
Quantum Mechanics I
Week 11 (Solutions)

Spring Semester 2025

1 Eigenstates of the spin along an axis

(a) Consider a spin-1/2 particle. Write the eigenstates of the spin operators Ŝz and Ŝx

in the basis of states in which Ŝz is diagonal.

In the basis in which Ŝz is diagonal, the spin operators Ŝx, Ŝy, Ŝz for spin 1/2 read

Ŝα =
ℏ
2
σ̂α , σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (1.1)

The eigenstates of Ŝz are

|+⟩ =
(
1
0

)
, |−⟩ =

(
0
1

)
. (1.2)

By diagonalizing explicitly the matrix σ̂x we find that the eigenstates of σ̂x are

|+x⟩ =
1√
2

(
1
1

)
=

1√
2
(|+⟩+ |−⟩) , |−x⟩ =

1√
2

(
1
−1

)
=

1√
2
(|+⟩−|−⟩) . (1.3)

|+x⟩ and |−x⟩ represent physical states in which Sx is precisely known, and is equal,
respectively, to +ℏ/2 and −ℏ/2.

(b) Analyze more generally the eigenstates of the operator cos θŜz + sin θŜx.

More generally, we can find the eigenstates of

cos θŜz + sin θŜx =
ℏ
2

(
cos θ sin θ
sin θ − cos θ

)
(1.4)

by diagonalizing explicitly the 2 × 2 matrix. The eigenvalues satisfy the equation
(λ − ℏ/2 cos θ)(λ + ℏ/2 cos θ) − ℏ2/4 sin2 θ = λ2 − ℏ2/4 = 0, so λ = ±ℏ/2. This is
expected because the operator cos θŜx + sin θŜx is just the projection of the spin
along an axis which is tilted relative to the z axis. We know that for a spin-1/2
particle the projection of the spin in any direction can take only two values: ±ℏ/2.
We could measure the value of cos θŜz + sin θŜx by passing the particle through a
Stern-Gerlach apparatus whose axis is tilted by an angle θ relative to the z axis.

The eigenstates are, for λ = ±1, proportional to(
sin θ

−(cos θ − λ)

)
(1.5)
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Using trigonometric identities the expressions for the eigenstates can be rewritten
as

2

(
sin θ

2
cos θ

2

sin2 θ
2

)
for λ = 1 , 2

(
sin θ

2
cos θ

2

− cos2 θ
2

)
for λ = −1 . (1.6)

The normalized eigenstates therefore can be chosen as

|+θ⟩ =
(
cos θ

2

sin θ
2

)
|−θ⟩ =

(
− sin θ

2

cos θ
2

)
. (1.7)

The eigenstates |±θ⟩ are states in which the spin projection along an axis rotated
by an angle θ is perfectly known and is equal to, respectively, ±ℏ/2.

(c) Show that the eigenstates found in part b) can be derived by applying a rotation
matrix to the state |+⟩, |−⟩ (the eigenstates of Ŝz).

The eigenstates can be obtained also by applying a rotation matrix to |+⟩, |−⟩. We
need, in particular, a rotation of angle θ with axis directed along y. The rotation
operator (acting on the Hilbert space, which in the case considered here is a 2-
dimensional space spanned by |+⟩, |−⟩), is

D̂y(θ) = e−iθŜy/ℏ = e−iθσ̂y/2 = cos
θ

2
1̂− i sin

θ

2
σ̂y , (1.8)

where 1̂ stands for the 2× 2 identity matrix.

Applying the rotation to |+⟩ and |−⟩ gives

D̂y(θ)|+⟩ = cos
θ

2
|+⟩+ sin

θ

2
|−⟩ = |+θ⟩ ,

D̂y(θ)|−⟩ = cos
θ

2
|−⟩ − sin

θ

2
|+⟩ = |−θ⟩ .

(1.9)

in agreement with the eigenstates determined before.

Remarks. Eqs. (1.8) can be interpreted by saying that D̂y(θ) performs an "active"
rotation on the state vector |+⟩, which has the effect of rotating states oriented in
the z direction onto states in the θ direction. However one can equivalently interpret
the transformation using a "passive" point of view. In this view, we can say that
we are re-expressing the basis of the Hilbert space, using as basis elements |+θ⟩ and
|−θ⟩ instead of |+⟩ and |−⟩. The matrix elements of the transformation matrix are∣∣∣∣⟨+|D̂y(θ)|+⟩ ⟨+|D̂y(θ)|−⟩

⟨−|D̂y(θ)|+⟩ ⟨−|D̂y(θ)|−⟩

∣∣∣∣ = ∣∣∣∣⟨+|+θ⟩ ⟨+|−θ⟩
⟨−|+θ⟩ ⟨−|−θ⟩

∣∣∣∣ . (1.10)

These allow to reexpress any state |ψ⟩ =
∑

a=± ψa|a⟩ =
∑

a=±
∑

b=± ψa|bθ⟩⟨bθ|a⟩.
Note however that one needs the matrix ⟨bθ|a⟩, which is the Hermitian conjugate
(or equivalently the inverse) of D̂y(θ). Any representation is valid provided that it
is carried out consistently.

Page 2 of 9



Note also that the components of the angular momentum transform as follows:

D̂†
y(θ)ŜzD̂y(θ) =

ℏ
2

(
cos

θ

2
+ i sin

θ

2
σ̂y

)
σ̂z

(
cos

θ

2
− i sin

θ

2
σ̂y

)
= cos θŜz − sin θŜx ,

(1.11)

and similarly

D̂†
y(θ)ŜyD̂y(θ) = Ŝy ,

D̂†
y(θ)ŜxD̂y(θ) = sin θŜz + cos θŜx .

(1.12)

These imply that
D̂†

y(θ)(cos θŜz + sin θŜx)D̂y(θ) = Ŝz . (1.13)

2 Spin-1 particles
Consider a particle with spin quantum number s = 1. Let ŝx, ŝy, and ŝz be the matrices
of spin s = 1 in the representation (ŝ2, ŝz), where the matrices ŝ2 and ŝz are diagonal.

(a) Find the matrices ŝx, ŝy, and ŝz in this representation.

We consider the basis {|s,m}} where s = 1 and m = +1, 0,−1, and correspond to
the eigenvectors of the operator ŝz. In this basis, ŝz is diagonal and its components
are given by

⟨s,m′|ŝz|s,m⟩ = mδm′,m,

where δm,m′ is the Kronecker delta. To find the expressions of the operators ŝx and
ŝy, we use the relations for the spin angular momentum

ŝ+|s,m⟩ =
√
s(s+ 1)−m(m+ 1)|s,m+ 1⟩,

ŝ−|s,m⟩ =
√
s(s+ 1)−m(m− 1)|s,m− 1⟩,

where ŝ+ = ŝx + iŝy and ŝ− = ŝx − iŝy. The components of ŝ+ and ŝ− are then

⟨s,m′|ŝ+|s,m⟩ =
√
s(s+ 1)−m(m+ 1)δm′,m+1 =

√
s(s+ 1)−mm′δm′,m+1,

⟨s,m′|ŝ−|s,m⟩ =
√
s(s+ 1)−m(m− 1)δm′,m−1 =

√
s(s+ 1)−mm′δm′+1,m.

which give the matrix representation of the x-component of the spin operator:

⟨s,m′|ŝx|s,m⟩ = 1

2
(⟨s,m′|ŝ+|s,m⟩+ ⟨s,m′|ŝ−|s,m⟩)

=
1

2

√
s(s+ 1)−mm′(δm′,m+1 + δm′+1,m),

and the y-component of the spin operator:

⟨s,m′|ŝy|s,m⟩ = 1

2i
(⟨s,m′|ŝ+|s,m⟩ − ⟨s,m′|ŝ−|s,m⟩)

=
1

2i

√
s(s+ 1)−mm′(δm′,m+1 − δm′+1,m).
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In our case s = 1, m = +1, 0,−1, so we find

ŝx =
1√
2

0 1 0
1 0 1
0 1 0

 , ŝy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , ŝz =

1 0 0
0 0 0
0 0 −1

 . (2.1)

(b) Show that
[ŝi, ŝj] = iϵijkŝk, (2.2)

where ϵijk is the Levi-Civita symbol.

To verify this commutation relation, we explicitly compute the three commutators
resulting from the three components of the spin:

ŝxŝy =
1

2

i 0 −i
0 0 0
i 0 −i

 , ŝyŝx =
1

2

−i 0 −i
0 0 0
i 0 i

 ⇒ [ŝx, ŝy] = iŝz,

ŝyŝz =
1√
2

0 0 0
i 0 i
0 0 0

 , ŝz ŝy =
1√
2

0 −i 0
0 0 0
0 −i 0

 ⇒ [ŝy, ŝz] = iŝx,

ŝz ŝx =
1√
2

0 1 0
0 0 0
0 −1 0

 , ŝxŝz =
1√
2

0 0 0
1 0 −1
0 0 0

 ⇒ [ŝz, ŝx] = iŝy.

and thus we obtain the desired result.

(c) Show that
ŝ3z = ŝz and (ŝx ± iŝy)

3 = 0. (2.3)

What do these equations imply?

We verify these expressions by explicitly computing the matrix-matrix products.
For the first one, we have:

ŝ3z = ŝ2z ŝz =

1 0 0
0 0 0
0 0 1

1 0 0
0 0 0
0 0 −1

 = ŝz,

From this result, we obtain the eigenvalues of the sz, since from the eigenvalue
equation, we get m3 −m = 0, which yields the expected values of m = 0,±1.

For the second expression, we have:

(ŝx + iŝy)
3 =

 1√
2

0 2 0
0 0 2
0 0 0

3

= 0,
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(ŝx − iŝy)
3 =

 1√
2

0 0 0
2 0 0
0 2 0

3

= 0.

This result is equivalent to s3± = 0 which shoes that the ladder operators cannot be
applied indefinitely, but rather act on a finite ladder of angular momentum states.
After at most 2 applications of these operators, you are guaranteed to obtain a result
of zero. The result s3± = 0 will be true on all eigenstates of sz.

(d) Consider a particle with spin S = ℏs, placed in an external magnetic field B = Bx̂,
and the corresponding Hamiltonian operator isH = gB·S. Ignore all spatial degrees
of freedom. Find the time-evolved state of the particle at times t > 0, if the particle
is initially in the state |s = 1,ms = 1⟩.
For the parameters given in this problem, the Hamiltonian reduces to:

Ĥ = gBŜx.

By diagonalizing the matrix Sx, we find the eigenvectors expressed in the Sz basis:

|sx = 1⟩ = 1

2

(
|1, 1⟩+

√
2|1, 0⟩+ |1,−1⟩

)
(2.4)

|sx = 0⟩ = 1√
2
(|1, 1⟩ − |1,−1⟩) (2.5)

|sx = −1⟩ = 1

2

(
|1, 1⟩ −

√
2|1, 0⟩+ |1,−1⟩

)
(2.6)

The eigenvalues are simply 0,±ℏ. We write the inverse relations, where we express
the Sz states in terms of the Sx ones:

|1, 1⟩ = 1

2

(
|sx = 1⟩+ |sx = −1⟩+

√
2|sx = 0⟩

)
(2.7)

|1, 0⟩ = 1√
2
(|sx = 1⟩ − |sx = −1⟩) (2.8)

|1,−1⟩ = 1

2

(
|sx = 1⟩+ |sx = −1⟩ −

√
2|sx = 0⟩

)
(2.9)

Applying the time-evolution operator on the initial state (expressed in terms of the
Sx eigenstates), we find:

|ψ(t)⟩ = e−igBtSx/ℏ|1, 1⟩ = 1

2

(
e−igBt|sx = 1⟩+ eigBt|sx = −1⟩+

√
2|sx = 0⟩

)
(2.10)

(e) What is the probability of finding the particle in the state |s = 1,ms = −1⟩?
We transform back to the Sz eigenstates and thus obtain:

|ψ(t)⟩ = cos2 (gBt/2) |1, 1⟩−sin2 (gBt/2) |1,−1⟩−i
√
2 sin (gBt/2) cos (gBt/2) |1, 0⟩.

The probability of finding the particle in the Sz eigenstate |1,−1⟩ is

P1,−1 = sin4 (gBt/2) . (2.11)
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3 Infinitesimal Rotation
Consider the angular momentum eigenstate |j, jz = j⟩, on which we apply a rotation D̂y(ϵ)
of an infinitesimal angle ϵ around the y-axis. Find the expression up to order ϵ2 for the
probability that the new rotated state is found in the original state:∣∣∣ ⟨j, j|D̂y(ϵ)|j, j⟩

∣∣∣2 . (3.1)

Hint: Use the Taylor expansion of the exponential.
The new state after an infinitesimal rotation about the y-axis is

D̂y(ϵ) |j, j⟩ = exp

(
−iĴy ϵ

ℏ

)
|j, j⟩. (3.2)

Expanding the exponential to second order,

D̂y(ϵ) |j, j⟩ =
(
1− i

ℏ
Ĵyϵ−

Ĵ 2
y ϵ

2

2ℏ2
+O(ϵ3)

)
|j, j⟩

=
(
1− Ĵ+ − Ĵ−

2ℏ
ϵ+

Ĵ 2
+ + Ĵ 2

− − Ĵ+Ĵ− − Ĵ−Ĵ+
8ℏ2

ϵ2 +O(ϵ3)
)
|j, j⟩,

where we used Ĵy = Ĵ+−Ĵ−
2i

. Using Ĵ+|j, j⟩ = 0 and ⟨j,m′|j,m⟩ = δm′,m, we obtain:

⟨j, j|D̂y(ϵ)|j, j⟩ =
〈
j, j
∣∣∣1− ϵ2

8ℏ2
Ĵ+Ĵ− +O(ϵ3)

∣∣∣j, j〉
= 1− ϵ2

8ℏ2
(√

2jℏ
)2

+O(ϵ3)

= 1− ϵ2j

4
+O(ϵ3).

Therefore ∣∣⟨j, j|D̂y(ϵ)|j, j⟩
∣∣2 = 1− ϵ2j

2
+O(ϵ3). (3.3)

Note that the only state that mixes with D̂y(ϵ)|j, j⟩ to first order in ϵ is |j, j − 1⟩;
consequently ∣∣⟨j, j − 1|D̂y(ϵ)|j, j⟩

∣∣2 = 1−
∣∣⟨j, j|D̂y(ϵ)|j, j⟩

∣∣2 +O(ϵ3). (3.4)

4 Rotation Operations
Consider an operator V that satisfies the commutation relation

[Li, Vj] = iℏϵijkVk. (4.1)

This is by definition a vector operator (for example Vj = rj, pj, Lj).
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(a) Prove that the operator e−iϕLx/ℏ is a rotation operator corresponding to a rotation
around the x-axis by an angle ϕ, by showing that

e−iϕLx/ℏVie
iϕLx/ℏ = Rij(ϕ)Vj (4.2)

where R(ϕ) is the corresponding rotation matrix. Find that matrix. Hint: Define
Xi = e−iϕLx/ℏVie

iϕLx/ℏ, take the derivative with respect to ϕ and solve the resulting
differential equation.

Consider the operator
Xi = e−iϕLx/ℏVie

iϕLx/ℏ

as a function of ϕ and differentiate it with respect to ϕ. We get

dXi

dϕ
= − i

ℏ
e−iϕLx/ℏ[Lx, Vi]e

iϕLx/ℏ = ϵijkXj

From this we obtain
Xx(ϕ) = Xx(0) = Vx

Xy(ϕ) = Xy(0) cosϕ+Xz(0) sinϕ = Vy cosϕ+ Vz sinϕ

Xz(ϕ) = Xz(0) cosϕ−Xy(0) sinϕ = Vz cosϕ− Vy sinϕ

or

e−iϕLx/ℏVie
iϕLx/ℏ =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

VxVy
Vz

 = RijVj

Clearly, the matrix R is a rotation matrix corresponding to a rotation around the
x-axis by an angle ϕ.

(b) Using the result of part (a), prove that by applying a rotation of π about the x axis
on the state |l,m⟩ yields |l,−m⟩, up to a possible factor of modulus 1, i.e.

eiπLx/ℏ|l,m⟩ = eiφm|l,−m⟩. (4.3)

Setting ϕ = π in the result of the part (a) and considering the Lz, we get

e−iπLx/ℏLze
iπLx/ℏ = −Lz. (4.4)

Acting on the rotated state with Lz, we get

Lz(e
iπLx/ℏ|l,m⟩) = −eiπLx/ℏLz|l,m⟩ = −ℏm(eiπLx/ℏ|l,m⟩)

where we have used Eq. (4.4). From this result, we can identify the rotated state as
the eigenstate with m→ −m, so

eiπLx/ℏ|l,m⟩ = eiφm |l,−m⟩ .

Since the matrix eiπLx is unitary, it preserves the normalization of state vectors. So
eiφm must be a complex number of modulus 1 ("a phase"). This implies that φm
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must be real-valued. However the value of the phases φm cannot be determined by
the calculation above.

Interpretation. The operator Lz measures angular momentum along the z-axis.
When we apply a rotation by π around the x-axis, the coordinate system is reflected
such that z → −z. As a result, the rotated observable becomes −Lz, meaning the
measurement direction has flipped. Consequently, the eigenvalues of Lz must also
change sign. This symmetry implies that an eigenstate |l,m⟩ is mapped to |l,−m⟩,
reflecting the fact that angular momentum now points in the opposite direction
along z. This transformation is a natural consequence of how angular momentum
operators behave under spatial rotations.

(c) Show that a rotation by π around the z-axis can also be achieved by first rotating
around the x-axis by π/2, then rotating around the y-axis by π, and, finally, rotating
back by −π/2 around the x-axis. In terms of rotation operators, this is expressed
as

eiπLx/2ℏe−iπLy/ℏe−iπLx/2ℏ = e−iπLz/ℏ.

Hint: Use the result from part (a).

We expand the exponential with Ly using the known Taylor series:

eiπLx/2ℏe−iπLy/ℏe−iπLx/2ℏ = eiπLx/2ℏ
∑
n

(−iπ)n

ℏn n!
Ln
ye

−iπLx/2ℏ. (4.5)

We now use the result of part (a) to find the rotation of the operator Vy = Ly. By
setting ϕ = π/2 in the rotation matrix, we get:

eiπLx/2ℏLye
−iπLx/2ℏ = Lz. (4.6)

This result can be generalized to

eiπLx/2ℏ(Ly)
ne−iπLx/2ℏ = (Lz)

n.

We use this fact in Eq. (4.5) and find:

eiπLx/2ℏe−iπLy/ℏe−iπLx/2ℏ =
∑
n

(−iπ)n

ℏn n!
Ln
z = e−iπLz/ℏ. (4.7)

which proves that indeed a rotation by π around the z-axis can also be achieved by
first rotating around the x-axis by π/2, then rotating around the y-axis by π, and,
finally, rotating back by −π/2 around the x-axis

(d) Now consider an electron with total angular momentum J = L + S. Let |Ψ⟩ be
its state and show that, if we rotate it by π around the z-axis, then by π around
the y-axis, and finally, by π around the x-axis, we retrieve the same state with an
additional phase factor.

In the case of an electron the rotation operators involve the total angular momentum
J = L+ S. Then, the above statement is expressed mathematically as follows:

e−iπJx/ℏe−iπJy/ℏe−iπJz/ℏ|Ψ⟩ = e−iπσ1/2e−iπσ2/2e−iπσ3/2e−iπLx/ℏe−iπLy/ℏe−iπLz/ℏ|Ψ⟩.
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Using the following property, which we have shown in a previous exercise set,

eiασj = cosα1 + i sinασj (4.8)

where α = −π/2 (for our case), we obtain:

e−iπJx/ℏe−iπJy/ℏe−iπJz/ℏ|Ψ⟩ = iσ1σ2σ3e
−iπLx/ℏe−iπLy/ℏe−iπLz/ℏ|Ψ⟩. (4.9)

The product iσ1σ2σ3 evaluates to −1. Then, we can write:

e−iπJx/ℏe−iπJy/ℏe−iπJz/ℏ|Ψ⟩ = −e−iπLx/2ℏ
(
e−iπLx/2ℏe−iπLy/ℏ

)
e−iπLz/ℏ|Ψ⟩, (4.10)

and using the result of part (c) in the parenthesis, we find:

e−iπJx/ℏe−iπJy/ℏe−iπJz/ℏ|Ψ⟩ = −e−iπLx/2ℏ
(
e−iπLz/ℏe−iπLx/2ℏ

)
e−iπLz/ℏ|Ψ⟩. (4.11)

Now, the angular momentum takes integer values, thus we may show that e−i2πLz/ℏ =
1. We can use this result to write:

e−iπJx/ℏe−iπJy/ℏe−iπJz/ℏ|Ψ⟩ = −e−iπLx/2ℏ
(
e−iπLz/ℏe−iπLx/2ℏeiπLz/ℏ

)
|Ψ⟩. (4.12)

Then, the exponential e−iπLx/2ℏ is appropriately being rotated by an angle π about
the z-axis, thus:

e−iπJx/ℏe−iπJy/ℏe−iπJz/ℏ|Ψ⟩ = −e−iπLx/2ℏeiπLx/2ℏ|Ψ⟩ = − |Ψ⟩ .
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