

Quantum Mechanics I

Week 11 (Solutions)

Spring Semester 2025

1 Eigenstates of the spin along an axis

(a) Consider a spin-1/2 particle. Write the eigenstates of the spin operators \hat{S}^z and \hat{S}^x in the basis of states in which \hat{S}^z is diagonal.

In the basis in which \hat{S}^z is diagonal, the spin operators \hat{S}^x , \hat{S}^y , \hat{S}^z for spin 1/2 read

$$\hat{S}^\alpha = \frac{\hbar}{2} \hat{\sigma}^\alpha, \quad \hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \hat{\sigma}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \quad (1.1)$$

The eigenstates of \hat{S}^z are

$$|+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \quad (1.2)$$

By diagonalizing explicitly the matrix $\hat{\sigma}_x$ we find that the eigenstates of $\hat{\sigma}_x$ are

$$|+_x\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle), \quad |-_x\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle). \quad (1.3)$$

$|+_x\rangle$ and $|-_x\rangle$ represent physical states in which S^x is precisely known, and is equal, respectively, to $+\hbar/2$ and $-\hbar/2$.

(b) Analyze more generally the eigenstates of the operator $\cos \theta \hat{S}^z + \sin \theta \hat{S}^x$.

More generally, we can find the eigenstates of

$$\cos \theta \hat{S}^z + \sin \theta \hat{S}^x = \frac{\hbar}{2} \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \quad (1.4)$$

by diagonalizing explicitly the 2×2 matrix. The eigenvalues satisfy the equation $(\lambda - \hbar/2 \cos \theta)(\lambda + \hbar/2 \cos \theta) - \hbar^2/4 \sin^2 \theta = \lambda^2 - \hbar^2/4 = 0$, so $\lambda = \pm \hbar/2$. This is expected because the operator $\cos \theta \hat{S}^z + \sin \theta \hat{S}^x$ is just the projection of the spin along an axis which is tilted relative to the z axis. We know that for a spin-1/2 particle the projection of the spin in *any* direction can take only two values: $\pm \hbar/2$. We could measure the value of $\cos \theta \hat{S}^z + \sin \theta \hat{S}^x$ by passing the particle through a Stern-Gerlach apparatus whose axis is tilted by an angle θ relative to the z axis.

The eigenstates are, for $\lambda = \pm 1$, proportional to

$$\begin{pmatrix} \sin \theta \\ -(\cos \theta - \lambda) \end{pmatrix} \quad (1.5)$$

Using trigonometric identities the expressions for the eigenstates can be rewritten as

$$2 \begin{pmatrix} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\ \sin^2 \frac{\theta}{2} \end{pmatrix} \quad \text{for } \lambda = 1 , \quad 2 \begin{pmatrix} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \\ -\cos^2 \frac{\theta}{2} \end{pmatrix} \quad \text{for } \lambda = -1 . \quad (1.6)$$

The normalized eigenstates therefore can be chosen as

$$|+\theta\rangle = \begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} \end{pmatrix} \quad |-\theta\rangle = \begin{pmatrix} -\sin \frac{\theta}{2} \\ \cos \frac{\theta}{2} \end{pmatrix} . \quad (1.7)$$

The eigenstates $|\pm\theta\rangle$ are states in which the spin projection along an axis rotated by an angle θ is perfectly known and is equal to, respectively, $\pm\hbar/2$.

(c) Show that the eigenstates found in part b) can be derived by applying a rotation matrix to the state $|+\rangle, |-\rangle$ (the eigenstates of \hat{S}^z).

The eigenstates can be obtained also by applying a rotation matrix to $|+\rangle, |-\rangle$. We need, in particular, a rotation of angle θ with axis directed along y . The rotation operator (acting on the Hilbert space, which in the case considered here is a 2-dimensional space spanned by $|+\rangle, |-\rangle$), is

$$\hat{D}_y(\theta) = e^{-i\theta\hat{S}_y/\hbar} = e^{-i\theta\hat{\sigma}_y/2} = \cos \frac{\theta}{2} \hat{1} - i \sin \frac{\theta}{2} \hat{\sigma}_y , \quad (1.8)$$

where $\hat{1}$ stands for the 2×2 identity matrix.

Applying the rotation to $|+\rangle$ and $|-\rangle$ gives

$$\begin{aligned} \hat{D}_y(\theta)|+\rangle &= \cos \frac{\theta}{2}|+\rangle + \sin \frac{\theta}{2}|-\rangle = |+\theta\rangle , \\ \hat{D}_y(\theta)|-\rangle &= \cos \frac{\theta}{2}|-\rangle - \sin \frac{\theta}{2}|+\rangle = |-\theta\rangle . \end{aligned} \quad (1.9)$$

in agreement with the eigenstates determined before.

Remarks. Eqs. (1.8) can be interpreted by saying that $\hat{D}_y(\theta)$ performs an "active" rotation on the state vector $|+\rangle$, which has the effect of rotating states oriented in the z direction onto states in the θ direction. However one can equivalently interpret the transformation using a "passive" point of view. In this view, we can say that we are re-expressing the basis of the Hilbert space, using as basis elements $|+\theta\rangle$ and $|-\theta\rangle$ instead of $|+\rangle$ and $|-\rangle$. The matrix elements of the transformation matrix are

$$\begin{vmatrix} \langle +|\hat{D}_y(\theta)|+ \rangle & \langle +|\hat{D}_y(\theta)|- \rangle \\ \langle -|\hat{D}_y(\theta)|+ \rangle & \langle -|\hat{D}_y(\theta)|- \rangle \end{vmatrix} = \begin{vmatrix} \langle +|+\theta\rangle & \langle +|- \theta\rangle \\ \langle -|+\theta\rangle & \langle -|- \theta\rangle \end{vmatrix} . \quad (1.10)$$

These allow to reexpress any state $|\psi\rangle = \sum_{a=\pm} \psi_a |a\rangle = \sum_{a=\pm} \sum_{b=\pm} \psi_a |b_\theta\rangle \langle b_\theta|a\rangle$. Note however that one needs the matrix $\langle b_\theta|a\rangle$, which is the Hermitian conjugate (or equivalently the inverse) of $\hat{D}_y(\theta)$. Any representation is valid provided that it is carried out consistently.

Note also that the components of the angular momentum transform as follows:

$$\begin{aligned}\hat{D}_y^\dagger(\theta)\hat{S}_z\hat{D}_y(\theta) &= \frac{\hbar}{2} \left(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \hat{\sigma}_y \right) \hat{\sigma}_z \left(\cos \frac{\theta}{2} - i \sin \frac{\theta}{2} \hat{\sigma}_y \right) \\ &= \cos \theta \hat{S}_z - \sin \theta \hat{S}_x ,\end{aligned}\quad (1.11)$$

and similarly

$$\begin{aligned}\hat{D}_y^\dagger(\theta)\hat{S}_y\hat{D}_y(\theta) &= \hat{S}_y , \\ \hat{D}_y^\dagger(\theta)\hat{S}_x\hat{D}_y(\theta) &= \sin \theta \hat{S}_z + \cos \theta \hat{S}_x .\end{aligned}\quad (1.12)$$

These imply that

$$\hat{D}_y^\dagger(\theta)(\cos \theta \hat{S}_z + \sin \theta \hat{S}_x)\hat{D}_y(\theta) = \hat{S}_z . \quad (1.13)$$

2 Spin-1 particles

Consider a particle with spin quantum number $s = 1$. Let \hat{s}_x , \hat{s}_y , and \hat{s}_z be the matrices of spin $s = 1$ in the representation (\hat{s}^2, \hat{s}_z) , where the matrices \hat{s}^2 and \hat{s}_z are diagonal.

(a) Find the matrices \hat{s}_x , \hat{s}_y , and \hat{s}_z in this representation.

We consider the basis $\{|s, m\rangle\}$ where $s = 1$ and $m = +1, 0, -1$, and correspond to the eigenvectors of the operator \hat{s}_z . In this basis, \hat{s}_z is diagonal and its components are given by

$$\langle s, m' | \hat{s}_z | s, m \rangle = m \delta_{m', m},$$

where $\delta_{m, m'}$ is the Kronecker delta. To find the expressions of the operators \hat{s}_x and \hat{s}_y , we use the relations for the spin angular momentum

$$\begin{aligned}\hat{s}_+ |s, m\rangle &= \sqrt{s(s+1) - m(m+1)} |s, m+1\rangle , \\ \hat{s}_- |s, m\rangle &= \sqrt{s(s+1) - m(m-1)} |s, m-1\rangle ,\end{aligned}$$

where $\hat{s}_+ = \hat{s}_x + i\hat{s}_y$ and $\hat{s}_- = \hat{s}_x - i\hat{s}_y$. The components of \hat{s}_+ and \hat{s}_- are then

$$\begin{aligned}\langle s, m' | \hat{s}_+ | s, m \rangle &= \sqrt{s(s+1) - m(m+1)} \delta_{m', m+1} = \sqrt{s(s+1) - mm'} \delta_{m', m+1} , \\ \langle s, m' | \hat{s}_- | s, m \rangle &= \sqrt{s(s+1) - m(m-1)} \delta_{m', m-1} = \sqrt{s(s+1) - mm'} \delta_{m'+1, m} .\end{aligned}$$

which give the matrix representation of the x -component of the spin operator:

$$\begin{aligned}\langle s, m' | \hat{s}_x | s, m \rangle &= \frac{1}{2} (\langle s, m' | \hat{s}_+ | s, m \rangle + \langle s, m' | \hat{s}_- | s, m \rangle) \\ &= \frac{1}{2} \sqrt{s(s+1) - mm'} (\delta_{m', m+1} + \delta_{m'+1, m}) ,\end{aligned}$$

and the y -component of the spin operator:

$$\begin{aligned}\langle s, m' | \hat{s}_y | s, m \rangle &= \frac{1}{2i} (\langle s, m' | \hat{s}_+ | s, m \rangle - \langle s, m' | \hat{s}_- | s, m \rangle) \\ &= \frac{1}{2i} \sqrt{s(s+1) - mm'} (\delta_{m', m+1} - \delta_{m'+1, m}) .\end{aligned}$$

In our case $s = 1$, $m = +1, 0, -1$, so we find

$$\hat{s}_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \hat{s}_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \hat{s}_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \quad (2.1)$$

(b) Show that

$$[\hat{s}_i, \hat{s}_j] = i\epsilon_{ijk}\hat{s}_k, \quad (2.2)$$

where ϵ_{ijk} is the Levi-Civita symbol.

To verify this commutation relation, we explicitly compute the three commutators resulting from the three components of the spin:

$$\begin{aligned} \hat{s}_x \hat{s}_y &= \frac{1}{2} \begin{pmatrix} i & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & -i \end{pmatrix}, \quad \hat{s}_y \hat{s}_x = \frac{1}{2} \begin{pmatrix} -i & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & i \end{pmatrix} \Rightarrow [\hat{s}_x, \hat{s}_y] = i\hat{s}_z, \\ \hat{s}_y \hat{s}_z &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ i & 0 & i \\ 0 & 0 & 0 \end{pmatrix}, \quad \hat{s}_z \hat{s}_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ 0 & 0 & 0 \\ 0 & -i & 0 \end{pmatrix} \Rightarrow [\hat{s}_y, \hat{s}_z] = i\hat{s}_x, \\ \hat{s}_z \hat{s}_x &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \quad \hat{s}_x \hat{s}_z = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow [\hat{s}_z, \hat{s}_x] = i\hat{s}_y. \end{aligned}$$

and thus we obtain the desired result.

(c) Show that

$$\hat{s}_z^3 = \hat{s}_z \quad \text{and} \quad (\hat{s}_x \pm i\hat{s}_y)^3 = 0. \quad (2.3)$$

What do these equations imply?

We verify these expressions by explicitly computing the matrix-matrix products. For the first one, we have:

$$\hat{s}_z^3 = \hat{s}_z^2 \hat{s}_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \hat{s}_z,$$

From this result, we obtain the eigenvalues of the s_z , since from the eigenvalue equation, we get $m^3 - m = 0$, which yields the expected values of $m = 0, \pm 1$.

For the second expression, we have:

$$(\hat{s}_x + i\hat{s}_y)^3 = \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \right)^3 = 0,$$

$$(\hat{s}_x - i\hat{s}_y)^3 = \left(\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \right)^3 = 0.$$

This result is equivalent to $s_{\pm}^3 = 0$ which shows that the ladder operators cannot be applied indefinitely, but rather act on a finite ladder of angular momentum states. After at most 2 applications of these operators, you are guaranteed to obtain a result of zero. The result $s_{\pm}^3 = 0$ will be true on all eigenstates of s_z .

(d) Consider a particle with spin $S = \hbar s$, placed in an external magnetic field $\mathbf{B} = B\hat{\mathbf{x}}$, and the corresponding Hamiltonian operator is $H = g\mathbf{B} \cdot \mathbf{S}$. Ignore all spatial degrees of freedom. Find the time-evolved state of the particle at times $t > 0$, if the particle is initially in the state $|s = 1, m_s = 1\rangle$.

For the parameters given in this problem, the Hamiltonian reduces to:

$$\hat{H} = gB\hat{S}_x.$$

By diagonalizing the matrix S_x , we find the eigenvectors expressed in the S_z basis:

$$|s_x = 1\rangle = \frac{1}{2} (|1, 1\rangle + \sqrt{2}|1, 0\rangle + |1, -1\rangle) \quad (2.4)$$

$$|s_x = 0\rangle = \frac{1}{\sqrt{2}} (|1, 1\rangle - |1, -1\rangle) \quad (2.5)$$

$$|s_x = -1\rangle = \frac{1}{2} (|1, 1\rangle - \sqrt{2}|1, 0\rangle + |1, -1\rangle) \quad (2.6)$$

The eigenvalues are simply $0, \pm\hbar$. We write the inverse relations, where we express the S_z states in terms of the S_x ones:

$$|1, 1\rangle = \frac{1}{2} (|s_x = 1\rangle + |s_x = -1\rangle + \sqrt{2}|s_x = 0\rangle) \quad (2.7)$$

$$|1, 0\rangle = \frac{1}{\sqrt{2}} (|s_x = 1\rangle - |s_x = -1\rangle) \quad (2.8)$$

$$|1, -1\rangle = \frac{1}{2} (|s_x = 1\rangle + |s_x = -1\rangle - \sqrt{2}|s_x = 0\rangle) \quad (2.9)$$

Applying the time-evolution operator on the initial state (expressed in terms of the S_x eigenstates), we find:

$$|\psi(t)\rangle = e^{-igBtS_x/\hbar} |1, 1\rangle = \frac{1}{2} (e^{-igBt}|s_x = 1\rangle + e^{igBt}|s_x = -1\rangle + \sqrt{2}|s_x = 0\rangle) \quad (2.10)$$

(e) What is the probability of finding the particle in the state $|s = 1, m_s = -1\rangle$?

We transform back to the S_z eigenstates and thus obtain:

$$|\psi(t)\rangle = \cos^2(gBt/2) |1, 1\rangle - \sin^2(gBt/2) |1, -1\rangle - i\sqrt{2} \sin(gBt/2) \cos(gBt/2) |1, 0\rangle.$$

The probability of finding the particle in the S_z eigenstate $|1, -1\rangle$ is

$$P_{1,-1} = \sin^4(gBt/2). \quad (2.11)$$

3 Infinitesimal Rotation

Consider the angular momentum eigenstate $|j, j_z = j\rangle$, on which we apply a rotation $\hat{D}_y(\epsilon)$ of an infinitesimal angle ϵ around the y -axis. Find the expression up to order ϵ^2 for the probability that the new rotated state is found in the original state:

$$\left| \langle j, j | \hat{D}_y(\epsilon) | j, j \rangle \right|^2. \quad (3.1)$$

Hint: Use the Taylor expansion of the exponential.

The new state after an infinitesimal rotation about the y -axis is

$$\hat{D}_y(\epsilon) |j, j\rangle = \exp\left(-\frac{i\hat{J}_y\epsilon}{\hbar}\right) |j, j\rangle. \quad (3.2)$$

Expanding the exponential to second order,

$$\begin{aligned} \hat{D}_y(\epsilon) |j, j\rangle &= \left(1 - \frac{i}{\hbar}\hat{J}_y\epsilon - \frac{\hat{J}_y^2\epsilon^2}{2\hbar^2} + \mathcal{O}(\epsilon^3)\right) |j, j\rangle \\ &= \left(1 - \frac{\hat{J}_+ - \hat{J}_-}{2\hbar}\epsilon + \frac{\hat{J}_+^2 + \hat{J}_-^2 - \hat{J}_+\hat{J}_- - \hat{J}_-\hat{J}_+}{8\hbar^2}\epsilon^2 + \mathcal{O}(\epsilon^3)\right) |j, j\rangle, \end{aligned}$$

where we used $\hat{J}_y = \frac{\hat{J}_+ - \hat{J}_-}{2i}$. Using $\hat{J}_+ |j, j\rangle = 0$ and $\langle j, m' | j, m \rangle = \delta_{m',m}$, we obtain:

$$\begin{aligned} \langle j, j | \hat{D}_y(\epsilon) | j, j \rangle &= \left\langle j, j \left| 1 - \frac{\epsilon^2}{8\hbar^2} \hat{J}_+ \hat{J}_- + \mathcal{O}(\epsilon^3) \right| j, j \right\rangle \\ &= 1 - \frac{\epsilon^2}{8\hbar^2} (\sqrt{2j\hbar})^2 + \mathcal{O}(\epsilon^3) \\ &= 1 - \frac{\epsilon^2 j}{4} + \mathcal{O}(\epsilon^3). \end{aligned}$$

Therefore

$$\left| \langle j, j | \hat{D}_y(\epsilon) | j, j \rangle \right|^2 = 1 - \frac{\epsilon^2 j}{2} + \mathcal{O}(\epsilon^3). \quad (3.3)$$

Note that the only state that mixes with $\hat{D}_y(\epsilon) |j, j\rangle$ to first order in ϵ is $|j, j-1\rangle$; consequently

$$\left| \langle j, j-1 | \hat{D}_y(\epsilon) | j, j \rangle \right|^2 = 1 - \left| \langle j, j | \hat{D}_y(\epsilon) | j, j \rangle \right|^2 + \mathcal{O}(\epsilon^3). \quad (3.4)$$

4 Rotation Operations

Consider an operator V that satisfies the commutation relation

$$[L_i, V_j] = i\hbar\epsilon_{ijk}V_k. \quad (4.1)$$

This is by definition a vector operator (for example $V_j = r_j, p_j, L_j$).

(a) Prove that the operator $e^{-i\phi L_x/\hbar}$ is a rotation operator corresponding to a rotation around the x -axis by an angle ϕ , by showing that

$$e^{-i\phi L_x/\hbar} V_i e^{i\phi L_x/\hbar} = R_{ij}(\phi) V_j \quad (4.2)$$

where $R(\phi)$ is the corresponding rotation matrix. Find that matrix. Hint: Define $X_i = e^{-i\phi L_x/\hbar} V_i e^{i\phi L_x/\hbar}$, take the derivative with respect to ϕ and solve the resulting differential equation.

Consider the operator

$$X_i = e^{-i\phi L_x/\hbar} V_i e^{i\phi L_x/\hbar}$$

as a function of ϕ and differentiate it with respect to ϕ . We get

$$\frac{dX_i}{d\phi} = -\frac{i}{\hbar} e^{-i\phi L_x/\hbar} [L_x, V_i] e^{i\phi L_x/\hbar} = \epsilon_{ijk} X_j$$

From this we obtain

$$X_x(\phi) = X_x(0) = V_x$$

$$X_y(\phi) = X_y(0) \cos \phi + X_z(0) \sin \phi = V_y \cos \phi + V_z \sin \phi$$

$$X_z(\phi) = X_z(0) \cos \phi - X_y(0) \sin \phi = V_z \cos \phi - V_y \sin \phi$$

or

$$e^{-i\phi L_x/\hbar} V_i e^{i\phi L_x/\hbar} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} = R_{ij} V_j$$

Clearly, the matrix R is a rotation matrix corresponding to a rotation around the x -axis by an angle ϕ .

(b) Using the result of part (a), prove that by applying a rotation of π about the x axis on the state $|l, m\rangle$ yields $|l, -m\rangle$, up to a possible factor of modulus 1, i.e.

$$e^{i\pi L_x/\hbar} |l, m\rangle = e^{i\varphi_m} |l, -m\rangle. \quad (4.3)$$

Setting $\phi = \pi$ in the result of the part (a) and considering the L_z , we get

$$e^{-i\pi L_x/\hbar} L_z e^{i\pi L_x/\hbar} = -L_z. \quad (4.4)$$

Acting on the rotated state with L_z , we get

$$L_z(e^{i\pi L_x/\hbar} |l, m\rangle) = -e^{i\pi L_x/\hbar} L_z |l, m\rangle = -\hbar m (e^{i\pi L_x/\hbar} |l, m\rangle)$$

where we have used Eq. (4.4). From this result, we can identify the rotated state as the eigenstate with $m \rightarrow -m$, so

$$e^{i\pi L_x/\hbar} |l, m\rangle = e^{i\varphi_m} |l, -m\rangle.$$

Since the matrix $e^{i\pi L_x}$ is unitary, it preserves the normalization of state vectors. So $e^{i\varphi_m}$ must be a complex number of modulus 1 ("a phase"). This implies that φ_m

must be real-valued. However the value of the phases φ_m cannot be determined by the calculation above.

Interpretation. The operator L_z measures angular momentum along the z -axis. When we apply a rotation by π around the x -axis, the coordinate system is reflected such that $z \rightarrow -z$. As a result, the rotated observable becomes $-L_z$, meaning the measurement direction has flipped. Consequently, the eigenvalues of L_z must also change sign. This symmetry implies that an eigenstate $|l, m\rangle$ is mapped to $|l, -m\rangle$, reflecting the fact that angular momentum now points in the opposite direction along z . This transformation is a natural consequence of how angular momentum operators behave under spatial rotations.

(c) Show that a rotation by π around the z -axis can also be achieved by first rotating around the x -axis by $\pi/2$, then rotating around the y -axis by π , and, finally, rotating back by $-\pi/2$ around the x -axis. In terms of rotation operators, this is expressed as

$$e^{i\pi L_x/2\hbar} e^{-i\pi L_y/\hbar} e^{-i\pi L_x/2\hbar} = e^{-i\pi L_z/\hbar}.$$

Hint: Use the result from part (a).

We expand the exponential with L_y using the known Taylor series:

$$e^{i\pi L_x/2\hbar} e^{-i\pi L_y/\hbar} e^{-i\pi L_x/2\hbar} = e^{i\pi L_x/2\hbar} \sum_n \frac{(-i\pi)^n}{\hbar^n n!} L_y^n e^{-i\pi L_x/2\hbar}. \quad (4.5)$$

We now use the result of part (a) to find the rotation of the operator $V_y = L_y$. By setting $\phi = \pi/2$ in the rotation matrix, we get:

$$e^{i\pi L_x/2\hbar} L_y e^{-i\pi L_x/2\hbar} = L_z. \quad (4.6)$$

This result can be generalized to

$$e^{i\pi L_x/2\hbar} (L_y)^n e^{-i\pi L_x/2\hbar} = (L_z)^n.$$

We use this fact in Eq. (4.5) and find:

$$e^{i\pi L_x/2\hbar} e^{-i\pi L_y/\hbar} e^{-i\pi L_x/2\hbar} = \sum_n \frac{(-i\pi)^n}{\hbar^n n!} L_z^n = e^{-i\pi L_z/\hbar}. \quad (4.7)$$

which proves that indeed a rotation by π around the z -axis can also be achieved by first rotating around the x -axis by $\pi/2$, then rotating around the y -axis by π , and, finally, rotating back by $-\pi/2$ around the x -axis

(d) Now consider an electron with total angular momentum $J = L + S$. Let $|\Psi\rangle$ be its state and show that, if we rotate it by π around the z -axis, then by π around the y -axis, and finally, by π around the x -axis, we retrieve the same state with an additional phase factor.

In the case of an electron the rotation operators involve the total angular momentum $J = L + S$. Then, the above statement is expressed mathematically as follows:

$$e^{-i\pi J_x/\hbar} e^{-i\pi J_y/\hbar} e^{-i\pi J_z/\hbar} |\Psi\rangle = e^{-i\pi\sigma_1/2} e^{-i\pi\sigma_2/2} e^{-i\pi\sigma_3/2} e^{-i\pi L_x/\hbar} e^{-i\pi L_y/\hbar} e^{-i\pi L_z/\hbar} |\Psi\rangle.$$

Using the following property, which we have shown in a previous exercise set,

$$e^{i\alpha\sigma_j} = \cos \alpha \mathbb{1} + i \sin \alpha \sigma_j \quad (4.8)$$

where $\alpha = -\pi/2$ (for our case), we obtain:

$$e^{-i\pi J_x/\hbar} e^{-i\pi J_y/\hbar} e^{-i\pi J_z/\hbar} |\Psi\rangle = i\sigma_1\sigma_2\sigma_3 e^{-i\pi L_x/\hbar} e^{-i\pi L_y/\hbar} e^{-i\pi L_z/\hbar} |\Psi\rangle. \quad (4.9)$$

The product $i\sigma_1\sigma_2\sigma_3$ evaluates to $-\mathbb{1}$. Then, we can write:

$$e^{-i\pi J_x/\hbar} e^{-i\pi J_y/\hbar} e^{-i\pi J_z/\hbar} |\Psi\rangle = -e^{-i\pi L_x/2\hbar} \left(e^{-i\pi L_x/2\hbar} e^{-i\pi L_y/\hbar} \right) e^{-i\pi L_z/\hbar} |\Psi\rangle, \quad (4.10)$$

and using the result of part (c) in the parenthesis, we find:

$$e^{-i\pi J_x/\hbar} e^{-i\pi J_y/\hbar} e^{-i\pi J_z/\hbar} |\Psi\rangle = -e^{-i\pi L_x/2\hbar} \left(e^{-i\pi L_z/\hbar} e^{-i\pi L_x/2\hbar} \right) e^{-i\pi L_z/\hbar} |\Psi\rangle. \quad (4.11)$$

Now, the angular momentum takes integer values, thus we may show that $e^{-i2\pi L_z/\hbar} = \mathbb{1}$. We can use this result to write:

$$e^{-i\pi J_x/\hbar} e^{-i\pi J_y/\hbar} e^{-i\pi J_z/\hbar} |\Psi\rangle = -e^{-i\pi L_x/2\hbar} \left(e^{-i\pi L_z/\hbar} e^{-i\pi L_x/2\hbar} e^{i\pi L_z/\hbar} \right) |\Psi\rangle. \quad (4.12)$$

Then, the exponential $e^{-i\pi L_x/2\hbar}$ is appropriately being rotated by an angle π about the z -axis, thus:

$$e^{-i\pi J_x/\hbar} e^{-i\pi J_y/\hbar} e^{-i\pi J_z/\hbar} |\Psi\rangle = -e^{-i\pi L_x/2\hbar} e^{i\pi L_x/2\hbar} |\Psi\rangle = -|\Psi\rangle.$$