
Quantum Mechanics I
Week 7 (Solutions)

Spring Semester 2025

1 Representation in momentum space
We consider a particle whose state is described by the following wave function

ψ(x) = (2πd2)−
1
4 exp

(
i
p0
ℏ
x− (x− x0)

2

4d2

)
, (1.1)

where p0, x0, and d are real parameters.

(a) Find the representation of this state in the momentum space.

The Fourier transform of ψ(x) is given by

ψ(p) =
1√
2πℏ

∫ +∞

−∞
dxψ(x)e−i pxℏ (1.2)

By substituting ψ(x), we find:

ψ(p) =
1√
2πℏ

1

(2πd2)
1
4

∫ +∞

−∞
dx exp

(
−i(p− p0)x

ℏ
− (x− x0)

2

4d2

)
(1.3)

=
1√
2πℏ

1

(2πd2)
1
4

e−i
(p−p0)x0

ℏ

∫ +∞

−∞
dx exp

(
−i(p− p0)x

ℏ
− x2

4d2

)
. (1.4)

where in the second equality we have performed a change of variables x− x0 → x.

Using the Gaussian integral,∫ +∞

−∞
dx e−ax2+βx =

√
π

a
e

β2

4a , (1.5)

we obtain

ψ(p) =

(
2d2

πℏ2

) 1
4

e−i
(p−p0)x0

ℏ exp

(
−d

2(p− p0)
2

ℏ2

)
. (1.6)

(b) Show that ⟨p̂⟩ = p0.

The expectation value of the momentum operator p̂ is given by

⟨ψ|p̂|ψ⟩ =
∫ +∞

−∞
dp |ψ(p)|2 p. (1.7)
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Substituting |ψ(p)|2,

⟨p̂⟩ = 2d

ℏ
1√
2π

∫ +∞

−∞
dp pe−2

d2(p−p0)
2

ℏ2 (1.8)

=
2d

ℏ
1√
2π

∫ +∞

−∞
dp (p+ p0)e

−2 d2p2

ℏ2 . (1.9)

Since the integral of an odd function over symmetric limits is zero, we obtain

⟨p̂⟩ = p0. (1.10)

(c) Show that ⟨p̂2⟩ = ℏ2
4d2

+ p20.

The expectation value of p̂2 is given by

⟨ψ|p̂2|ψ⟩ =
∫ +∞

−∞
dp |ψ(p)|2 p2. (1.11)

Following a similar approach,

⟨p̂2⟩ = 2d

ℏ
1√
2π

∫ +∞

−∞
dp p2e−2

d2(p−p0)
2

ℏ2 (1.12)

=
2d

ℏ
1√
2π

∫ +∞

−∞
dp (p+ p0)

2e−2 d2p2

ℏ2 . (1.13)

Using the Gaussian integral result∫ +∞

−∞
dx x2e−ax2

=

√
π

2

1

a3/2
, (1.14)

we obtain
⟨p̂2⟩ = ℏ2

4d2
+ p20. (1.15)

Note that the variance of the probability distribution |ψ(p)|2 in momentum space
is then (∆p)2 = ⟨p̂2⟩ − ⟨p̂⟩2 = ℏ2/(4d2). By similar calculations, it can be shown
that the variance of the probability distribution in coordinate space, |ψ(x)|2 is given
by (∆x)2 = d2. The wavefunction considered in the problem is a state of minimal
uncertainty. It saturates the bound imposed by the Heisenberg uncertainty principle:
∆x∆p ≥ ℏ/2. The uncertainty relations are analyzed in more details in the following
problems.
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2 Uncertainty relation

The commutator of two Hermitian operators Â and B̂ always has the form

[Â, B̂] = iĈ,

where Ĉ is a Hermitian operator.

(a) Prove the uncertainty relation

⟨∆Â2⟩⟨∆B̂2⟩ ≥ 1

4
⟨Ĉ⟩2, (2.1)

where
⟨∆X̂2⟩ = ⟨X̂2⟩ − ⟨X̂⟩2,

and all expectations ⟨·⟩ refer to the same wave function.

Hint: Consider the integral

J(λ) =

∫
dx

∣∣∣∣∣ (λÂ1 − iB̂1

)
ψ(x)

∣∣∣∣∣
2

≥ 0,

where Â1 = Â− a, B̂1 = B̂ − b and λ, a and b are real parameters.

First, we find that:

• [Â1, B̂1] = [Â, B̂] = iĈ

• ⟨(∆Â)2⟩ = ⟨A2
1⟩

• ⟨(∆B̂)2⟩ = ⟨B2
1⟩.

In the above, we have used the fact that a, b are the expectation values of A,B in
the given state, respectively.

Then we calculate the integral:

J(λ) =

∫ ∣∣∣(λÂ1 − iB̂1)ψ(x)
∣∣∣2 dx

=

∫ (
(λÂ1 − iB̂1)ψ(x)

)∗
(λÂ1 − iB̂1)ψ(x)dx

=

∫
ψ∗(x)(λÂ1 + iB̂1)(λÂ1 − iB̂1)ψ(x)dx

=

∫
ψ∗(x)

(
λ2Â2

1 + iλB̂1Â1 − iλÂ1B̂1 + B̂2
1

)
ψ(x)dx

=

∫
ψ∗(x)

(
λ2Â2

1 + λĈ + B̂2
1

)
ψ(x)dx

= λ2⟨Â2
1⟩+ λ⟨Ĉ⟩+ ⟨B̂2

1⟩ ≥ 0.

Since the integral is non-negative, the discriminant of the quadratic equation of λ
must satisfy:

∆λ = ⟨Ĉ⟩2 − 4⟨Â2
1⟩⟨B̂2

1⟩ ≤ 0. (2.2)
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Therefore, we obtain the uncertainty relation:

⟨∆Â2⟩⟨∆B̂2⟩ ≥ 1

4
⟨Ĉ⟩2. (2.3)

(b) Consider specifically the operators x̂ and p̂ of position and momentum, respectively.
Find an explicit form of a wave function that minimizes the uncertainty product
⟨∆x̂2⟩⟨∆p̂2⟩.
The equality in the uncertainty relation is achieved when (λÂ1− iB̂1)ψ(x) = 0. We
set Â = x̂, B̂ = p̂ = −iℏ d

dx
, and Ĉ = ℏ, with a = x0 and b = p0. Substituting, we

get: [
λ(x− x0)− ℏ

d

dx
+ ip0

]
ψ(x) = 0. (2.4)

Rearranging,
dψ(x)

dx
=
λ(x− x0) + ip0

ℏ
ψ(x). (2.5)

Integrating, we find the general form of a wave function that minimizes the
uncertainty on x̂ and p̂:

ψ(x) ∝ exp

(
i
p0x

ℏ
+ λ

(x− x0)
2

2ℏ

)
. (2.6)

First, note that for ψ(x) to be normalizable (i.e.,
∫
dx|ψ(x)|2 = 1), λ needs to be

negative, resulting in ψ(x) being a Gaussian wave function. Interestingly, we find
not a single wave function that minimizes ⟨∆x̂2⟩⟨∆p̂2⟩, but rather a continuum of
states, parameterized by λ.

To understand this, we compute the uncertainties individually. Through similar
calculations, we obtain:

⟨∆x̂2⟩ = ℏ
2|λ|

, ⟨∆p̂2⟩ = ℏ|λ|
2
. (2.7)

Their product is:

⟨∆x̂2⟩⟨∆p̂2⟩ = ℏ2

4
, (2.8)

which confirms that ψ(x) saturates the uncertainty relation.

Additionally, this provides insight into the role of λ: the uncertainty relation bounds
only the product ⟨∆x̂2⟩⟨∆p̂2⟩, not their individual values. We can have states with
large uncertainty in p̂ and small uncertainty in x̂ (|λ| ≫ 1), as well as the opposite
case (|λ| ≈ 0) and all those in between. In particular, for λ = −1, the uncertainties
are equal.
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3 Wavepackets in one dimension
A free particle of mass m is moving in a one-dimensional space. At time t = 0, its
normalized wave function reads

ψ(x;µ = 0, σ2
x) =

1

(2πσ2
x)

1/4
e
− x2

4σ2
x , (3.1)

where σ2
x ≡ ⟨x2⟩ and µ = ⟨x⟩ denotes its mean value.

(a) Calculate the wave function in momentum representation ψ(p, t = 0).

By Fourier transforming, we obtain:

ψ(p, 0) =
1√
2πℏ

∫
dx e−ipx/ℏψ(x, 0) =

1√
2πℏ

∫
dx e−ipx/ℏ 1

(2πσ2
x)

1/4
e
− x2

4σ2
x . (3.2)

Using the Gaussian integral formula, we get:

ψ(p, 0) =

(
2σ2

x

πℏ2

)1/4

exp
{
− σ2

xp
2

ℏ2
}
. (3.3)

(b) Calculate the uncertainty in momentum associated with this wavepacket (σ2
p =

⟨p2⟩ − ⟨p⟩2).
The expectation value of momentum in its respective representation is found by the
following integral:

⟨p⟩ =
∫ +∞

−∞
dpψ∗(p)pψ(p). (3.4)

Since p is odd and the Gaussian function e−2σ2
xp

2/ℏ2 is even, we conclude that the
expectation value of the momentum is zero, i.e. ⟨p⟩ = 0.

Similarly, for ⟨p2⟩, we compute:

⟨p2⟩ =
∫ +∞

−∞
ψ∗(p)p2ψ(p)dp. (3.5)

Using the substitution q =
√
2σx

ℏ p in the resulting integrals, we obtain:

⟨p2⟩ = ℏ2

4σ2
x

. (3.6)

Thus, the uncertainty in the momentum is:

σp =
√
⟨p2⟩ − ⟨p⟩2 = ℏ

2σx
. (3.7)

Page 5 of 7



(c) Show that at time t > 0 the probability density of the particle is of the form

|ψ(x, t)|2 = |ψ(x; 0, σ2
x + σ2

pt
2/m2)|2. (3.8)

Since the energy of a free particle is given by E = p2

2m
, we evolve the wave function

in time as:
ψ(p, t) = ψ(p, 0)e−iEt/ℏ = ψ(p, 0)e−ip2t/2mℏ.

By inverse Fourier transform, we obtain:

ψ(x, t) =
1√
2π ℏ

∫
e

i p x
ℏ ψ

(
p, t
)
dp

=
4

√
2σ2

x

π ℏ2
1√
2π ℏ

∫
e

i p x
ℏ exp

[
−
(
σ2
x + i ℏ t

2m

)
p2

ℏ2

]
dp

=
4

√
2σ2

x

π ℏ2
1√
2π ℏ

√
πℏ√

σ2
x + i ℏ t

2m

exp
[
− x2

4
(
σ2
x + i ℏ t

2m

)]

=
4

√
σ2
x

2π

1√
σ2
x + i ℏ t

2m

exp
[
− x2

4
(
σ2
x + i ℏ t

2m

)].
Considering now the probability density, we find:

|ψ(x, t)|2 = 1
√
2π
(
σ2
x +

σ2
p t2

m2

) exp
(
− x2

2
(
σ2
x +

σ2
p t2

m2

)) =
∣∣ψ(x; 0, σ2

x + σ2
p t

2/m2
)∣∣2

(d) Interpret the results of (b) and (c) with respect to Heisenberg’s uncertainty principle.

The results indicates that the Gaussian wave-packet’s width changes with time.

σx →
√
σ2
x + σ2

pt
2/m2. (3.9)

where σ2
p = ℏ2/(4σ2

x). This result demonstrates that as t → ∞, the wave packet
completely spreads over space.

Hints: You might use the following integrals:∫ +∞

−∞
e−ax2

e−ikxdx =

√
π

a
e−

k2

4a ,

∫ +∞

−∞
x2e−ax2

dx =

√
π

2a3/2
.
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4 Space Translations
(a) Let x and px be the coordinate and linear momentum in one dimension. Evaluate

the classical Poisson bracket
[x, F (px)]cl. (4.1)

We use the definition of the Poisson bracket and we find:

[x, F (px)]cl =
∂x

∂x

∂F

∂px
− ∂x

∂px

∂F

∂x
=
∂F

∂px
,

since ∂x/∂px = 0.

(b) Let x and px be the corresponding quantum-mechanical operators this time.
Evaluate the commutator [

x, exp

(
ipxa

ℏ

)]
. (4.2)

Hint: Use your result from Question (a).

Now since {x, F (px)}cl → [x, F (px)]QM/iℏ, hence

[x, exp(ipxa/ℏ)]QM = iℏ
∂

∂px
exp(ipxa/ℏ) = −a exp(ipxa/ℏ).

(c) Using the result obtained in Question (b), prove that

exp

(
ipxa

ℏ

)
|x′⟩ (4.3)

is an eigenket of the coordinate operator x. What is the corresponding eigenvalue?

Using the result from Question (b), we have

[x, exp(ipxa/ℏ)]|x′⟩ = −a exp(ipxa/ℏ)|x′⟩.

Hence
x exp(ipxa/ℏ)|x′⟩ − exp(ipxa/ℏ)x|x′⟩ = −a exp(ipxa/ℏ)|x′⟩.

so
x[exp(ipxa/ℏ)|x′⟩] = (x′ − a)[exp(ipxa/ℏ)|x′⟩].

This eigenvalue equation implies that exp(ipxa/ℏ)|x′⟩ is an eigenstate of the
coordinate operator x, with corresponding eigenvalue (x′ − a). The operator
exp{ipxa/ℏ} clearly corresponds to a space translation by a.

Page 7 of 7


	Representation in momentum space
	Uncertainty relation
	Wavepackets in one dimension
	Space Translations

