sur un support de verre (transmission) ou de métal 

(réflexion). On obtient ainsi jusqu'à 10'000 fentes par centimètre. 

Nous donnons ci-dessous le principe de fonctionnement d'un spectroscope à réseau. 

Image of 
slit 5 

f 
~,~~~m=o 

Light
 
source
 

Slit
 
5 Grating
 

Une source de lumière monochromatique passe à travers une fente S, alignée parallèlement 

au réseau. Une lentille LI rend le faisceau parallèle avant qu'il ne soit diffracté par le 

réseau. Les différents ordres d'interférence (donnés par la relation Il.7), soit, 

À 
sin Sm = m d (11.26) 

m ordre d'interférence d distance entre les fentes 



353 

sont émis sous des angles Sm différents. Ils sont détectés par une lunette qui peut être 

déplacée en rotation. Un système optique permet de déterminer l'angle Sm comespondant 

à un maximum d'intensité. Lorsque le réseau est calibré, soit lorsque d est connu, la 

relation (11.26) permet de déterminer la longueur d'onde À en mesurant l'angle S 

correspondant. 

a) Interférence et diffraction 

Nous analysons le comportement d'un réseau en prenant pour commencer un réseau en 

transmission comportant 4 fentes. Mais, contrairement au cas de l'interférence à 2 fentes 

discutée au § Il.1, nous tenons aussi compte des effets de diffraction liés à la largeur a 

finie d'une fente. Ainsi 3 paramètres caractérisant le réseau: le nombre N de fentes, la 

distance d entre 2 fentes, la largeur a d'une fente. 

~~')\ 

Grating

Lens 

Multiple-slit 
interference 

pattern 

11
-dT 

Incident_T 
paraIJel 

light _ ~ 
/- /)

/ 

Plane 
wavefront 

Diffraction 
pattern 

due to slit 
width a 

Screen 

La position des maximas principaux d'interférence est donnée par la relation (11.26). La 

largeur des pics étant plus étroite que dans le cas à 2 fentes (voir § 11.1 b). A cause de la 

lentille, les pics de diffraction associés aux différentes fentes sont superposés sur l'écran 

(pour chaque fente l'angle de diffraction correspondant à un maximum est le même, ils 

convergent donc au même point sur l'écran, puisque après passage dans une lentille tous les 

rayons parallèles convergent en un même point). La variation d'intensité sur l'écran due à la 

diffraction est ainsi donnée par la relation Il.21, soit 

l = 10 
sinaa J2 11.21

( 
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où ex = 1t a sin S/À. Le 1er minimum est ainsi tel que, 

sin S = a/À 

L'intensité résultant des effets d'interférence et de diffraction est reportée dans la figure 

ci-dessus. On peut montrer dans le cas où l'on a 2 fentes, qu'elle est donnée par 

1t d sin S ( sin ex ) 2
1 = 1 cos2 .-- (11.27)

o À ex 

soit le produit de la variation de l'intensité pour 2 fentes (11.8) et de l'intensité (11.21) 

associée à la diffraction. Ce résultat se généralise pour N fentes. 

On constate donc que le maximum d'intensité pour la diffraction coïncide avec l'ordre 

m = 0 d'interférence. Cependant lorsqu'un réseau est utilisé dans un spectroscope pour 

séparer les longueurs d'onde il faut analyser l'ordre m = 1 ou 2 d'interférence, puisqu'il 

n'y a pas de séparation des longueurs d'onde pour m = 0 (l'angle S donné par 11.26 et 

nul quel que soit À). C'est la raison pour laquelle les réseaux de bonne qualité sont taillés 

en dent de scie. 

L'angle 'Y est choisi de telle sorte que la 

réflexion géométrique coïncide avec l'ordre 

d'interférence m = 1 ou 2. Dans ce cas le 

maximum d'intensité de la diffraction (qui 

coïncide avec l'angle de réflexion géométrique) 

assure que l'intensité est optimum pour l'angle 

correspondant à l'ordre d'interférence choisi 

(généralement m = 2). 

b) Dispersion et pouvoir de résolution 

Les caractéristiques d'un réseau qui permettent de faire des mesures précises de longueur 

d'onde dépendent de (1) la séparation ilS entre les lignes spectrales de longueurs d'onde 

qui diffèrent de ilÀ (2) la largeur des raies spectrales. 

Le pouvoir de dispersion d'un réseau est défini par 
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D (11.28) 

On souhaite qu'un réseau ait un grand pouvoir de dispersion pour que les longueurs d'onde 

voisines soient bien séparées. L'angle 8 est donné par la relation 11.21, en différentiant, 

d cos 8 d8 = n d!­

dont on déduit le pouvoir de dispersion D, 

L18 m 
D - - (11.29)

L1!- d cos 8 

le pouvoir de dispersion croît lorsque la distance d entre les fentes diminue, D'autre part il 

est proportionnel à l'ordre d'interférence m, en particulier le pouvoir de dispersion est nul 

pour m = O. 

Le pouvoir de résolution R d'un réseau est défini par 

!­
R= - (11.30)

L1!­

où L1!- est la séparation minimum entre 2 lignes spectrales qui permette encore de les 

séparer. L1!- dépend de la largeur L18 du pic d'interférence, étroitement relié au nombre de 

fentes N du réseau (voir § 11.1 b). On montre que 

R=N'm (11.31) 

Pour indiquer l'importance relative du pouvoir de dispersion et du pouvoir de résolution, 

nous représentons dans la figure ci-dessous les raies spectrales obtenues avec 3 réseaux 

différents, notés ABC, soit, 

N d (nm) 8 R D (10-4 rad7nm) 

A 5'000 10'000 2.90 5'000 1.0 

B 5'000 5'000 5.70 5'000 2.0 

C 10'000 /0'000 2.90 10'000 1.0 
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11.7 Di(fraction des rayons X 

Les rayons X sont des ondes E.M. dont les longueurs d'onde sont de l'ordre de 0.1 nm. 

Nous avons vu dans le cas des réseaux optiques qu'une onde lumineuse incidente est 

transmise selon des directions privilégiées, correspondant aux directions où l'interférence 

des ondes émises par chaque fente est constructive. Un cristal peut être considéré comme 

un réseau tridimensionnel; les rayons X, dont la longueur d'onde est de l'ordre de grandeur 

des distances interatomiques (~ 1 A), sont alors aussi transmis ou réfléchis selon des 

directions préférentielles. L'analyse de ces directions permet de déterminer les paramètres 

du réseau cristallin. 

Considérons dans un cristal une famille de plans parallèles, notés plans réticulaires, 

contenant les atomes du cristal. 
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Plans réti.culaircs Plans réti~ulctires 

(100) (110) 

Dans le cas d'un cristal cubique on peut par exemple considérer tous les plans parallèles à 

l'une des faces du cube ou parallèles à une diagonale du cube. 

Chaque plan réticulaire joue le rôle d'Une surface réfléchissante pour les rayons X. 

L'interférence entre les ondes réfléchies (ou transmises) est constructive si la différence 

entre les chemins optiques est un nombre entier de longueurs d'onde, soit: 

2 d cos El -- n À 

truces~ 
de plans ~::--.... 
réticulaires ~ 

e 

plaque photGgraphique 
y~ 

d 

Cette loi, dite loi de Bragg, permet de déterminer la distance entre les plans réticulaires si 

8 et À sont connus. Dans la méthode de laue le faisceau de rayon X a un spectre 

continu de longueurs d'onde. Il existe donc toujours, pour une famille de plans réticulaires 
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formant un angle e défini par rapport au faisceau de R.X., une valeur À qui satisfait la 

condition de Bragg. On obtient alors sur une plaque photographique un ensemble de 

taches, chaque tache correspond à une famille de plans réticulaires. 

Photographie 
film 

Schéma du dispositif expérimental pour obtenir un spectre de diffraction en transmission 
par la méthode de Laue. 

Figure de diffraction de Laue 

monocristal de quartz monocristal de structure complexe 

Sur la base de la figure de diffraction on peut "remonter" â la structure du cristal. En 

particulier la symétrie du cristal se reflète dans la symétrie du spectre de diffraction de 

Laue. 

Il faut remarquer que, bien que l'on parle de diffraction de rayons X, un diagramme de 

rayons X est ici le résultat de l'interférence des ondes réfléchies par les différents plans 

cristallins. 
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11.8 Holofraphie 

Les principes de l'holographie ont été énoncés en 1948 par Dennis Gabor (prix Nobel en 

1971). Le principe de base de l'holographie est donné dans les 2 figures ci-dessous. 

Incident 
monochromatie 

plane waves 

Fine-grain 
photographie 

film 

Deux ondes monochromatique sont 

incidentes sur un film photographique. 

L'une est le faisceau de référence, c'est 

ici une onde plane. L'autre est l'onde 

lumineuse diffractée par un petit objet 

situé en P. Ces 2 ondes interfèrent sur 

le film et forment une figure d'inter­

férence consistant dans ce cas simple, 

en cercles alternativement clairs et 

foncés, c'est l'hologramme. 

Lorsque l'hologramme (voir ci-dessous) est illuminé par de la lumière cohérente et 

monochromatique, les ondes diffractées par l'hologramme restituent une image réelle et une 

image virtuelle de l'objet initialement situé en P. Un observateur peut alors voir en 3 

dimensions l'image virtuelle de l'objet. 

Incident 
parallel 

light 

Observer can 
see the virtual 

image 
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Lorsqu'un objet étendu diffracte la lumière pour 

former un hologramme, les franges d'interférence 

ont une forme complexe semblable à celle 

décrite ci-contre. L'information sur la phase et 

l'intensité de l'onde lumineuse diffractée par 

l'objet est contenue dans l'hologramme. C'est ce 

qui permet de reconstituer l'image virtuelle de 

l'objet en 3 dimensions. 

En pratique, pour obtenir un contraste bptimum des franges d'interférence, il faut utiliser 

un dispositif tel que celui décrit dans la figure ci-dessous. 

1" Jt.,'.. 

'Mi YO i ...
 
It'M"- ~""''''''Jp.
 

f"fJtt.~-

cAt .,..t'fe'yC ""0(, 
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Les hologrammes ont un grand nombre d'applications. Lorsqu'on prend un hologramme il 

faut que l'objet soit parfaitement immobile, tout mouvement de l'objet modifierait la phase 

relative du faisceau de référence et de l'onde diffractée par l'objet. On peut exploiter cette 

grande sensibilité de la phase à tout mouvement en superposant sur un même hologramme 

deux expositions successives d'un objet en vibration. Les parties de l'objet qui se sont 

déplacées entre les 2 expositions d'un nombre entier de longueur d'onde conduisent à une 

interférence constructive, elle sera destructive si le déplacement est de 1../2. Cela permet 

ainsi de visualiser à 3 dimensions les vibrations d'un objet 

BO 147 222 . 304 349 404 

Franges d'interférence de la partie supérieure d'un violon vibrant à différentes fréquences. 

La variation de position entre 2 franges d'interférence est de À (OÙ À = longueur d'onde 
de la lumière utilisée pour faire l'hologramme). 




