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Exercice 1 : Métabolisme basal d’un être humain

Selon les hypothèses le corps humain émet et absorbe de la chaleur en même temps. La puissance
totale émise peut être calculée comme le bilan entre ces deux processus. La puissance de rayonne-
ment absorbée de l’environnement externe est Pext = σAT 4

ext et celle produite par le corps humain
est Pcorps = σAT 4

corps. La énergie totale absorbée en 24 heures sera donc E = (Pcorps−Pext)×24×3600
(24 heures en un jour, 3600 secondes en une heure). En utilisant la valeur de σ vue au cours on
obtient (on rappelle que, dans le SI, la température se mesure en degrés Kelvin)

E = σA(T 4
corps − T 4

ext)× 24× 3600

' 5.67× 10−8Wm−2K−4 × 1.7m2 × ((273 + 37)4 − (273 + 22)4)K4 × 24× 3600s

' 1.384× 109 Joules

' 3308 kilocalories

L’ordre de grandeur correspond bien au résultat connu de 1800 kilocalories. L’estimation est en
excès d’environ un facteur 2. En plus, si l’on considère que pas tout le rayonnement externe est
absorbé par le corps humain, on devrait obtenir une valeur encore plus élevée. L’explication la
plus probable est que la température à la surface du corps humain est sans doute inférieure à 37
degrés (on utilise un thermomètre sous l’aisselle ou dans la bouche, qui sont des parties isolées de
l’extérieur et sont donc approximativement en équilibre avec la température interne du corps). En
plus, on est normalement habillés, ce qui va encore plus dans la bonne direction. La dépendance
en T 4 fait qu’une petite variation dans la température à la surface du corps humain entraîne une
grande variation de la puissance émise.

Exercice 2 : Limites de la loi de Planck

1. La loi de Planck pour l’intensité de la lumière émise par un corps noir à température T en
fonction de la longueur d’onde λ est

I(λ, T ) =
2πhc2

λ5
1

e
hc

λkBT − 1
(1)
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Dans la limite λ −→ 0, on trouve

I(λ, T ) =
2πhc2

λ5
e

−hc
λkBT

1− e
−hc
λkBT

(2)

où nous avons simplement multiplié le numérateur et le dénominateur par e
−hc
λkBT . Puisque

lim
λ−→0

e
−hc
λkBT = 0 (3)

nous pouvons utiliser 1
1−x ≈ 1 + x pour x −→ 0 :

lim
λ−→0

I(λ, T ) =
2πhc2

λ5
e

−hc
λkBT (1 + e

−hc
λkBT ) ≈ 2πhc2

λ5
e

−hc
λkBT (4)

qui est la loi de Wien. Le deuxième terme est (e
−hc
λkBT )2 << e

−hc
λkBT pour e

−hc
λkBT −→ 0, donc on peut

le négliger.
Dans la limite λ −→∞, on a

lim
λ−→∞

e
hc

λkBT = 1 +
hc

λkBT
+O(( hc

λkBT
)2) (5)

et

lim
λ−→∞

I(λ, T ) =
2πhc2

λ5
1

1 + hc
λkBT

− 1
=

2πckBT

λ4
(6)

qui est la loi de Rayleigh-Jeans.

2. Nous allons faire un changement de variable pour utiliser des variables sans dimension. Le but
est de calculer l’intensité totale émise.

I(T ) =

∫ ∞
0

dλI(λ, T ) (7)

= 2πhc2
∫ ∞
0

dλ
1

λ5
1

e
hc

λkBT − 1
(8)

Posons x = hc
λkBT

On a alors λ = hc
xkBT

et dλ = − hc
x2kBT

dx
x2
, ce qui implique

I(T ) = −2πhc2 hc

kBT

∫ 0

∞
dx

1

x2
x5k5BT

5

(hc)5
1

ex − 1
=

2πk4B
h3c2

T 4

∫ ∞
0

dx
x3

ex − 1
(9)

On retrouve ainsi la dépendance en T 4 de l’intensité totale rayonnée. En utilisant les valeurs données,
on retrouve la loi de Stefan-Boltzmann I(T ) = σT 4 où σ = 5.67 · 10−8 W m−2 K−4.
Pour la loi de déplacement de Wien, nous allons garder le même changement de variable

I(λ, T ) = 2πhc2
(
kBT

hc

)5
x5

ex − 1
(10)
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Nous pouvons trouver le maximum en posant la dérivée égale à zéro

d

dx

x5

ex − 1
= 0 (11)

On trouve alors (
1− x

5

)
ex = 1 (12)

On voit que x = 0 est une solution mais cela correspond à λ −→ ∞, et ce n’est évidemment pas
un maximum. L’autre solution est xm ≈ 4.965. Donc

hc

λmkBT
= 4.965 (13)

d’où

λmT =
hc

kB

1

4.965
≈ 2.898 · 10−3 m K (14)

qui est la loi de déplacement de Wien.

Exercice 3 : Le Soleil est un corps noir

1. La puissance totale rayonnée (= densité de flux énergétique rayonné) par le Soleil est donnée
par la loi de Stefan-Boltzmann I = σT 4. Ainsi, σT 4( RS

dTS
)2 = 1000 W m−2, où RS = 7.0 · 105 km est

le rayon du Soleil et dTS = 1.5·108 km est la distance Terre-Soleil. Il en suit que T = [1000
σ

(dTS
RS

)2]
1
4 ≈

5300 K.

2. On suppose à nouveau que le Soleil émet un rayonnement de corps noir. En tenant compte
qu’une partie du rayonnement arrivant sur Terre est réfléchi, et que la Terre rayonne à une tem-
pérature de T = 300 K pour une surface totale égale à 4πR2

T (surface d’une sphère) où RT est le
rayon de la Terre, la condition d’équilibre s’écrit

IT4πR
2
T = (1− ε)IS4πR2

S

πR2
T

4πd2TS
(15)

où RS est le rayon du Soleil, dTS la distance Terre-Soleil, et IT et IS sont les puissances totales
rayonnées par la Terre et le Soleil respectivement. Avec RS

dTS
= tan( θ

2
), et en utilisant la loi de

Stefan-Boltzmann IS = σT 4
S pour le Soleil, et IT = (1− ε)σT 4 pour la Terre, il vient que

TS = TT (
2dTS
RS

)
1
2 ≈ 300 K

(
2
1.5 · 108 km
7 · 105 km

) 1
2

≈ 6200 K (16)

Exercice 4 : Question de type examen

La réponse correcte est la 3. On calcule l’énergie associée à un photon de longueur d’onde
λ = 300 nm, avec la formule E = hc/λ. L’énergie cinétique de l’électron émis est égale à l’énergie
du photon moins le travail de sortie.
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