Quantum Mechanics [

Week 7 (Solutions)

Spring Semester 2025

1 Representation in momentum space

We consider a particle whose state is described by the following wave function
2
= (27d?)" i Po M 1.1
(o) = (2nay e (182 - 00 (L)
where pg, xg, and d are real parameters.

(a) Find the representation of this state in the momentum space.

The Fourier transform of ¢(x) is given by

d W :
o)== [ drute (12)
By substituting ¢ (z), we find:
R TS T (p—po)r (= xo)Q)
Vi) = V2rh (27d?)s /—oo e exp < h Ad? (1-3)
1 | oo (p—po)z 33_2)
= —\/ﬁ (27rd2)i€ /OO dz exp ( e T aE ) (1.4)

where in the second equality we have performed a change of variables x — o — «

Using the Gaussian integral,

+oo 2
/ dy e~ bz — \/Eeia, (1.5)
_ a

o0

we obtain
2d? ;-po)e d*(p — po)?
v(p) = <W) e exp (—%) - (1.6)

(b) Show that (p) = po.
The expectation value of the momentum operator p is given by

wint) = [ " ). (1.7)

o0
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Substituting [¢(p)|?,

2d 1 Foo 9d%(p—po)®
D) — — ———— d 6_ h2 18
() =+ N (1.8)
_2d 1 JrOO 2d2p2

=+ —= dp (p+po)e = 7.
n v ) ( )
Since the integral of an odd function over symmetric limits is zero, we obtain

(D) = po. (1.10)

Show that (%) = 12 + p3.

The expectation value of p? is given by

Wil = [ o) (L1
Following a similar approach,
(") = %%—W [ e (1.12)
= %d\/%—ﬂ _:O dp (p+ po)?e 27 (1.13)
Using the Gaussian integral result
/_+OO da ae™""" = g#, (1.14)
we obtain -2
() = 1 + 1% (1.15)

Note that the variance of the probability distribution [¢/(p)|? in momentum space
is then (Ap)? = (p?) — (p)® = h?/(4d?). By similar calculations, it can be shown
that the variance of the probability distribution in coordinate space, |1 (z)[? is given
by (Ax)? = d?. The wavefunction considered in the problem is a state of minimal
uncertainty. It saturates the bound imposed by the Heisenberg uncertainty principle:
AxAp > h/2. The uncertainty relations are analyzed in more details in the following
problems.
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2 Uncertainty relation

The commutator of two Hermitian operators A and B always has the form

~

(A, B] =iC,
where (' is a Hermitian operator.

(a) Prove the uncertainty relation

(AAY(AB?) > ~(C)?, (2.1)

] =

where R R )
(AX?) = (X7) — (X)?,
and all expectations (-) refer to the same wave function.

Hint: Consider the integral

T\ = / du

where A; = A — a, B, = B —band A,a and b are real parameters.
First, we find that:

2
>0

— )

()\fll - u%l) b()

In the above, we have used the fact that a,b are the expectation values of A, B in
the given state, respectively.

Then we calculate the integral:

_ / (A, — By
_ / (A = iBuw()) (A, = iB)y(e)ds

_ / O (2) VAL + B (AA; — iBy)w(e)de

_ / 07 (@) (WA +iABL AL — N, + B) (a)da

/ e A%Zlf + 0O+ Bf) b(x)dx
= N\2(A2) + /\<C*) +(B}) > 0.

dx

Since the integral is non-negative, the discriminant of the quadratic equation of A
must satisfy:

Ax = (0 — 4(A2)(B) < 0. (2.2)
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Therefore, we obtain the uncertainty relation:

(AA2)(AB?) > ()2 (2.3)

|

Consider specifically the operators & and p of position and momentum, respectively.
Find an explicit form of a wave function that minimizes the uncertainty product

(A2?)(Ap?).
The equality in the uncertainty relation is achieved when (M, —iBy)(z) = 0. We

set A=1, B=p= —ih%, and C' = K, with @ = 29 and b = py. Substituting, we
get:

Mz — o) — h% +ipo | Y(x) = 0. (2.4)

Rearranging,

dip(x) _ Ma — o) +ipo
T = - (). (2:5)

Integrating, we find the general form of a wave function that minimizes the
uncertainty on z and p:

Do (z — @)
(x) o exp (z? + AT) :

(2.6)
First, note that for ¢(z) to be normalizable (i.e., [ dz|¢(z)]* = 1), A needs to be
negative, resulting in ¢ (x) being a Gaussian wave function. Interestingly, we find
not a single wave function that minimizes (Az?)(Ap?), but rather a continuum of
states, parameterized by A.

To understand this, we compute the uncertainties individually. Through similar
calculations, we obtain:

h RIA|
AR?) = ——, (Ap®) = —. 2.
Their product is:
. R h?
(AZ?)(Ap?) = R (2.8)

which confirms that ¢ (x) saturates the uncertainty relation.

Additionally, this provides insight into the role of A: the uncertainty relation bounds
only the product (Az?)(Ap?), not their individual values. We can have states with
large uncertainty in p and small uncertainty in & (|A| > 1), as well as the opposite
case (|A| = 0) and all those in between. In particular, for A = —1, the uncertainties
are equal.
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3 Wavepackets in one dimension

A free particle of mass m is moving in a one-dimensional space. At time ¢t = 0, its
normalized wave function reads

1 =
(i p=0,07) = ro) i 4z (3.1)

where 02 = (z%) and p = (x) denotes its mean value.

(a) Calculate the wave function in momentum representation ¢ (p,t = 0).

By Fourier transforming, we obtain:

dx e~/ (x, 0)

Y(p,0) = \/21?1

Using the Gaussian integral formula, we get:
1/4
203 oz’
¥(p,0) = (W) eXP{ ~ 12 } (3.3)

(b) Calculate the uncertainty in momentum associated with this wavepacket (o2 =
(p*) — (0)?).
The expectation value of momentum in its respective representation is found by the
following integral:

@IKMWW®W@- (3.4

[e.9]

Since p is odd and the Gaussian function e~27:7*/" is even, we conclude that the

expectation value of the momentum is zero, i.e. (p) = 0.

Similarly, for (p?), we compute:
+oco

) = U (p)p* Y (p)dp. (3.5)

—00

Using the substitution ¢ = \f“'ﬂ”p in the resulting integrals, we obtain:

2 h?
= ) .6
0 = 1 (3.6
Thus, the uncertainty in the momentum is:
op =V () —(p)?= i (3.7)
b 20,
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(c) Show that at time ¢ > 0 the probability density of the particle is of the form

() = [¢(2;0,07 + opt* /m?) . (3.8)

Since the energy of a free particle is given by E = %, we evolve the wave function

in time as:

W(p, t) = U(p,0)e PN = y(p, 0)e~# /2N,

By inverse Fourier transform, we obtain:

t) dp

4/2 2
02 / na exp 0 —i—zﬂ)ﬁ} dp
mh \/27r
J202 VTh [ z? }
thmmwﬂﬁ U a(e+i )

Pz, 1)

z T oy,
S\ ———
N T A R )
Considering now the probability density, we find
0l OF = —— o exp( = =) = [0(a:0,02 + 02 )
Vo (o2 + %) 2(02 + %)

(d) Interpret the results of (b) and (c) with respect to Heisenberg’s uncertainty principle.

The results indicates that the Gaussian wave-packet’s width changes with time.

Oy = /02 + 02t2/m?. (3.9)

where 07 = h*/(407). This result demonstrates that as ¢ — oo, the wave packet
completely spreads over space.

Hints: You might use the following integrals:

+oo
a2 g T k2
/ e ek dy = \/je da
—oo a

—+00
2 s
/ LC2€ az® 1o — \/_

2a3/2'

[e.9]
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4 Space Translations

(a)

Let x and p, be the coordinate and linear momentum in one dimension. Evaluate
the classical Poisson bracket

[xaF(px)}cL (41)

We use the definition of the Poisson bracket and we find:

ox OF Oox OF B oF

F = — —_ e —
[, F'(pe)le Ox Op, Opy Ox  Op,’

since dz/0p, = 0.

Let x and p, be the corresponding quantum-mechanical operators this time.
Evaluate the commutator
1PLa
Z, exXp P . (4.2)

Hint: Use your result from Question (a).

Now since {z, F(p)}a — [x, F'(pz)]qm/ih, hence

[z, exp(ipa/h)|ou = ihaa exp(ipza/h) = —aexp(ip.a/h).

T

Using the result obtained in Question (b), prove that

exp (ipga) |2/ (4.3)

is an eigenket of the coordinate operator x. What is the corresponding eigenvalue?

Using the result from Question (b), we have

[v, exp(ip.a/h)]|z") = —aexp(ip.a/h)|z’).
Hence
x exp(ipsa/h)|z’) — exp(ip.a/h)z|z’) = —aexp(ip.a/h)|7).
zlexp(ipza/h)|z")] = (2’ — a)[exp(ipza/h)|z")].

This eigenvalue equation implies that exp(ip,a/h)|z’) is an eigenstate of the
coordinate operator z, with corresponding eigenvalue (z' — a). The operator
exp{ipya/h} clearly corresponds to a space translation by a.
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