Quantum Mechanics [

Week 11 (Solutions)

Spring Semester 2025

1 Eigenstates of the spin along an axis

(a)

Consider a spin-1/2 particle. Write the eigenstates of the spin operators 5% and S*
in the basis of states in which S* is diagonal.

In the basis in which S7 is diagonal, the spin operators S’“", Sy, 5= for spin 1/2 read

P . (01 . (0 —i . (1 0
S =350%, (Tx—<1 0), Oy_(i O)’ az—(o _1). (1.1)

The cigenstates of S* are
1 0
H=(y) . 1=(7) (1.2

By diagonalizing explicitly the matrix &, we find that the eigenstates of 7, are

1 /1 1 1 1 1
o= o= (1) = 50+ =5 (L) = -0 )

|+2) and |—,) represent physical states in which S is precisely known, and is equal,
respectively, to +h/2 and —h/2.

Analyze more generally the eigenstates of the operator cos 057 + sin 0.5*.

More generally, we can find the eigenstates of

cos 0.5* + sin 0S* = EL <

: cosf Slﬂ@) (1.4)

sinf —cosf

by diagonalizing explicitly the 2 x 2 matrix. The eigenvalues satisfy the equation
(A —Rh/2cos0)(\+ h/2cos0) — h?/4sin?0 = N2 — h?/4 = 0, so A = £h/2. This is
expected because the operator cos 057 + sin 657 is just the projection of the spin
along an axis which is tilted relative to the z axis. We know that for a spin-1/2
particle the projection of the spin in any direction can take only two values: +h/2.
We could measure the value of cos 057 + sin 65° by passing the particle through a
Stern-Gerlach apparatus whose axis is tilted by an angle 6 relative to the z axis.

The eigenstates are, for A = £1, proportional to

(_@S?f_ )\)) (1.5)
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Using trigonometric identities the expressions for the eigenstates can be rewritten
as

0 cos © 10 cos f
2 (Sm? v 2) for \=1, 2 (Sm 2 Cg?) for \=—1.  (L6)
2

S1n — COS B

The normalized eigenstates therefore can be chosen as

cos ¢ —gin?
_ 2 N 2
[+o) = <sin§) |—o) ( cosg ) ' (L.7)

The eigenstates |£4) are states in which the spin projection along an axis rotated
by an angle 6 is perfectly known and is equal to, respectively, +h/2.

Show that the eigenstates found in part b) can be derived by applying a rotation
matrix to the state |[+), |—) (the eigenstates of S%).

The eigenstates can be obtained also by applying a rotation matrix to |+), |[—). We
need, in particular, a rotation of angle # with axis directed along y. The rotation
operator (acting on the Hilbert space, which in the case considered here is a 2-
dimensional space spanned by |[+), |[—)), is

N o o 0. 7
D, (0) = e 5/ = = 199u/2 — ¢og 51 — isin §6y : (1.8)

where 1 stands for the 2 x 2 identity matrix.

Applying the rotation to |+) and |—) gives

Dy(0)|+) = cos S 14) +sin =) = [+a)
A 2 2 (1.9)
D,(0)|=) = cos £ =) —sin £|) = ) .

in agreement with the eigenstates determined before.

Remarks. Egs. (1.8) can be interpreted by saying that D, (f) performs an "active"
rotation on the state vector |+), which has the effect of rotating states oriented in
the z direction onto states in the 8 direction. However one can equivalently interpret
the transformation using a "passive" point of view. In this view, we can say that
we are re-expressing the basis of the Hilbert space, using as basis elements |+4) and
|—p) instead of |[+) and |—). The matrix elements of the transformation matrix are

(+]Dy(0)|+) <+my<9>r—>‘_‘<+r+e> (+=0) (1.10)

(=IDy(0)[+) (=IDy(0)[=)| — [{=I+a) (=I=0)

These allow to reexpress any state 1)) = > __ Ygla) = > .. > L Va|bg)(bsla).
Note however that one needs the matrix (by|a), which is the Hermitian conjugate

(or equivalently the inverse) of D, (). Any representation is valid provided that it
is carried out consistently.
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Note also that the components of the angular momentum transform as follows:

ZA?;(G)S‘ZDZ’,(G) _h <COSQ + isin gﬁy) o (cos g — isin Q&y)

2 2 2 (1.11)
= cos 95'2 — sin 65’1 ,
and similarly
Di(6)S,D,(0) = S, ,
L0800 =51, A o)
D}(0)S:Dy(0) = sin 0, + cos S, .
These imply that ) ) o R
D;(e)(COS 0S, +sin0S,;)D,(0) = S, . (1.13)

Spin-1 particles

Consider a particle with spin quantum number s = 1. Let 5., 3,, and 5, be the matrices
of spin s = 1 in the representation (52, ,), where the matrices % and §, are diagonal.

(a) Find the matrices §,, §,, and §, in this representation.

We consider the basis {|s,m}} where s =1 and m = +1,0,—1, and correspond to
the eigenvectors of the operator §,. In this basis, s, is diagonal and its components
are given by

(s,m'|3,]s,m) = MOms i,

where d,, v is the Kronecker delta. To find the expressions of the operators s, and
5y, we use the relations for the spin angular momentum

dyls,m) = /s(s +1) —m(m+1)|s,m + 1),

5_|s,m) = +/s(s +1) —m(m — 1)|s,m — 1),

where 5, = 5, + 15, and 5_ = 5, —i5,. The components of 5, and 5_ are then

(s,m/|5]s,m) = /s(s+1) —m(m + 1) mi1 = V/8(s+ 1) — mm/Sp my1,

(s, m'13_|5,m) = /505 + 1) = m(m — Domrm1 = v/5(5 + 1) = mm0s1m:

which give the matrix representation of the x-component of the spin operator:

1
(s,m/|8;]s,m) = 3 ((s,m/|84]s,m) + (s,m'|3_|s,m))

1
= 5V/s(s + 1) = ! (B s + S1.m),

and the y-component of the spin operator:

. 1 . .
(s,m|8,|s,m) = % ((s,m'|84]s,m) — (s,m’|5_|s,m))

1
= 2 V/5(5 1) =m0 (Bt 1 = Grr.m)-
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In our case s =1, m = +1,0,—1, so we find

1 010 1 0 — 0 10 0
=——[101], 3,=—[i 0 —i], &={00 o (2.1)
V2 010 V2 0 2 0 00 —1
(b) Show that
(34, 85] = i€ijk Sk, (2.2)

where €5, is the Levi-Civita symbol.

To verify this commutation relation, we explicitly compute the three commutators
resulting from the three components of the spin:

1 (! 0 — 1 — 0 —1
528, ==10 0 0], 58==-[0 0 0 = [8;, 8, =18,
21 . ) 2 i i
7 0 —2 1 0 2
1 0 00 1 0 — 0
Sy, =—7= 11 0 7], 5838,=—|(0 0 0 = [8y,8.] =18,,
2\0 0 2\0 =i o
1 0 1 0 1 00 O
5.8, =—=10 0 0], &s.=—|1 0 -1 = [8,,8;] =15,
V2o -1 0 2\0 0 o0
and thus we obtain the desired result.
(c) Show that
=35 and (8, +i35,)°=0. (2.3)

What do these equations imply?

We verify these expressions by explicitly computing the matrix-matrix products.
For the first one, we have:

10 1
$2=28%=(00 0
0 0 0

From this result, we obtain the eigenvalues of the s., since from the eigenvalue
equation, we get m® — m = 0, which yields the expected values of m = 0, £1.

For the second expression, we have:

(8, +1i8,)° =

Sl
[\

o O O
O O N
O N O
I

=
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=0.

L (0
§,—18,)0 =1 —= 12
Ge—is = | 5 (2

N OO
o O O

This result is equivalent to s3 = 0 which shoes that the ladder operators cannot be
applied indefinitely, but rather act on a finite ladder of angular momentum states.
After at most 2 applications of these operators, you are guaranteed to obtain a result
of zero. The result s3 = 0 will be true on all eigenstates of s..

Consider a particle with spin S = hs, placed in an external magnetic field B = BX,
and the corresponding Hamiltonian operator is H = ¢gB-S. Ignore all spatial degrees
of freedom. Find the time-evolved state of the particle at times ¢ > 0, if the particle
is initially in the state |s = 1,mg = 1).

For the parameters given in this problem, the Hamiltonian reduces to:
H= gBS’I.
By diagonalizing the matrix S,, we find the eigenvectors expressed in the S, basis:

|5, = 1) :%(|1,1)+\/§|1,0>+|1,—1>) (2.4)
|
|52 = 0) ZE(H’D_H’_D) (2.5)
1

5, = —1) =§(|1,1>—\/§|1,0>+11,—1>) (2.6)

The eigenvalues are simply 0, =h. We write the inverse relations, where we express
the S, states in terms of the S, ones:

1,1) = % (150 = 1) + 52 = —1) + Vs, = 0)) (2.7)

1
‘170> = ﬁ (’533 = 1> - ’533 = _1>> (2'8)
11 = 5 (Jse = 1) + Jso = —1) = Vs, = 0)) (2.9)

Applying the time-evolution operator on the initial state (expressed in terms of the
S, eigenstates), we find:

() = e ST = = (795, = 1) 4+ €955, = —1) + V25, = 0))

(2.10)

N | —

What is the probability of finding the particle in the state |s = 1,mg = —1)7

We transform back to the S, eigenstates and thus obtain:
[9(t)) = cos® (gBt/2) |1,1) —sin® (¢Bt/2) |1, —1) —iv/2sin (¢Bt/2) cos (9Bt /2) |1, 0).
The probability of finding the particle in the S, eigenstate |1, —1) is

Py, =sin' (gBt/2). (2.11)
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3 Infinitesimal Rotation

Consider the angular momentum eigenstate |7, j. = j), on which we apply a rotation ﬁy(e)
of an infinitesimal angle € around the y-axis. Find the expression up to order €? for the
probability that the new rotated state is found in the original state:

|G, 31Dy5 )] (3.1)

Hint: Use the Taylor expansion of the exponential.
The new state after an infinitesimal rotation about the y-axis is

i1y €

Dye)lj. ) = exp<— ; ) 5.3 (32)

Expanding the exponential to second order,

~ .. 7/ = Ay2€2 3 ..
Dy(e) |4,7) = (1 — e o T O(e )) |7, 7)
_(1_j_|_—j_ Af+j,2_j+jf—jfj+ 9

3 . .

where we used jy = j*;@.j*. Using J4|7,7) = 0 and (j,m/|j, m) = 6, m, We obtain:
S . . e . . N
(4, 31Dy ()7, 4) = <J,J‘1 — g+ O(e”) J,J>
2
= 1 — %(\/ 2jh)2 —|— O(Eg)
2 .
—1- o)
Therefore
N a2 €2j 3
[, 41Dy ()4, )| =1— =+ O(). (3.3)

2

Note that the only state that mixes with D,(e)|j,7) to first order in € is [,j — 1);
consequently

Gy 7 = UD (O3, ) =1~ [, 41Dy ()], )] + O(e). (3.4)

4 Rotation Operations
Consider an operator V' that satisfies the commutation relation

This is by definition a vector operator (for example V; = r;,p;, L;).
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(a)

Prove that the operator e L=/ is a rotation operator corresponding to a rotation
around the z-axis by an angle ¢, by showing that

¢ i0La/ N/ ibLa I Rii(4)V; (4.2)

where R(¢) is the corresponding rotation matrix. Find that matrix. Hint: Define
X; = e Wle/hyei®la/h toke the derivative with respect to ¢ and solve the resulting
differential equation.

Consider the operator
X, = ¢ i6La/hy gidLa/h

as a function of ¢ and differentiate it with respect to ¢. We get

ax, i .
dp ~ Pl Ly, Vel = € X

From this we obtain
X (0) = X,(0) =V,

Xy(¢) = X, (0)cosp + X,(0)sing =V, cosp+ V,sin ¢
X.(¢) = X,(0)cos¢p — X, (0)sing =V, cos¢p — V,;sin¢
1 0 0 Va

e 0La/hyz g0/l — [0 cos¢p  sing Vy | = RV
0 —sing cos¢ V.

Clearly, the matrix R is a rotation matrix corresponding to a rotation around the
x-axis by an angle ¢.

Using the result of part (a), prove that by applying a rotation of m about the = axis
on the state |I, m) yields |l, —m), up to a possible factor of modulus 1, i.e.

e Le/M ] m) = em |1, —m). (4.3)

Setting ¢ = 7 in the result of the part (a) and considering the L., we get

e—isz/hLzeiﬂLz/ﬁ =—L,. (44)

Acting on the rotated state with L., we get
Lz<€mLz/h|l, m>) _ _eiﬂ'Lz/hLZ”? m> _ _Fwn(eiwb_,/h|l7 m))

where we have used Eq. (4.4). From this result, we can identify the rotated state as
the eigenstate with m — —m, so

e Le/M ] m) = em |1, —m) |

Since the matrix "%+ is unitary, it preserves the normalization of state vectors. So
e*m must be a complex number of modulus 1 ("a phase"). This implies that ¢,,
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must be real-valued. However the value of the phases ¢,, cannot be determined by
the calculation above.

Interpretation. The operator L, measures angular momentum along the z-axis.
When we apply a rotation by 7 around the x-axis, the coordinate system is reflected
such that z — —z. As a result, the rotated observable becomes — L., meaning the
measurement direction has flipped. Consequently, the eigenvalues of L, must also
change sign. This symmetry implies that an eigenstate |, m) is mapped to |I, —m),
reflecting the fact that angular momentum now points in the opposite direction
along z. This transformation is a natural consequence of how angular momentum
operators behave under spatial rotations.

Show that a rotation by 7 around the z-axis can also be achieved by first rotating
around the z-axis by 7/2, then rotating around the y-axis by 7, and, finally, rotating
back by —m/2 around the z-axis. In terms of rotation operators, this is expressed

as

iﬂ'LI/Qﬁe—iﬂ'Ly/he—iﬂ'Lz/Qﬁ _ ,—irL:/h

e

Hint: Use the result from part (a).

e
We expand the exponential with L, using the known Taylor series:

gimLa/2h g —imLy [hy=inLy /20 _ imLe/2h Z (_Z’Tr)nLnefiTrLz/th (45)
hrn! Y
n

We now use the result of part (a) to find the rotation of the operator V,, = L,. By
setting ¢ = 7/2 in the rotation matrix, we get:

eiwLm/QhLye—isz/Qﬁ — L. (4.6)
This result can be generalized to
eiwLm/Qh(Ly)ne—iwLx/Qﬁ _ (Lz)n

We use this fact in Eq. (4.5) and find:

im Ly /2h —imLy/h_—inLe/2h _ (—im)" ., _ _—inL./k
e e "mhv/le —; oy L} =e . (4.7)
which proves that indeed a rotation by 7 around the z-axis can also be achieved by
first rotating around the z-axis by 7/2, then rotating around the y-axis by =, and,
finally, rotating back by —7/2 around the x-axis

Now consider an electron with total angular momentum J = L + S. Let |¥) be
its state and show that, if we rotate it by 7 around the z-axis, then by 7 around
the y-axis, and finally, by 7 around the x-axis, we retrieve the same state with an
additional phase factor.

In the case of an electron the rotation operators involve the total angular momentum
J =L+ S. Then, the above statement is expressed mathematically as follows:

e—erz/ﬁe—fmJy/he—sz/h|\I,> — e—wral/26—271'02/26—z7r03/2e—zTrLz/he—MrLy/he—MrLz/h|\Ij> )
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Using the following property, which we have shown in a previous exercise set,

e'* = cosal +isinao; (4.8)
where o« = —m /2 (for our case), we obtain:
e—mer/ﬁe—mJy/he—mrJz/h|\I/> — io_l0_20_3e—zwLm/he—mLy/he—m—Lz/h|\Ij>' (49)

The product ioi0903 evaluates to —1. Then, we can write:

e—sz/he—mJy/ﬁe—sz/h|\Ij> _ _p—inLa/2h (e—isz/WLe—iwLy/h) e—mLz/h“m, (4.10)

and using the result of part (¢) in the parenthesis, we find:

e—z‘m/he—my/he—mz/h|\I,> _ _—imLa/2h <€—i7rLz/h€—z‘7rL1-/2h> e—isz/h|\I]> (4.11)
Now, the angular momentum takes integer values, thus we may show that e=?27L=/" =
1. We can use this result to write:

efmz/hefmy/hefmz/h|\I,> — _p—inla/2h (emez/hemez/25€z7rLz/h) ). (4.12)

Then, the exponential e~ #"L=/2

the z-axis, thus:

is appropriately being rotated by an angle 7= about

e_mjm/he_i”‘]y/he_mjz/h|\If> _ _e—isz/Qheisz/%N,) — _ |\I/> )
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