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Exercice 1 : Le puits de potentiel infini en deux dimensions

1. On remarque que le potentiel U(z,y) peut s’écrire comme :

Ulz,y) = Us(x) + Uy(y) (1)

L’équation de Schrodinger est donc

n? 0%yY(x, h? 0%y(x,
—%$ - %% + Us(2)(z,y) + Uy(y)(z,y) = Ed(z,y).

En remplacant ¢,,;(x,y) = ¢,(z)x:(y), on obtient :
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Le terme dans les premiéres parenthéses est ’équation de Schrodinger en une dimension pour
x. On sait qu’il est égal & E, ,,¢,(z). De méme, le terme entre les deuxiémes parenthéses est
égal & By xi(y). On a donc B, nén(2)x1(y) + Eyaxi(y)on(2) = Endn(r)xi(y) ce qui implique
nécessairement E,; = FE, , + I, .

Nous avons ainsi prouvé que ¥, (z,y) = ¢,(z)x;(y) sont états propres de I’équation de Schro-
dinger en deux dimensions pour le potentiel U(z,y) donné, et nous avons calculé les valeurs
propres [, ; associées.
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2. Nous savons du cours que £, = omrz! et By = 50 % .

On cherche deux paires distinctes d’index (nq,1;) et (ng,ls) tels que E,, ;, = En, 5.
On a
h2m? n_% ;. R n_% 12
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qu’on doit résoudre pour (ny,ly) # (ne, l2).

Nous avons : ] 1
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Si on veut Iy # lo, alors il suffit de choisir :
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a condition que > (. Par exemple, sionan; =2, ny, =1, 1; =1 et Iy = 3, le puits avec

L, = \/gLy sera caractérisé par Fy; = Ej 3. On dit que deux états propres distincts avec la

méme valeur propre de I'énergie sont "dégénérés".
Exercice 2 : Electron dans un puits de potentiel en deux dimensions : 1

Cet exercice est un exercice type de mécanique quantique au sujet des puits de potentiel.

1. On nous dit tout d’abord que la fonction d’onde bidimensionnelle est donnée par le produit
de fonctions d’onde unidimensionnelles. Nous allons donc tout simplement multiplier deux
fonctions d’onde unidimensionnelles avec des constantes C? et C} déterminées par les condi-
tions de normalisation. n et [ sont tous deux des nombres entiers. On a d’aprés le cours pour
chacune des fonctions d’onde unidimensionnelles :

Avec L, = 2L et L, = 3L, il vient simplement

) = () = 2 () sin () )

Les projections des quantités de mouvement des électrons sur les axes (Ox) et (Oy) sont
données par
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La quantité de mouvement totale vaut donc
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L’énergie totale est donc




ou m est la masse de 1’électron.

n? 2
pourn=1[l=1=—= — 4+ — =0.36,
4 9
n? 2
pourn:2,l:1:>1+§:1.11,
n? 2
pourn:3,l:1:>Z 522.36,
n? 2
pournzl,l:2z>z—|—§—0.69
n? 2
pourn=1[=3—= — 4+ — =1.25,
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n? 2
pournzl,l:4z>z+§:2.78,
n? 2
pourn=2101=2=— —+ —=1.44.
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Les cinq premiers niveaux d’énergie de ’électron sont donc donnés par
E0:E117
E1:E127
E2:E217
E3 = Fi3,
Ey = Eg.

. On nous demande de calculer des probabilités pour I’état fondamental, donc pour n = 1 et

l=1:
Yule,y) = \/g% sin (27TL > sin (37TL >

La probabilité de trouver la particule dans I'intervalle I, x I, est

Pr.1, = // |¢11(1’>y)|2 dzdy .
(z,y)elr xIy

La probabilité de trouver I’électron dans le quadrant 0 < x < L, 0 <y < 3L/2 est donc

P, = 3L2/y 0/ sin? sin2 <3L> dxdy .

Les deux intégrales peuvent se calculer séparément
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et de la méme maniére



3. Pour trouver la probabilité que l’électron se trouve dans le ruban L < y < 3L/2 il faut
tout d’abord réaliser qu’on ne met pas de condition sur la position en x ce qui signifie que
I'intégrale sur x nous donne 1. La probabilité est donc simplement
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Exercice 3 : Electron dans un puits de potentiel en deux dimensions : 2

1. D’aprés I’énoncé, nous avons une énergie de la forme
Ey=A(n*+20), (4)
avec A =1 meV. L’énergie pour une particule dans un puits bidimensionnel est
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Le terme en n? dans I’équation Eq. (4) est isolé; il faut faire de méme avec la formule générale :

h2 L2
Ey=——(n>+ 2] .
" SmL2 (" "I )

Nous pouvons désormais identifier les constantes :

h? | h?
8mL?2 8mA
L? | h?
—=2=L,=1\/—
L2 Y 16mA’

soit donc aprés application numérique

L,=194nm et L,=13.7nm. (5)
2. On procéde comme dans 'exercice précédent :
pourn=11=1=n>+20>=3,
pourn=21=1=n>+20>=6,
pourn=11=2=n?>+20*=9,
pour n =21 =2 = n?+20*> =12,
pourn=3,0l=1=n?>+20>=11.

Les trois premiers niveaux d’énergie sont donc

E():En:?)A,
E, = Ey =6A,
E2:E12:9A.
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3. Pour passer du premier au deuxiéme niveau il faut fournir ’énergie
AE =F, — Ey=3A

a I’électron. Le photon doit donc apporter cette énergie. Lorsqu’un électron absorbe un photon
(effet photoélectrique), il s’approprie I'intégralité de son énergie. Le photon doit donc avoir
une longueur d’onde correspondant exactement a ’énergie £ = F; — Ej, qui est réliée a la

longueur d’onde par

he
E="C
A’

ce qui donne finalement une longueur d’onde de

he

A= AE

= 0.41 mm. (6)

Exercice 4 : Puits de potentiel infini avec paroi mobile

1. L’équilibre est obtenu par minimisation de ’énergie du systeme. Calculons-la. Notons dans
un premier temps la position de la paroi par x. L’énergie de I'état fondamental de la premiére
particule est donnée par

h2
- 8ma?’

Ey
De la méme fagon, la particule qui occupe I'état avec le nombre quantique 2 a une énergie

4h?

Ey=———.
8m (L — z)*
L’énergie totale est simplement la somme de ces deux énergies

h? n 4h?
8ma?  8m (L —x)*

E:E1+E2:

La position a I’équilibre x.q est obtenue en trouvant le minimum de I'énergie qui est tel que

AE g2 8w
dx Tea) =V = Smxg’q 8m (L — Teq)

3 = 437201 =(L— zeq)3 = Teq =

1+ V4 )

2. L’énergie totale du systéme lorsqu’il se trouve a 1’équilibre est

(1+€’/?1)2+4(1+%)2] . (8)

3. L’application numérique pour L = 5 nm donne

h2
Eeq = E(weq) = L2

=193nm et E=418x10"%J=0.26¢V. (9)



Exercice 5 : Question de type examen

La fonction d’onde, qui satisfait I’équation de Schrodinger pour le potentiel V' (x) soumis a la par-
ticule, est 'expression 3.

Le potentiel est infini pour des valeurs z < 0, ainsi la fonction d’onde doit satisfaire la condition
¥ (0) = 0. Les propositions 2. et 4. sont donc & exclure, en raison du cosinus utilisé dans ces ex-
pressions. Par ailleurs, bien que V;; > V7, la particule a probabilité non nulle d’étre mesurée a la
position x = L. Ainsi, la fonction d’onde 9 (L) # 0. La solution de ce probléme a donc la forme de
la fonction d’onde 3.

Il est & noter que si V;; = oo, la particule serait alors piégée dans un puits de potentiel infini. Dans
ce cas, c’est la fonction d’onde 1. qui serait solution de I’équation de Schrodinger.



