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Exercice 1 : Le puits de potentiel infini en deux dimensions

1. On remarque que le potentiel U(x, y) peut s’écrire comme :

U(x, y) = Ux(x) + Uy(y) (1)

L’équation de Schrödinger est donc

− ~2

2m

∂2ψ(x, y)

∂x2
− ~2

2m

∂2ψ(x, y)

∂y2
+ Ux(x)ψ(x, y) + Uy(y)ψ(x, y) = Eψ(x, y) .

En remplaçant ψnl(x, y) = φn(x)χl(y), on obtient :

(
− ~2

2m

∂2φn(x)

∂x2
+ Ux(x)φn(x)

)
χl(y)+

(
− ~2

2m

∂2χl(y)

∂y2
+ Uy(y)χl(y)

)
φn(x) = Enlφn(x)χl(y) .

Le terme dans les premières parenthèses est l’équation de Schrödinger en une dimension pour
x. On sait qu’il est égal à Ex,nφn(x). De même, le terme entre les deuxièmes parenthèses est
égal à Ey,lχl(y). On a donc Ex,nφn(x)χl(y) +Ey,lχl(y)φn(x) = Enlφn(x)χl(y) ce qui implique
nécessairement En,l = Ex,n + Ey,l.
Nous avons ainsi prouvé que ψnl(x, y) = φn(x)χl(y) sont états propres de l’équation de Schrö-
dinger en deux dimensions pour le potentiel U(x, y) donné, et nous avons calculé les valeurs
propres En,l associées.

2. Nous savons du cours que Ex,n = ~2π2

2mL2
x
n2 et Ey,l = ~2π2

2mL2
y
l2.

On cherche deux paires distinctes d’index (n1, l1) et (n2, l2) tels que En1,l1 = En2,l2 .
On a

~2π2

2m
(
n2
1

L2
x

+
l21
L2
y

) =
~2π2

2m
(
n2
2

L2
x

+
l22
L2
y

)

qu’on doit résoudre pour (n1, l1) 6= (n2, l2).
Nous avons :

1

L2
x

(n2
1 − n2

2) =
1

L2
y

(l22 − l21)
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Si on veut l1 6= l2, alors il suffit de choisir :

L2
x =

n2
1 − n2

2

l22 − l21
L2
y

à condition que n2
1−n2

2

l22−l21
> 0. Par exemple, si on a n1 = 2, n2 = 1, l1 = 1 et l2 = 3, le puits avec

Lx =
√

3
8
Ly sera caractérisé par E2,1 = E1,3. On dit que deux états propres distincts avec la

même valeur propre de l’énergie sont "dégénérés".

Exercice 2 : Électron dans un puits de potentiel en deux dimensions : 1

Cet exercice est un exercice type de mécanique quantique au sujet des puits de potentiel.
1. On nous dit tout d’abord que la fonction d’onde bidimensionnelle est donnée par le produit

de fonctions d’onde unidimensionnelles. Nous allons donc tout simplement multiplier deux
fonctions d’onde unidimensionnelles avec des constantes Cx

n et Cy
l déterminées par les condi-

tions de normalisation. n et l sont tous deux des nombres entiers. On a d’après le cours pour
chacune des fonctions d’onde unidimensionnelles :

ψn(x) = Cx
n sin (kxx) =

√
2

Lx
sin

(
πn

Lx
x

)
,

ψl(x) = Cy
l sin (kyy) =

√
2

Ly
sin

(
πl

Ly
y

)
.

Avec Lx = 2L et Ly = 3L, il vient simplement

ψnl(x, y) = ψn(x)ψl(y) =

√
2

3

1

L
sin
(πn

2L
x
)

sin

(
πl

3L
y

)
. (2)

Les projections des quantités de mouvement des électrons sur les axes (Ox) et (Oy) sont
données par

px =
h

λx,n
et py =

h

λy,l
,

avec
λx,n =

2Lx
n

=
4L

n
et λy,l =

2Ly
l

=
6L

l
.

La quantité de mouvement totale vaut donc

~p = px~ex + py~ey =⇒ p2 = p2x + p2y .

L’énergie totale est donc

Enl =
p2

2m
=

h2

8mL2

(
n2

4
+
l2

9

)
, (3)

2



où m est la masse de l’électron.

pour n = 1, l = 1 =⇒ n2

4
+
l2

9
= 0.36 ,

pour n = 2, l = 1 =⇒ n2

4
+
l2

9
= 1.11 ,

pour n = 3, l = 1 =⇒ n2

4
+
l2

9
= 2.36 ,

pour n = 1, l = 2 =⇒ n2

4
+
l2

9
= 0.69 ,

pour n = 1, l = 3 =⇒ n2

4
+
l2

9
= 1.25 ,

pour n = 1, l = 4 =⇒ n2

4
+
l2

9
= 2.78 ,

pour n = 2, l = 2 =⇒ n2

4
+
l2

9
= 1.44 .

Les cinq premiers niveaux d’énergie de l’électron sont donc donnés par

E0 = E11 ,

E1 = E12 ,

E2 = E21 ,

E3 = E13 ,

E4 = E22 .

2. On nous demande de calculer des probabilités pour l’état fondamental, donc pour n = 1 et
l = 1 :

ψ11(x, y) =

√
2

3

1

L
sin
( π

2L
x
)

sin
( π

3L
y
)
.

La probabilité de trouver la particule dans l’intervalle Ix × Iy est

PIx,Iy =

∫∫
(x,y)∈Ix×Iy

|ψ11(x, y)|2 dxdy .

La probabilité de trouver l’électron dans le quadrant 0 ≤ x ≤ L, 0 ≤ y ≤ 3L/2 est donc

P1 =
2

3L2

∫ 3L
2

y=0

∫ L

x=0

sin2
(πx

2L

)
sin2

(πy
3L

)
dxdy .

Les deux intégrales peuvent se calculer séparément∫ L

0

sin2
(πx

2L

)
dx =

∫ L

0

1

2

[
1− cos

(πx
L

)]
dx =

L

2
−
[
L

2π
sin
(πx
L

)]L
0

=
L

2
,

et de la même manière ∫ 3L
2

0

sin2
(πy

3L

)
dy =

3L

4
.

Donc finalement la probabilité est

P1 =
2

3L2

(
L

2

3L

4

)
=

1

4
.
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3. Pour trouver la probabilité que l’électron se trouve dans le ruban L ≤ y ≤ 3L/2 il faut
tout d’abord réaliser qu’on ne met pas de condition sur la position en x ce qui signifie que
l’intégrale sur x nous donne 1. La probabilité est donc simplement

P2 =
2

3L

∫ 3L
2

L

sin2
(πy

3L

)
dy =

2

3L

∫ 3L
2

L

1

2

[
1− cos

(
2πy

3L

)]
dy

=
2

3L

{
L

4
− 1

2

[
3L

2π
sin

(
2πy

3L

)] 3L
2

L

}
=

1

6
+

√
3

4π
≈ 0.304 .

Exercice 3 : Électron dans un puits de potentiel en deux dimensions : 2

1. D’après l’énoncé, nous avons une énergie de la forme

Enl = A
(
n2 + 2l2

)
, (4)

avec A = 1 meV. L’énergie pour une particule dans un puits bidimensionnel est

Enl =
h2

8mL2
x

n2 +
h2

8mL2
y

l2 =
h2

8m

(
n2

L2
x

+
l2

L2
y

)
.

Le terme en n2 dans l’équation Eq. (4) est isolé ; il faut faire de même avec la formule générale :

Enl =
h2

8mL2
x

(
n2 +

L2
x

L2
y

l2
)
.

Nous pouvons désormais identifier les constantes :

h2

8mL2
x

= A =⇒ Lx =

√
h2

8mA
,

L2
x

L2
y

= 2 =⇒ Ly =

√
h2

16mA
,

soit donc après application numérique

Lx = 19.4 nm et Ly = 13.7 nm. (5)

2. On procède comme dans l’exercice précédent :

pour n = 1, l = 1 =⇒ n2 + 2l2 = 3 ,

pour n = 2, l = 1 =⇒ n2 + 2l2 = 6 ,

pour n = 1, l = 2 =⇒ n2 + 2l2 = 9 ,

pour n = 2, l = 2 =⇒ n2 + 2l2 = 12 ,

pour n = 3, l = 1 =⇒ n2 + 2l2 = 11 .

Les trois premiers niveaux d’énergie sont donc

E0 = E11 = 3A ,

E1 = E21 = 6A ,

E2 = E12 = 9A .
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3. Pour passer du premier au deuxième niveau il faut fournir l’énergie

∆E = E1 − E0 = 3A

à l’électron. Le photon doit donc apporter cette énergie. Lorsqu’un électron absorbe un photon
(effet photoélectrique), il s’approprie l’intégralité de son énergie. Le photon doit donc avoir
une longueur d’onde correspondant exactement à l’énergie E = E1 − E0, qui est réliée à la
longueur d’onde par

E =
hc

λ
,

ce qui donne finalement une longueur d’onde de

λ =
hc

∆E
= 0.41 mm. (6)

Exercice 4 : Puits de potentiel infini avec paroi mobile

1. L’équilibre est obtenu par minimisation de l’énergie du système. Calculons-la. Notons dans
un premier temps la position de la paroi par x. L’énergie de l’état fondamental de la première
particule est donnée par

E1 =
h2

8mx2
.

De la même façon, la particule qui occupe l’état avec le nombre quantique 2 a une énergie

E2 =
4h2

8m (L− x)2
.

L’énergie totale est simplement la somme de ces deux énergies

E = E1 + E2 =
h2

8mx2
+

4h2

8m (L− x)2
.

La position à l’équilibre xeq est obtenue en trouvant le minimum de l’énergie qui est tel que

dE

dx
(xeq) = 0 = − 2h2

8mx3eq
+

8h2

8m (L− xeq)3
=⇒ 4x3eq = (L− xeq)3 =⇒ xeq =

L

1 + 3
√

4
. (7)

2. L’énergie totale du système lorsqu’il se trouve à l’équilibre est

Eeq = E(xeq) =
h2

8mL2

[(
1 +

3
√

4
)2

+ 4

(
1 +

1
3
√

4

)2
]
. (8)

3. L’application numérique pour L = 5 nm donne

x = 1.93 nm et E = 4.18× 10−20 J = 0.26 eV. (9)
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Exercice 5 : Question de type examen

La fonction d’onde, qui satisfait l’équation de Schrödinger pour le potentiel V (x) soumis à la par-
ticule, est l’expression 3.

Le potentiel est infini pour des valeurs x < 0, ainsi la fonction d’onde doit satisfaire la condition
ψ (0) = 0. Les propositions 2. et 4. sont donc à exclure, en raison du cosinus utilisé dans ces ex-
pressions. Par ailleurs, bien que VII > VI , la particule a probabilité non nulle d’être mesurée à la
position x = L. Ainsi, la fonction d’onde ψ (L) 6= 0. La solution de ce problème a donc la forme de
la fonction d’onde 3.

Il est à noter que si VII =∞, la particule serait alors piégée dans un puits de potentiel infini. Dans
ce cas, c’est la fonction d’onde 1. qui serait solution de l’équation de Schrödinger.
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